
SOFTWARE Open Access

Meredys, a multi-compartment reaction-diffusion
simulator using multistate realistic molecular
complexes
Dominic P Tolle, Nicolas Le Novère*

Abstract

Background: Most cellular signal transduction mechanisms depend on a few molecular partners whose roles
depend on their position and movement in relation to the input signal. This movement can follow various rules
and take place in different compartments. Additionally, the molecules can form transient complexes. Complexation
and signal transduction depend on the specific states partners and complexes adopt. Several spatial simulator have
been developed to date, but none are able to model reaction-diffusion of realistic multi-state transient complexes.

Results: Meredys allows for the simulation of multi-component, multi-feature state molecular species in two and
three dimensions. Several compartments can be defined with different diffusion and boundary properties. The
software employs a Brownian dynamics engine to simulate reaction-diffusion systems at the reactive particle level,
based on compartment properties, complex structure, and hydro-dynamic radii. Zeroth-, first-, and second order
reactions are supported. The molecular complexes have realistic geometries. Reactive species can contain user-
defined feature states which can modify reaction rates and outcome. Models are defined in a versatile NeuroML
input file. The simulation volume can be split in subvolumes to speed up run-time.

Conclusions: Meredys provides a powerful and versatile way to run accurate simulations of molecular and sub-
cellular systems, that complement existing multi-agent simulation systems. Meredys is a Free Software and the
source code is available at http://meredys.sourceforge.net/.

Background
The influence of geometry and space on the functioning
of cellular processes, the vast quantity of potential inter-
actions due to molecular complex formation, and the
stochasticity caused by low copy numbers of molecular
species are all recognised features of many biological
systems [1-3]. Within the field of computational biology
these systems are best modelled using a particle-based
stochastic approach [4]. Here we present Meredys
(MEsoscopic REaction DYnamics Simulator), a stochas-
tic, particle-based simulation software designed to
model and simulate reaction-diffusion systems at the
mesoscopic level. The software is derived from an idea
initially developed by Dan Mossop and Fred Howell in
the Abstracted Protein Simulator (APS) [5]. It is imple-
mented in the Java programming language and uses

Java3D as visualization framework for rendering to the
screen. The input to the software is a model of a reac-
tion diffusion system encoded in a Meredys specific
implementation of the NeuroML model description lan-
guage [6]. The specification includes entries for mole-
cule geometry and position, feature states of molecular
entities, position of reaction sites, as well as types of
reactions occurring and the biophysical properties of the
diffusion landscapes. During a simulation, the software
implements a Brownian Dynamics algorithm [7] to
simulate the evolution of the system through time.
Among the features Meredys was designed to tackle are
the accurate simulation of reaction-diffusion systems
operating in three dimensions, the potential for multi-
state, multi-component molecular species, and the effect
of multiple molecular states on the rate and outcome of
the reactions these molecular species undergo.

* Correspondence: lenov@ebi.ac.uk
Computational Neurobiology Group, EMBL-European Bioinformatics Institute,
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

© 2010 Tolle and Le Novère; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://meredys.sourceforge.net/
mailto:lenov@ebi.ac.uk
http://creativecommons.org/licenses/by/2.0

Implementation
Given below is a description of the most important
algorithms and software routines used in the Meredys
software. Upon start-up, the program reads the XML
input file, initialises the random number generator, sets
up the simulation volume and creates the required soft-
ware representations of the molecular species that need
to be modelled. Meredys simulations take place in a
confined space called the simulation volume, a cube
whose side length are defined by the user (see Figure
1A). The position of any molecular species within the
simulation volume is given as a 3-component position
vector relative to the centre of the simulation volume.
After initialisation, the software enters a cycle of itera-
tions. The Brownian dynamics engine works by dividing
time into small, equal time steps. The time evolution of
the system occurs by iteration of these time steps. The
time step length, the amount of simulated time each
time step represents, is given as user input. The Meredys
algorithm executes a sequence of procedures at each
iteration cycle. The iteration cycle is shown in Figure 2.
The number of total iterations executed, that is the total
run length, is user defined within the input file. The
algorithms employed at each step of an iteration cycle
include algorithms for random walks of molecules, zer-
oth-order, uni-molecular and bi-molecular reactions,
including bonding reactions, and execution of user-
defined events. Movement of molecules takes place in
specific diffusion environments, called diffusion land-
scapes, which determine the diffusive behaviour of
molecules. Examples of such landscapes are the mem-
brane or the cytosol. Following diffusion, the software

executes potential reactions. The feature-states of the
reactants can affect the reaction rate and/or outcome. In
order to speed up run time, Meredys omits iterations
during which no molecular movement, reaction or event
takes place, effectively jumping ahead to the next itera-
tion containing any of these actions. The program
allows for various different types of output options
including information displayed as text to file or console
and visual information rendered to screen during run-
time or captured as set of image files. The type of out-
put, as well as the information to be output, is defined
in NeuroML input file.

