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Operant Training for Highly Palatable Food Alters
Translating Messenger RNA in Nucleus
Accumbens D2 Neurons and Reveals a
Modulatory Role of Ncdn
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ABSTRACT
BACKGROUND: Highly palatable food triggers behavioral responses including strong motivation. These effects
involve the reward system and dopamine neurons, which modulate neurons in the nucleus accumbens (NAc). The
molecular mechanisms underlying the long-lasting effects of highly palatable food on feeding behavior are poorly
understood.
METHODS: We studied the effects of 2-week operant conditioning of mice with standard or isocaloric highly
palatable food. We investigated the behavioral responses and dendritic spine modifications in the NAc. We
compared the translating messenger RNA in NAc neurons identified by the type of dopamine receptors they
express, depending on the kind of food and training. We tested the consequences of invalidation of an abundant
downregulated gene, Ncdn.
RESULTS: Operant conditioning for highly palatable food increased motivation for food even in well-fed mice. In wild-
type mice, free choice between regular and highly palatable food increased weight compared with access to regular
food only. Highly palatable food increased spine density in the NAc. In animals trained for highly palatable food,
translating messenger RNAs were modified in NAc neurons expressing dopamine D2 receptors, mostly
corresponding to striatal projection neurons, but not in neurons expressing D1 receptors. Knockout of Ncdn, an
abundant downregulated gene, opposed the conditioning-induced changes in satiety-sensitive feeding behavior
and apparent motivation for highly palatable food, suggesting that downregulation may be a compensatory
mechanism.
CONCLUSIONS: Our results emphasize the importance of messenger RNA alterations in D2 striatal projection
neurons in the NAc in the behavioral consequences of highly palatable food conditioning and suggest a modulatory
contribution of Ncdn downregulation.

https://doi.org/10.1016/j.biopsych.2023.08.006
Food palatability is a potent driver for food intake even without
actual caloric need. Excessive consumption of palatable food
can disrupt the normal regulation of appetite (1), inducing the
development of a compulsive-like approach to food intake
(2,3). However, the mechanisms by which exposure to palat-
able food induces persistent behavioral alterations responsible
for maladaptive food consumption remain poorly understood.
One hypothesis is that exposure to palatable food recruits the
brain reward system, first inducing a strong motivation and
later switching food-seeking behavior from flexible, goal-
directed actions to inflexible, compulsive-like responses and
weight gain (4–7). Obese persons display deficits in reversal
learning (8), perseveration in set-shifting tasks indicating
decreased cognitive flexibility (9,10), decreased sensitivity to
ª 2023 Society of Biological Psychiatry.
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satiety-mediated devaluation of food (11,12), and stronger
devaluation of delayed rewards (13). In obese individuals,
these behavioral modifications are accompanied by alterations
within the brain reward system. Functional imaging of fron-
tostriatal circuits, a main substrate for inhibitory behaviors and
cognitive control, reveals blunted activation in response to
food (14) and food-associated cues (15,16). The functionality
of these circuits depends on dopamine (DA) transmission, and
evidence supports a role of DA as a sensor of peripheral
metabolic signals (17) and in mediating the value of food-
associated cues (18). Downstream of DA, striatal D2 re-
ceptors (D2Rs, usually not distinguished from D3Rs) have
attracted much attention, as D2R antagonists induce weight
gain (19–22). Variable alterations in D2R availability have been
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reported in the striatum of morbidly obese individuals
(23–25). Moreover, polymorphisms in ANKK1/DRD2 (DRD2
being the D2R gene) were associated with blunted signals in
frontostriatal circuits in response to food stimuli, linked to
weight gain (26).

The nucleus accumbens (NAc) is key in responses to both
natural (food) and non-natural (drugs of abuse) rewards (27,28).
NAc alterations are suggested to modify food motivation and
decision making in obesity (29). The NAc comprises two
populations of projection neurons: D1R- or D2R-expressing
striatal projection neurons (D1SPNs and D2SPNs, respec-
tively), also known as medium-size spiny neurons (30). Early
optogenetic studies indicated that D1SPNs and D2SPNs have
opposing effects on reinforcement (31,32), but further work
showed that in the NAc both populations can encode reward
and aversion depending on stimuli and activity patterns (33).

In animal models, palatable—usually highly caloric—food
exposure alters reward-seeking behaviors (34–36) with
increased impulsivity (37) and impaired cognitive functions
(38), which are at least partially independent of overweight.
These behavioral dysfunctions are accompanied by modifica-
tions of DA transmission markers, with a decrease in D2R
expression in the striatum (39,40). However, the amplitude,
direction, and nature of these alterations differ between
studies, possibly due to differences in the composition of
palatable food and duration and age of exposure (41). Yet,
consistent findings point to alterations in excitatory trans-
mission and structural plasticity of glutamatergic synapses in
the striatum (42–44). The molecular bases of these regulations
are poorly understood, and the impact of palatable food
exposure on the transcriptional landscape of striatal neurons is
not known. In many studies, the effects of palatability per se
are not distinguished from the metabolic and neurobiological
modifications related to food (over)consumption. Moreover,
the passive—or forced—access to highly palatable food in
rodent models does not allow isolating the specific impact of
palatability on the goal-directed component of food-seeking
behavior crucial to developing compulsive eating.

Here, we used a combination of behavioral and genome-
wide approaches to characterize alterations in the trans-
latome associated with food-seeking behavior for standard or
isocaloric highly palatable food in the main dopaminoceptive
neuronal populations of the NAc. We investigated changes in
D1SPNs and D2SPNs using translating ribosome affinity pu-
rification (TRAP) (45,46) followed by RNA sequencing in mice
(47). We compared mice that learned to nose poke to obtain
either regular or highly palatable food with yoked control mice
that received the same food noncontingently. After identifying
changes in translating messenger RNA (mRNA) in D2SPNs, we
tested the consequences of the genetic manipulation of one of
the genes differentially regulated by conditioning for highly
palatable food, Ncdn (coding for neurochondrin, also known as
norbin).

METHODS AND MATERIALS

Animals

For translatome analyses, we used male and female (ages
10–12 weeks) Drd1-EGFP/Rpl10a or Drd2-EGFP/Rpl10a mice
(46), maintained as heterozygotes on a C57BL/6J background
Biological
(Table S1). To generate Ncdn conditional knockout (Ncdn-
cKO) mice, we crossed NcdnFlox/Flox mice with NcdnFlox/1/
Camk2a-Cre*/1 double mutant mice (48) and used male and
female 3- to 4 month-old littermates. C57BL/6 (wild-type) male
mice purchased from Janvier Labs were used at 3 to 4 months
of age. We performed animal protocols following the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals, approved by The Rockefeller University Institutional
Animal Care and Use Committee.

Behavioral Experiments

Operant conditioning experiments were carried out in operant
chambers (Med Associates) with 2 nose-poke holes. Mice
were randomly assigned to one of 4 groups: master highly
palatable (mHP), master standard (mST), yoked highly palat-
able (yHP), yoked standard (yST) (Figure 1A). All mice were
food restricted 5 days before the start of conditioning until the
ninth operant training session and then had ad libitum food
access. During the operant conditioning sessions, mice were
presented with 20-mg dustless precision ST pellets (5UTM
#1811143; TestDiet) or HP isocaloric pellets with a higher level
of sucrose among carbohydrates and a chocolate flavor (5UTL
#1811223; TestDiet). The progressive ratio (PR) schedule las-
ted 90 minutes (Supplemental Methods). For the free choice
paradigm, mice were separated into two groups. In their home
cage, one group had access only to ST food, while the other
group had free access to HP and ST food. Their weight was
monitored.

Cell Population–Specific mRNA
Immunoprecipitation and Sequencing

Cell population–specific purification of translating mRNA was
performed as described elsewhere (45,46) with some modifi-
cations (47). The brain was rapidly dissected and sliced on ice.
Bilateral pieces punched out from NAc of 3 mice (Table S1)
were homogenized in ice-cold lysis buffer (47) (Supplemental
Methods). RNA quality was checked using a Bioanalyzer
(Agilent). Five nanograms of RNA were used for reverse tran-
scription, ultrasonication, and library construction with a Tru-
Seq RNA Prep Kit (Illumina). The libraries were sequenced on
an Illumina HiSeq 2500 instrument (details in Supplemental
Methods).