Random Number Generation
The Monte Carlo methods used in Meredys for the
simulation of molecular diffusion and some of the reac-
tion algorithms require a large number of (pseudo-)ran-
dom numbers to be generated by the program. In order
to allow reproduction of results, random number gen-
eration needs to occur in an environment which allows
the recreation of the sequence of random numbers used
during a simulation run. All random number generation
in Meredys is handled by the Randomizer class, which
in turn contains the Random class supplied by the Java
Development Kit (JDK - available since JDK1.0). The
JDK Random class allows for the creation of a random
number generator seeded with a user-supplied value,
thus enabling the repetition of the generation of a
sequence of random numbers. The JDK Random class
uses a linear congruential formula to modify the seed
value [8] and create the sequence of random numbers.
The class returns pseudo-random, Gaussian distributed

Figure 1 Meredys visual output. (A) Screen-shot of Meredys running a simulations. The white mushroom shaped objects are entities distributed
throughout the membrane. Two more entities diffuse in the volume above the membrane (red spheres and blue cylinders). A short movie of
this particular simulation is found in the additional files. (B) Close up of Meredys cluster formation. In this example three entities (green, red,
multi-coloured) combine to form clusters.

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 2 of 11

double-precision floating point values, pseudo-random,
uniformly distributed single-precision floating point
values, and pseudo-random, uniformly distributed inte-
ger values. Exponential variates are created by the Ran-
domizer wrapper class using pseudo-random, uniformly
distributed single-precision floating point values and
applying the inversion method [9]. As random number
generation can be computationally time consuming, and
the software requires a large amount of random num-
bers, Meredys gives the user a choice of two approaches
for random number generation. Firstly, all the random
numbers can be generated when required at run time.
Alternatively, the software can pre-compute two list of
250000 random numbers (one uniformly distributed sin-
gle-precision floating point values, the other Gaussian
distributed double-precision floating point values), and
reuse these lists with replacement and shuffling, during

program execution (see Figure 3 for pseudo-code of the
replacement and shuffling algorithm).

Voxels
A bi-molecular reaction between two reacting partners
proceeds if the reacting partners are separated by a dis-
tance equal to or less than their binding radius (see Bi-
molecular Reactions section below) by the end of the
movement step of the iteration cycle. Each reaction site
must therefore query all its possible partner sites for
their position in the system volume, and determines the
distance between them. In a system of many molecules,
these operations can be computationally time consum-
ing, and often unnecessary, especially if distances
between reacting partners do not change significantly
from one iteration step to the next. These computation-
ally expensive operations can be minimised by dividing
the system volume into separate sub-volumes called
voxels. Every reaction site keeps track of its encompass-
ing voxel following the cluster movement step of the
iteration cycle. During bi-molecular reaction resolution,
each reaction site only checks reaction partners present
in the same voxel as itself or any of the 26 neighbouring
voxels (Figure 4). For this procedure to work effectively,
voxels need to be larger than the largest binding radius.
The program pre-computes all the possible binding radii
at program initialisation and checked against the user
defined voxel size. If the voxel size is larger than the lar-
gest binding radius, the program divides the system
volume into the appropriate number of voxels. Other-
wise the user is asked to define a larger voxel size.
A large number of voxels speeds up the simulation run
time at the expense of computer memory.

Representation of molecules entities
Any biological object of interest, such as a protein, is
represented by a model construct, which in turn is
instantiated from a number of software objects. Molecu-
lar species are modelled in a hierarchical fashion (Figure
5). Particles, entities and clusters are the software classes
that are used to create representations of the molecular
species within the model. Clusters are composed of one
or more entities, and an entity is composed of one or
more particles.
Particles are the basic building blocks for the con-

struction of compound objects. They contain the sites of
all bi-molecular and some uni-molecular reactions. A
particle’s centre of mass is described by a position vec-
tor relative to the centre of mass of its parent entity (see
P1 and P2 relative to E1 in Figure 5A).
Entities are permanent objects that never dissociate

into their component particles during run-time. An
entity’s particle make up is defined by the modeller in
the simulation input file. An entity maintains its identity

Figure 2 Meredys Iteration cycle . The software sequentially
executes each step of an iteration cycle at each iteration. The
number of iterations the simulation performs is user defined within
the input file.

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 3 of 11

Figure 3 Pseudo-code for Randomizer. (A) Generation of number sequence. Whenever the iterator reaches the end of a list of random
numbers, a new iterator is set up and the list of numbers is shuffled. (B) Shuffling of a list of random numbers. Whenever the iterator reaches
the end of a list of random numbers, the list is split into sections, the sections shuffled, one section replaced and the list reassembled.

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 4 of 11

throughout a simulation, even when it is part of a clus-
ter comprising two or more entities. Entities have a cen-
tre of mass encoded as a position vector relative to the
centre of mass of its parent cluster (see E1 and E2 rela-
tive to C1 in Figure 5B).
The final member of the component hierarchy of the

objects used in Meredys is the cluster. Clusters are the
run-time instantiations of one or more entities. Entities
which undergo binding reactions are considered part of
the same cluster (Figure 1B). This association can be
transient. When two bonded entities separate, they each
form an independent cluster. Additionally, a cluster’s
hydro-dynamic radius, used in the calculation of the
cluster diffusion constant, is determined by the hydro-
dynamic radii of all its member particles. The member
particles are assumed to be spheres of a volume calcu-
lated from their user-defined hydro-dynamic radius. The
parent entity is assumed to be a sphere of volume equal
to the sum of the volumes of its child particles. The par-
ent cluster is assumed to be a sphere of volume equal to
the sum of the volumes of its child entities. The sphere’s
radius is taken as the cluster’s hydro-dynamic radius
(see Figure 5B). Clusters have a centre of mass which is
a position vector relative to the centre of the simulation
volume.

Diffusion
Clusters are the software objects which diffuse through
the simulation volume at each time step. The diffusion
properties of the cluster are determined by the particles
composing the cluster’s entities. Each particle belongs to
a specific diffusion landscape. An entity then contains a

Figure 4 Voxelisation of the System Volume. The system volume
is shown divided into 5 × 5 × 5 voxels. During the bi-molecular
reaction step the list of voxels that contain reacting molecular
species is shuffled and each voxel checked sequentially. The
reacting molecular species in the voxel and the reacting molecular
species in the 26 neighbouring voxels are checked for the
occurrence of bi-molecular reactions, based on the binding radius.
After the reactions, the centre voxels is removed from further
inspection until the iteration cycle starts anew, and the next voxel
and its neighbours are inspected. The side length of a voxel must
be larger than the largest binding radius in the simulations. Possible
binding radii are estimated at program initialisation. The centre
voxel is shown in purple. For the sake of clarity only 6 (out of a
total of 26) neighbour voxels are highlighted in light green.

Figure 5 Hierarchical representation of molecular species in Meredys. (A) Two independent clusters each composed of one entity, E1 and
E2, prior to bond formation. Large blue spheres represent the stokes radii of the clusters. Green disks represent the points of binding (B) A new
cluster composed of two entities, E1 and E2 resulting from the assembly of the former clusters by reaction of reaction points S1 and R1. The
stokes radius of the new cluster is composed of the stokes radii of all the composing entities. Yellow points P1 & P2, particles centre of mass;
purple points E1 & E2, entities centre of mass; blue point C1, cluster centre of mass; red points S1, S2, S3 & R1, reaction points.

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 5 of 11

set of diffusion landscapes composed of the diffusion
landscapes of all the entity’s child particles. A cluster, in
turn, contains a set of diffusion landscapes constructed
from the union of the sets of its child entities. The dif-
fusion landscape which determines the cluster’s diffusion
properties is the most limiting landscape from the set of
landscapes. Currently there are five landscapes to chose
from: unrestricted, membrane, above membrane, below
membrane, and static. The ‘unrestricted’ diffusion land-
scape allows for unrestricted diffusion over the whole
simulation volume. Clusters in the ‘membrane’ diffusion
landscape have their movement restricted to two dimen-
sions, with no movement along the y-axis. This is used
for movement of membrane-bound molecules. The
membrane position point is the y-coordinate at which
the membrane is located. It is user-defined. The mem-
brane is therefore represented by a plane in x-z, which
crosses the simulation volume at a user defined y-coor-
dinate. The ‘above membrane’ diffusion landscape allows
unrestricted three-dimensional diffusion in the sub-
volume above the membrane position point. Conversely,
the ‘below membrane’ diffusion landscape allows unrest-
ricted three-dimensional diffusion in the sub-volume
below the membrane position point. The ‘static’ diffu-
sion landscape disallows any kind of movement. The
‘static’ diffusion landscape is set as the most limiting dif-
fusion landscape, followed by the membrane landscape
as the second most limiting followed by the remaining
landscapes, which are considered of equal precedence.
A cluster’s diffusion landscape can change during a

simulation, as the cluster incorporates more entities
containing a different set of diffusion landscapes, or
when a cluster separates into two clusters and the
inheritance of possible diffusion landscapes is unequal
due to unequal entity composition. For example, a clus-
ter can change from an unrestricted diffusion landscape
to a static diffusion landscape by binding a different, sta-
tic cluster. In addition to determining the limits of the
cluster diffusion within the simulation volume, diffusion
landscapes also influence the actual displacement a clus-
ter experiences at each time step, by affecting the clus-
ter’s Diffusion coefficient, D.
Within molecular environments, where viscous forces

exceed inertial forces, particles move by random, Brow-
nian, motion [10]. The probability of finding a particle
at position x after some time Δt following release from
a point source at time t = 0 and free diffusion in one
dimension can be calculated from Fick’s Second law of
diffusion and yields

p x t
D t

e

x
D t(,) 