Bioinformatic Analysis

We assessed the quality of the raw data using FastQC (49) and
mapped the libraries (37–62 million 50-bp paired-end reads) to
the Mus musculus genome GRCm38 (USCS mm10) using
HISAT2 (50). Reads were quantified using the RNA-Seq pipe-
line of SeqMonk (51). Sequencing data are deposited in the
National Center for Biotechnology Information Gene Expres-
sion Omnibus (52) (GEO # GSE137153; https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE137153) (Table S1).
Differentially expressed genes were identified using the Bio-
conductor package DESeq2 v1.30.1 (53). Genes with adjusted
p value , .05 (54) were declared differentially expressed. Gene
Ontology overrepresentation analyses were performed with
Gene Ontology Data Archive (55). Network inference was
performed with combined results of context likelihood of
relatedness (56) and GENIE3 (57) as described in an earlier
Psychiatry May 15, 2024; 95:926–937 www.sobp.org/journal 927
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Figure 1. Operant training for standard or
highly palatable food results in different behavioral
changes. (A) Schematic description of the operant
training protocol used in this study. (B) Time
course of the number of positive pokes (i.e., in the
active hole) during operant training as described
in panel (A). Two-way repeated-measures ANOVA
for each phase (see Table S2 for all statistical
results). Group effect, FR1: F3,141 = 97.3, p ,

1024; FR5: F3,144 = 161, p , 1024; FR5al: F3,144 =
234.5, p , 1024. Holm-Sidak’s multiple compar-
isons are indicated between mHP and mST. As
expected, the yoked mice did not make positive
pokes. (C) Time course of consumed pellets.
Two-way repeated-measures ANOVA, group ef-
fect, FR1: F3,142 = 8.25, p , 1024; FR5: F3,142 =
23.9, p , 1024; FR5al: F3,142 = 50.1, p , 1024.
Holm-Sidak multiple comparisons are indicated
between mHP and mST. The yoked mice
consumed virtually the same amount of food as
their respective masters. (D) Summary of positive
pokes per hour during the 3 phases for mHP and
mST as in panel (B) (same data). Two-way
ANOVA, food effect: F1,219 = 70.9, p , 1024;
training effect: F2,219 = 99.8, p, 1024; interaction:
F2,219 = 13.2, p , 1024. (D, E) Holm-Sidak mul-
tiple comparisons as indicated. (E) Summary of
obtained pellets per hour during the 3 phases for
mHP and mST. Two-way ANOVA, food type:
F1,219 = 59.4, p , 1024; training phase: F2,219 =
23.5, p , 1024; interaction: F2,219 = 5.0, p = .075.
(F) The satiety-induced decreased motivation for
nose poking was evaluated by calculating for
each mouse the ratio of the average number of
positive pokes per day during the FR5al sessions
divided by the average number of positive pokes
per day during the FR5 sessions with food re-
striction. Data are plotted for mST (left, n = 37) and
mHP (right, n = 38). One-sample t test, mST: t36 =
3.8, p = .0005; mHP: t37 = 1.55, p = .13, ns. *p ,

.05; **p , .01; ***p , .001; ****p , 1024. ANOVA,
analysis of variance; FR, fixed ratio; FR5al, FR5
with ad libitum food access in home cage; mHP,
master highly palatable; mST, master standard;
ns, not significant; TRAP, translating ribosome
affinity purification; yHP, yoked highly palatable;
yST, yoked standard.
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publication (47) and visualized and analyzed using Cytoscape
(58). We retained only the 1% highest-ranking non-zero edges
(313,944 edges). We filtered the list of edges to retain the
linking genes differentially expressed between master and
yoked animals fed with HP food (Supplemental Methods).

Spine Analysis

Spines were stained using the Golgi-Cox method (59) and
counted as described in the Supplemental Methods by in-
vestigators blinded to the mouse group.

Statistical Analyses

We analyzed the data with GraphPad Prism 6 (GraphPad
Software). Normality was checked with the D’Agostino and
Pearson normality test. If n was ,7 or the distribution signifi-
cantly differed from normal, nonparametric tests were used.
928 Biological Psychiatry May 15, 2024; 95:926–937 www.sobp.org/jo
Complete statistical analyses results are presented in
Table S2.