1
4

2

4
 

 (1)

This describes a Gaussian distribution with mean
μ = 0, and variance s2 = 2DΔt. Meredys uses this solu-
tion to Fick’s Second law to determine the displacement
of each cluster at each time-step. Each component of a
cluster’s displacement vector is random number X
drawn from the above distribution, X ~ N (μ, s2) where
μ = 0 and s2 = 2DΔt. Similar translational displacement
algorithms have been used in other stochastic, particle
based simulation software [11,12] and effectively
describe free diffusion. The value of a cluster’s D is
dependent on whether the cluster is membrane bound
or not, on the viscosity of the cluster’s diffusion land-
scape and on the hydro-dynamic radius of the cluster.
In the case of a cluster diffusing in an aqueous, non-
membrane environment (i.e. clusters in the ‘unrestricte-
d’,’above membrane’ or ‘below membrane’ diffusion
landscape) Meredys calculates the cluster’s D, using the
Stokes-Einstein equation [10]:

D
kBT

r


6
(2)

where kB is Boltzmann’s constant, T is the absolute
temperature in Kelvin, h is the viscosity of the sur-
rounding fluid, and r is the cluster’s hydro-dynamic
radius. When clusters combine during a simulation run,
the resulting, larger cluster has a different value of D.
For membrane-bound clusters, the equation for D is
taken from Saffman and Delbrück [13]:

D
kBT

h
h
r

 
4




(log) (3)

where g is Euler’s constant, and h is the thickness of
the plasma membrane (5 nm in Meredys), μ is the visc-
osity of the membrane, and r is the radius of a cylindri-
cal particle in the membrane. The membrane landscape
can be further sub-divided by defining membrane
domains. These are circular sub-domains within the
membrane. Membrane domains may have different visc-
osities from the membrane landscape. The user can
assign specific boundary conditions to the boundaries
between membrane domains and the membrane
landscape.
In addition to translational motion, clusters also

undergo rotational motion during each time step. As a
cluster’s rotational motion is much faster than its trans-
lational motion, clusters assume a random orientation
after each time-step. Rotation is restricted for clusters
diffusing in the membrane diffusion landscape.

Boundary interaction
Simulations take place in a simulation volume of user
defined size delimited by the simulation volume

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 6 of 11

boundaries. Additionally, specific membrane domains
can be described which are separated from the canonical
membrane environment by user-defined boundaries. As
a consequence, types of behaviour need to be specified
to resolve interaction of diffusing clusters with the avail-
able boundaries. There are four types of boundary inter-
actions that can be simulated: Open, absorbing,
periodic, and reflective. Boundary interactions are
invoked whenever a cluster crosses the boundary. A
cluster is said to have crossed a boundary if it is found
on a different side of the boundary at the end of the
movement step of the iteration cycle, compared to the
start of the movement step. Open boundary interactions
do not obstruct cluster diffusion at all. A cluster is freely
allowed to cross an open boundary. Clusters crossing an
absorbing boundary are removed from the simulation.
Periodic boundary interaction allows the translation of
the cluster across the domain volume to emerge at the
opposite side. A reflective boundary interaction reflects
the molecule according to the law of reflection. Any
described boundary can have a number of boundary
conditions associated with it. A boundary condition is
defined as a boundary interaction type and an associated
probability. The sum of all the probabilities of a
domains boundary conditions must equal to one. The
probabilities determine what type of interaction occurs
when a cluster comes in contact with a boundary. Addi-
tionally, a boundary can posses a different set of bound-
ary conditions, depending on the directionality of the
crossing. For example, a boundary between two domains
A and B may be open to molecules crossing from A into
B, but reflective for molecules attempting to cross from
B into A.

Reactions
Meredys is capable of simulating zeroth-order reac-
tions, uni-molecular reactions and bi-molecular reac-
tions. Reactions involving three reacting partners
simultaneously, tertiary reactions, cannot be
simulated.
Zeroth-order Reactions
Frequently it is necessary to include the creation of
molecules in a model without introducing the details of
the creation process. In such a case, zeroth-order reac-
tions can be used to simulate, for example, a continuous
influx of chemicals or a creation process. The rate equa-
tion is



[]E
t

k (4)

The k of each zeroth-order reaction is used to calcu-
late the mean number of entities (l) created at each
time-step.

  k tV N Avogadro (5)

Where k is the reaction rate in units of Molar per sec-
ond, Ms-1, δt is the time-step in seconds, V is the
volume of the landscape the entities are created in and
NAvogadro is Avogadro’s number. At program initialisa-
tion, a Poisson distribution with mean l is used to
determine the time elapsed until creation of one entity.
This is repeated until the total elapsed time is equal to
the time-step of one iteration, δt. All the resulting new
molecules are stored in a table and indexed by the itera-
tion at which they are created. This process is repeated
until the iteration step reached equals the total simula-
tion run time. Since this process occurs at program
initialisation, during the simulation run time only the
relevant table entry needs to be queried at specific itera-
tion steps, thus avoiding the need for computationally
expensive random number generation during run time.
The comparison of Meredys’ zeroth order reactions and
their analytic equivalent is provided in additional file 1.
Uni-molecular Reactions
There are many molecular processes that can be effec-
tively modeled using uni-molecular reactions, such as
conversions, unbinding or death processes. They com-
prise a wide range of important reactions in biochemis-
try. In Meredys, uni-molecular reactions can occur
either at reaction sites, or to entire entities. According
to Mass Action law the general reaction scheme for uni-
molecular reactions can be represented mathematically
by,



[]

[]
C
t

k A (6)

In order to minimise the number of random number
generations required for a simulation run, Meredys
implements a reaction scheduler. The software draws
the time of reaction from an exponential distribution.

f t ke kt()   (7)

k is the first order reaction rate constant, in units of
s-1, and t is the elapsed time in seconds. This time is
added to the elapsed simulation time to calculate the
iteration step at which the reaction will occur. The reac-
tion with associated time of occurrence is termed a
reaction event. The reaction event is stored in a table
indexed by the iteration step at which the event occurs.
Additionally, reactions occurring during an iteration
step are executed according to the order within that
iteration step. Whenever an entity, reaction site or bond
is created, during program initialisation or as result of a
reaction, for example, Meredys determines the uni-mole-
cular reactions the reactant can undergo and creates a

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 7 of 11

reaction event for each reaction and adds it to the sche-
duler. The event is executed at its determined iteration
step. If the reactant undergoes a state change or other
reaction which affects a previously determined reaction
event, then the affected reaction event is removed from
the scheduler and a new reaction event determined if
need be. The comparison of Meredys’ first order reac-
tions and their analytic equivalent is provided in addi-
tional file 1.
Bi-molecular Reactions
The simulated bi-molecular reactions take place on
reaction sites. A reaction site software object is con-
tained within the particle software object. A particle
may contain more than one reaction site. The reaction
sites are roughly analogous to biological binding sites or
enzyme active sites. As active sites they determine the
site of reactions for a particle and its parent entity. As
binding sites, they determine the site of binding and
geometry of the binding between two entities. The reac-
tion site is described by a set of three points (see Figure
5). The first point, the centre point, gives the centre of
the reaction site. The first and second points together
describe a vector, the normal vector, through the centre
of the reaction site. The first and the third points
together describe a vector perpendicular to the normal
vector, called the plane vector. The centre point is used
as the centre of the sphere describing the reaction
radius of the reaction surface for the purpose of bi-
molecular reactions. The two vectors are used to deter-
mine the geometry of binding during binding reactions.
Bi-molecular reactions occur when two molecules col-

lide with enough energy and in the correct orientation
to form a product. A general reaction scheme for a bi-
molecular reaction is:



[]

[][]
C
t

k A B (8)

Meredys implements the bi-molecular reaction algo-
rithm outlined in Andrews and Bray [11]. This
algorithm is based on the Smoluchowski model for reac-
tion-diffusion systems [14]. Within a physical system, a
collision occurs when the reactant centres are separated
by a distance equal to the sum of the molecular radii.
Not every collision in a physical system leads to a reac-
tion, as not every collision overcomes the reactions acti-
vation barrier. In order to take account of this, the
algorithm replaces the sum of the molecular radii by an
effective binding radius, s. Andrews and Bray [11]
determine the binding radius by deriving the simulated
reaction rate constant in terms of the binding radius,
equating this to the experimentally observed rate con-
stant and then inverting the result to get s. Bi-molecular
reactions occur when two reaction site centre points

come within a distance determined by the reacting pairs
binding radius following the molecular displacement
step of the iteration cycle.
The accuracy of Brownian Dynamics based simulators