RESULTS

Food Palatability Induces Differential Behavioral
Responses in an Operant Training Paradigm and
Alters Spine Density

The mice used for translatome profiling were trained in an
operant paradigm for obtaining either ST (mST) or HP (mHP)
food (Figure 1A). Yoked control mice (yST and yHP, respec-
tively) were placed in the same conditions but received food
pellets noncontingently when their paired master mouse ob-
tained one. Under food restriction and low operant schedule
(fixed ratio 1 [FR1], i.e., one pellet obtained for one poke), mHP
mice displayed slightly more positive pokes than mST animals
(Figure 1B) (for statistical analyses, see Table S2). As expected,
urnal
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Figure 2. In wild-type mice, food free choice in-
creases weight and HP food increases spine density
in the nucleus accumbens. (A) Male 3- to 4-month-
old wild-type C57BL/6 mice were kept in their home
cage with free access to both HP and ST isocaloric
food (free choice, n = 10). A different group had
access only to ST food (n = 10). Weight of mice was
monitored every third day for 24 days. Mice in the
free choice conditions gained more weight than
mice with access to ST food only. For each time
point, within each group the data distribution was
not different from normal. Two-way repeated mea-
sure analysis of variance, interaction: F8,144 = 14.18,
p , 1024; time effect: F8,144 = 26.30, p , 1024; food
type effect: F1,18 = 10.09, p = .0052. (B) Wild-type
male mice were subjected to operant training as
described in Figure 1A and killed 24 hours after the
last session. Sections of the nucleus accumbens
were stained using the Golgi-Cox method. Examples
of dendrites from mice in each group are shown.
Scale bar = 4 mm. (C) Sections through the nucleus
accumbens stained with the Golgi method as in
panel (B), and the number of dendritic spines per
micrometer were counted (38–52 dendrites counted
per group, 8 mice per group). Two-way analysis of
variance, interaction: F1,171 = 0.40, p = .53; food
type: F1,71 = 15.90, p, 1024; role (yoked vs. master):
F1,171 = 0.47, p = .49. Imaging (B) and spine analysis
(C) were done by investigators blinded to the group.
(A, C) Multiple post hoc comparisons Holm-Sidak
test. *p , .05; **p , .01; ***p , .001; ****p , 1024.
HP, highly palatable; mHP, master HP; mST, master
ST; ST, standard; yHP, yoked HP; yST, yoked ST.
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yoked mice exerted no operant responses (Figure 1B),
although they consumed as many pellets as their respective
masters (Figure 1C). The ratio requirement increase (FR5) led to
a higher augmentation in operant behavior in the mHP group
than in the mST group (Figure 1B, D). The number of obtained
rewards did not decrease in mHP mice compared with FR1
(Figure 1E). These data suggest that the motivational drive was
enhanced in the mHP group, consistent with the incentive ef-
fect of palatability on operant responding (60). When mice no
longer had food restricted in their home cage (ad libitum
condition), both master groups tended to poke less (Figure 1B,
D). However, this decrease was more pronounced in the mST
than in the mHP group (Figure 1D, F), suggesting that mHP
animals are less sensitive to satiety-induced devaluation of the
food. To rule out differences due to weight changes, we
monitored weight in an independent experiment and found that
all mice recovered their initial weight within a day at the end of
the restriction phase, with no difference between groups
(Figure S1). These results demonstrate that, independently of
the caloric intake, HP food enhances the motivational drive to
seek food and blunts the effect of satiety on food-seeking
behavior, two characteristics that are believed to be major
culprits for the development of compulsive eating and
obesity (1).

To determine whether HP food used for operant training
induced a loss of control over food intake and weight gain, we
evaluated wild-type mice, which had either access only to ST
Biological
food or free choice between the ST and HP isocaloric foods for
30 days (Figure 2A). Exposure to ST/HP free choice led to a
more pronounced weight gain than free access to ST food
only. Together, these results indicate that mice, as expected,
had a higher incentive drive for HP food.

The establishment and maintenance of goal-directed
behavior have been related to morphological alterations in
the corticostriatal pathway with increased spine density
following operant training for drugs (61) or HP food (62). We
examined whether the exposure to HP food or the operant
training had measurable effects on NAc neuron spine density
in our experimental conditions, using Golgi staining in wild-
type C57BL/6 male mice (Figure 2B). We found a food type
effect (two-way analysis of variance: F1,171 = 15.90, p , 1024)
(Figure 2C; Table S2), indicating a predominant effect of food
palatability on NAc neuron spines with an increased density
after 2 weeks.