of chemical reactions is depended on the chosen time
step length of the iteration step [15]. In the case of the
bi-molecular reaction algorithm used in Meredys, the
authors of Smoldyn present a practical heuristic to allow
the determination of an acceptable time step length [11].
In brief, simulations are run with a trial time step at first
instance. The simulations are then repeated using a time
step half as long as the initial time step. If no significant
differences are found between the results obtained using
the two different time steps, the longer time step is suffi-
cient. Otherwise the procedure is repeated.
Many molecular biological species interact to form

transient complexes, such as the protein-protein interac-
tions that dominate cellular signalling networks. Two
procedures exist to simulate bi-molecular reactions
resulting in bond formation between the two participat-
ing entities. Although the modeller has the option of
encoding binding reactions by using the aforementioned
bi-molecular reaction scheme and treating the bonded
product as a new entity altogether, Meredys does allow
for binding reactions where the identities of the partici-
pating entities are retained. This is particularly useful
for the modelling of transient, reversible interactions,
such as ligand binding to a receptor, as it eases the
tracking of individual molecular species. The reaction
scheme for binding reactions is that of the general
bi-molecular reaction scheme given above. However, the
reaction outcome differs, as a new cluster needs to be
formed from the existing reacting partners. The struc-
tural rearrangements required for binding are encoded
in the set of three points describing the reaction surface
(see Figure 5). First, the centre points of the partner
reaction sites are superimposed. Then the reaction part-
ners are rotated to make their normal vectors anti-paral-
lel. Finally, the reactants are rotated perpendicular to the
normal vector to superimpose their plane vectors. The
hydro-dynamic radii and diffusion landscapes of the
reaction partners determine the relative contribution of
each partner to the rotational movements required to
bring them into the right orientation. Reactants with a
overall hydro-dynamic radius rotate less, and both the
membrane diffusion landscape as well as the static diffu-
sion landscape restrict the amount of rotation a reactant
can undergo. The comparison of Meredys’ bi-molecular
reactions and the equivalent simulation in an ODE
solver is provided in additional file 1.

Molecular States
Many biological molecules can assume different
states. Common examples include post-translational

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 8 of 11

mod-ifications, ligand occupation or conformation
states. These states often influence the molecules overall
biophysical properties, including the reactions the mole-
cule partakes in. At times, a modeller would like to keep
track of a molecules different states but still maintain
the identity of the original molecule; that is, avoid creat-
ing new entities every time a state change occurs. Mere-
dys supports this concept, by allowing user defined
feature states for simulation entities. An entity’s state
can have a direct effect on the reaction probability of
any reaction the entity is capable of undergoing. Equally,
any reaction the molecule undergoes can effect a state
change. An entity’s states are defined by describing a
particular entity feature, such as channel gating, or
phosphorylation site, and an enumeration of the possible
states the feature can assume.

Events
Sometimes the spontaneous creation through the zero-
order reaction mechanism is not sufficient for the addi-
tion of new entities. It is possible to load pre-defined
entities directly into the simulation at a given time
point. These non-movement and non-reaction occur-
rences are termed events and can be specified within
the input XML file.

Output
Output is described in the NeuroML output class. This
class defines for which entity we want output, at what
time points this output is created and what kind of out-
put to produce. The options are position, orientation,
feature state and entity count. Output is printed when-
ever the iteration step number is evenly divisible by the
number given in the timepoints attribute. Output is only
printed if an iteration step is executed. The format is
text with each line showing one cluster - entities user
ids as well as internal entity unique identifiers of entities
belonging to the cluster are given. In addition the posi-
tion, orientation or feature states are given, if specified
as output by the user. Simple text output allows the
data to be further analysed by user created scripts.

Results and Discussion
We present a theoretical model to highlight some of the
features of Meredys, such as the user defined states, the
reaction of species diffusing in two and three dimen-
sions, and complex formation. The model includes enti-
ties diffusing in the two dimensional environment of
the membrane capable of binding to entities diffusing in
the volume above the membrane. All the entities in the
simulation belong to one of three types, described by
specific entity templates. Entities of type R diffuse in the
membrane and contain one binding site capable of

binding to a site on entities of type B. Entities of type A
diffuse in the volume above the membrane and contain
one binding site capable of binding to a site on entities
of type B, separate from the binding site mentioned
above. Entities of type B diffuse in the volume above the
membrane and contain three binding sites, two capable
of binding with entities of type R and one capable of
binding with entities of type A. The latter binding site
only becomes available once the former two binding
sites are occupied. All reaction rate constants where
arbitrarily set to k = 5 * 106M-1s-1. The sequence of
binding leading for formation of molecular complex is
as follows:

B RB RB RBA  2 2 (9)

The model is provided as additional file 2 and a movie
of its simulation is provided in additional file 3. The
binding state of type B is encoded as a user defined fea-
ture state, and this feature state affects reactions the
entity can undergo. Note that B needs to be double
bound before it can start binding molecules A. Figure 6
shows the binding states of entities of type B as a func-
tion of time. NeuroML files describing the model can be
found in the additional files.