TRAP Followed by RNA Sequencing Reveals Major
Effects of Palatable Food Conditioning on Gene
Expression in D2SPNs

As long-lasting behavioral adaptations depend on changes in
gene expression (63), we investigated the translating mRNA in
NAc D1SPNs and D2SPNs. We focused on relatively stable
alterations by isolating cell population–specific translating
mRNA 1 day after the last training session. We used 2 to 4
Psychiatry May 15, 2024; 95:926–937 www.sobp.org/journal 929
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Figure 3. Effects of operant training for standard and highly palatable food on translating mRNA in D2R-expressing neurons in the NAc. Drd2-EGFP/Rpl10a
transgenic mice trained as described in Figure 1A were killed 24 hours after the last training session, and the NAc was rapidly dissected. mRNA was
immunopurified (3 mice pooled per sample) (Table S2) and quantified by the translating ribosome affinity purification followed by RNA sequencing method
(Table 1; Tables S7 and S10). (A) Volcano plot of gene comparison between yHP and mHP groups in NAc D2R-expressing neurons. Names of the main
differentially expressed genes are indicated. (B) Volcano plot of gene comparison between mST and mHP groups in NAc D2R-expressing neurons, with names
of main differentially expressed genes indicated. (C) Scatter plot of the translating mRNA differences in the NAc D2R-expressing striatal projection neurons
between mHP and yHP groups (x-axis) [see panel (A)] and between mHP and mST (y-axis). The correlation coefficient was calculated for all genes. mRNAs
significantly different in both comparisons are indicated in green. (D) GO analysis of genes more expressed in yHP than in mHP in D2R-expressing neurons
(Table S12). Only major nonredundant GO pathways are indicated. (E, F) GO analysis of genes more expressed in mHP than in mST (E) or more expressed in
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able 1. Number of Differentially Expressed Genes

ifferences D1SPNs D2SPNs

HP . yHP 2 84

HP , yHP 3 129

ST . yST 0 1

ST , yST 0 3

HP . yST 4 1

HP , yST 2 0

HP . mST 0 203

HP , mST 0 310

Thresholds: absolute change greater than 1.5-fold in either direction and
ultiple comparisons–adjusted p value , .05.
D1SPNs, D1 receptor–expressing striatal projection neurons; D2SPNs, D2

ceptor–expressing striatal projection neurons; mHP, master highly palatable;
ST, master standard; yHP, yoked highly palatable; yST, yoked standard.
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samples per condition, each containing the left and right NAc
from 3 mice (1–2 females per sample) (Table S1). Our experi-
ment (Figure 1A) was designed to detect the mRNA footprints
of 1) the goal-directed component of food-seeking behavior
(master vs. yoked), 2) food palatability (yST vs. yHP), and 3) the
interaction between food palatability and goal-directed
behavior (mST vs. mHP). We retained the genes that exhibi-
ted an absolute change greater than 1.5-fold in either direction
(absolute log2 fold change over 0.585), with a multiple
comparisons–adjusted p value , .05 (summary in Table 1). We
previously showed that the genes detected with this approach
predominantly originate from SPNs (47).

We detected almost no differences in D1R-expressing
neurons (Table 1; Tables S3–S6). In contrast, operant condi-
tioning for HP food had striking effects in D2R-expressing
neurons compared with the other groups (Table 1; Table S7).
Although cholinergic interneurons also express D2Rs, the
translating mRNA was mostly originating from D2SPNs as
indicated by the low levels of markers of cholinergic inter-
neuron markers, including Chat, Slc10a4, Slc18a3, Slc5a7,
and Slc17a8 (Table S7), as previously reported (47). Changes
in translating mRNA between mHP and yHP were detected in
213 genes (Figure 3A; Table S7). Operant conditioning for ST
food had few effects on translating mRNA (4 genes) (Table 1;
Table S8). The type of food caused almost no differences
between yHP and yST mice (1 gene) (Table 1; Table S9). In
contrast, modifications between mHP and mST mice were
detected in 513 genes (Table 1; Figure 3B; Table S10). Thus,
most changes in mRNA were observed in D2SPNs and in
response to operant training for HP food. The complete results
of the comparison between operant conditioning for HP food
(mHP vs. yHP) and the comparison between conditioning with
HP or ST food (mHP vs. mST) are highly correlated (R = 0.87, p
, 10215) (Figure 3C). This reflects the predominant effects of
conditioning with HP food on gene expression in NAc D2

neurons (Table 1). Accordingly, among the 213 mRNAs
differentially translated between mHP and yHP mice, 140
(66%) were also significantly changed between mHP and mST
mice, all changing in the same direction (Table S11). Thus,
most changes in translating mRNA induced by operant training
were selectively taking place in D2SPNs of the mHP group.