Conclusions
Meredys is a stochastic, particle-based software
designed to simulate reaction-diffusion systems at the
meso-scopic level. Molecular composition and states
are maintained for each simulated molecular species
within the simulation. The random walk algorithm
effectively models the molecular diffusion of molecular
species in two- and three-dimensions. The random
walk is influenced by the diffusion landscape the mov-
ing cluster operates in. The membrane diffusion land-
scape can further be subdivided into domains such as
the extra-synaptic or synaptic membrane. Meredys
offers algorithms for simulating uni-molecular reac-
tions, such as receptor-channel state changes, and bi-
molecular reactions, such as ligand binding reactions,
as well as zeroth-order reactions to model creation
processes without the need to fully specify all of the
entities involved in the creation process. In the case of
binding reactions between two molecular species, Mer-
edys allows for the control of the geometry of the
interaction. Additionally, interacting partners maintain
their identities throughout the interaction. Networks
with over 4000 components have been simulated using
Meredys (data not shown). Run time is highly depen-
dent on the compute power, number of molecules
involved in the simulation and number of interactions
the molecules can undergo.

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 9 of 11

There are a number of simulation engines available to
the biochemical modeller [11,15-19]. Often, the simula-
tors are classified into groups based on the amount of
spatial detail which they are able to simulate [1].
Depending on the system of interest, particle-based
simulators may prove to be the better choice over other
simulation engines. Particle-based stochastic simulators
like Meredys are capable of capturing a host of features
which population based simulations engines are not cap-
able of capturing due to the lack of spatial information
presented in the model [4]. Examples include analyses
of glutamate release location relative to post-synaptic
receptor location during neurotransmitter release in the
glutamate synapse [20], or investigating the effect of sig-
nal molecule locations on signalling during bacterial
chemotaxis [21]. A feature which sets Meredys apart
from these other particle-based simulation software
such as MCell [22] and Smoldyn [11] is Meredys’ multi-
component, multi-state feature clusters. Many biological
entities form large, interacting multi-component clusters
[23]. Meredys’ multi-component cluster formation allows
for the identification and tracking of specific members
of the clusters during the whole of the simulation.

Availability and requirements
Project name Meredys
Project home http://meredys.sourceforge.net/
Operating system(s) Platform independent
Programming language Java

Other requirements Java 3D
Licence GNU GPL
The software sources are provided in additional file 4.

Additional file 1: Example model NeuroML input files. NeuroML
input files describing the example model used in the text.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-0509-4-24-
S1.PDF]

Additional file 2: Movie of Meredys running. Short movie of a
simulation run using Meredys.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-0509-4-24-
S2.TGZ]

Additional file 3: Sourcecode of Meredys. Archive containing the
source of the software, a java library, the software to generate a trace
from simulation results, the manual, two full models, and a set of
tutorials.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-0509-4-24-
S3.MP4]

Additional file 4: Comparison of Meredys and continuous
approaches. Comparison of simulations of zero order, uni- and
bimolecular reactions run in Meredys or obtained using ordinary
differential equations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-0509-4-24-
S4.TGZ]

Acknowledgements
We thank Dan Mossop and Fred Howell for providing the Abstract Protein
Simulator, the software from which Meredys was derived. We also thank
Simone Zorzan for helpful discussions of the Meredys source code, Sarah
Birch for careful reading of the manuscript and Anton Enright for aid with

Figure 6 Double- and triple-bound states of entities of type B. Time course of entity state change. The red + shows the time course of
number of entities of type B which have two entities of type R bound (2RB). The green x shows the time course of 2RB entities binding to entities
of type A. All binding rate constants where arbitrarily set to k = 5 * 106 M-1s-1 and reactions were irreversible. #A = 1000; #B = 1000;#R = 100.

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 10 of 11

http://meredys.sourceforge.net/

the creation of the images. Both DPT and NL were supported by the
European Molecular Biology Laboratory.

Authors’ contributions
DPT developed the application and drafted the manuscript. NLN conceived
the idea of the application. All authors contributed to the final manuscript.

Received: 15 May 2009 Accepted: 16 March 2010
Published: 16 March 2010

References
1. Lemerle C, Ventura BD, Serrano L: Space as the final frontier in stochastic

simulations of biological systems. FEBS Letters 2005, 579:1789-1794.
2. Lok L, Brent R: Automatic generation of cellular reaction networks with

Moleculizer 1.0. Nat Biotechnol 2005, 23:131-136.
3. Halling PJ: Do the laws of chemistry apply to living cells?. Trends Biochem

Sci 1989, 14(8):317-318.
4. Tolle DP, Le Novère N: Particle-Based Stochastic Simulation in Systems

Biology. Curr Bioinformatics 2006, 1:315-320.
5. Mossop D, Howell F: Abstracted Protein Simulator. 2001 [http://www.

neurogems.org/protsim1/].
6. Goddard NH, Hucka M, Howell F, Cornelis H, Shankar K, Beeman D:

Towards NeuroML: model description methods for collaborative
modelling in neuroscience. Philos Trans R Soc Lond B Biol Sci 2001,
356(1412):1209-1228.

7. Ermak DL, McCammon JA: Brownian dynamics with hydrodynamic
interactions. J Chem Phys 1978, 69:1352-1360.

8. Knuth D: The Art of Computer Programming Reading, Massachusetts,
Addison Wesley 1999.

9. Devroye L: Non-Uniform Random Variate Generation New York, Springer-
Verlag 1986.

10. Berg HC: Random walks in biology, expanded edition Princeton: Princeton
University Press 1993.

11. Andrews SS, Bray D: Stochastic simulation of chemical reactions with
spatial resolution and single molecule detail. Phys Biol 2004, 1(3-
4):137-151.

12. Stiles JR, Helden DV, Bartol TM, Salpeter EE, Salpeter MM: Miniature
endplate current rise times less than 100 microseconds from improved
dual recordings can be modeled with passive acetylcholine diffusion
from a synaptic vesicle. Proc Natl Acad Sci USA 1996, 93(12):5747-5752.

13. Saffman PG, Delbrück M: Brownian motion in biological membranes. Proc
Natl Acad Sci USA 1975, 72(8):3111-3113.

14. v Smoluchowski M: Versuch einer mathematischen Theorie der
Koagulationskinetik kolloider Lösungen. Zeitschrift für physikalische Chemie
1916, XCII:129-168.

15. Stiles J, Bartol T: Computational Neuroscience: Realistic Modeling for
Experimentalists CRC Press, Boca Raton 2001.

16. Schaff J, Fink CC, Slepchenko B, Carson JH, Loew LM: A general
computational framework for modeling cellular structure and function.
Biophys J 1997, 73(3):1135-1146.

17. Hattne J, Fange D, Elf J: Stochastic reaction-diffusion simulation with
MesoRD. Bioinformatics 2005, 21(12):2923-2924.

18. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F,
Saito K, Tanida S, Yugi K, Venter JC, Hutchison CA: E-CELL: software
environment for whole-cell simulation. Bioinformatics 1999, 15:72-84.

19. Le Novère N, Shimizu TS: STOCHSIM: modelling of stochastic
biomolecular processes. Bioinformatics 2001, 17(6):575-576.

20. Franks KM, Stevens CF, Sejnowski TJ: Independent sources of quantal
variability at single glutamatergic synapses. J Neurosci 2003,
23(8):3186-3195.

21. Lipkow K, Andrews SS, Bray D: Simulated diffusion of phosphorylated
CheY through the cytoplasm of Escherichia coli. J Bacteriol 2005,
187:45-53.

22. Bartol TM, Land BR, Salpeter EE, Salpeter MM: Monte Carlo simulation of
miniature endplate current generation in the vertebrate neuromuscular
junction. Biophys J 1991, 59(6):1290-1307.

23. Bray D: Genomics. Molecular prodigality. Science 2003,
299(5610):1189-1190.

doi:10.1186/1752-0509-4-24
Cite this article as: Tolle and Le Novère: Meredys, a multi-compartment
reaction-diffusion simulator using multistate realistic molecular
complexes. BMC Systems Biology 2010 4:24.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Tolle and Le Novère BMC Systems Biology 2010, 4:24
http://www.biomedcentral.com/1752-0509/4/24

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/15763553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15763553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15637632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2799901?dopt=Abstract
http://www.neurogems.org/protsim1/
http://www.neurogems.org/protsim1/
http://www.ncbi.nlm.nih.gov/pubmed/11545699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11545699?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16204833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16204833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650164?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1059096?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9284281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9284281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15817692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11395441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11395441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12716926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12716926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15601687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15601687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1873466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1873466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1873466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12595679?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Random Number Generation
	Voxels
	Representation of molecules entities
	Diffusion
	Boundary interaction
	Reactions
	Zeroth-order Reactions
	Uni-molecular Reactions
	Bi-molecular Reactions

	Molecular States
	Events
	Output

	Results and Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Authors' contributions
	References