Pathways and Gene Interaction Clusters Affected in
NAc D2SPNs by Operant Conditioning

We used several approaches to evaluate the functional impli-
cations of the changes observed in translating mRNAs induced
by operant conditioning for HP food in D2SPNs. First, Gene
Ontology analysis showed that the pathways decreased in
D2SPNs of mHP mice compared with the yHP group were
related to ribosomes and ubiquitin ligase (Figure 3D; Table S12).
In the comparison between mHP and mST groups, Gene
Ontology terms increased in mHP mice were related to chro-
matin and centrosomes, whereas those that diminished
included synaptic and signaling pathways (Figure 3E, F;
=

mST than in mHP (F) (Table S13), with only major nonredundant GO pathways
discovery rate; GO, Gene Ontology; GTPase, guanosine triphosphatase; L2FC, log
master standard; NAc, nucleus accumbens; yHP, yoked highly palatable.
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Table S13). We then used the network inference performed as
previously described (47) to identify gene clusters affected by
operant conditioning with HP food. The output was a large
connected network with only a few isolated edges (Figure 4).
The main network presented two super-connected clusters of
nodes with degrees over 10 (Figure 4). Both clusters comprise
mostly genes whose expression was decreased by condition-
ing. One is enriched in genes coding proteins involved in cal-
cium and cAMP (cyclic adenosine monophosphate) signaling
(Camkv, Mast3, Pde1b, Ppp1r12c, Tesc), possibly indicating a
modulation of signaling, including by DA. This cluster also
contains Gabrd and Gabra3, higher in yHP and mHP, respec-
tively. Ncdn is decreased in mHP and is also part of this cluster.
The second cluster is enriched in proteins involved in protein
production, from transcription (Gtf2f1, Zpf622) and splicing
(Puf60, Rrp1, Znhit2) to translation (Eif2b5, Rplp0, Trmt61a),
folding (Cct7, Vbp1), and protein modifications (Gm16286,
Ube3a). This cluster analysis indicates that beyond synaptic
function, conditioning also regulates basic cellular properties
and suggests overall adaptation of cellular properties following
operant conditioning for HP food.

Role of Ncdn in Motivation for HP Food

We next sought to validate the relevance of our analysis by
genetically manipulating one of the genes differentially regu-
lated by conditioning for HP food. We focused on Ncdn, which
was highly expressed and downregulated in NAc D2SPNs in
the mHP group compared with yHP and mST groups
(Table S1). Neurochondrin is an important modulator of
morphological and synaptic plasticity through regulation of
mGluR5 (metabotropic glutamate receptor 5) membrane traf-
ficking (48) and CaMK2 (calcium/calmodulin-dependent pro-
tein kinase II) activity (64). Moreover, forebrain-specific Ncdn
KO generates a depressive-like phenotype (48). We hypothe-
sized that deletion of Ncdn in neurons could mimic or alter
some behavioral features of operant responding for HP food.
indicated. (D–F) FDR values are indicated. D2R, D2 receptor; FDR, false
2 fold change; mHP, master highly palatable; mRNA, messenger RNA; mST,
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Figure 4. Main clusters of genes with translating
messenger RNA regulated by conditioning for highly
palatable food in the D2 receptor–expressing neu-
rons of the nucleus accumbens. Only the top 1%
predicted interactions were retained and filtered
using the genes with a mean expression greater
than 30 counts per million, differentially expressed
by at least 50% (log2 fold change greater than
0.585) at a false discovery rate less than 0.05.
Almost all the remaining genes formed a superclu-
ster. Two overconnected subclusters emerged, with
degrees over 10. They comprised mostly genes
suppressed by highly palatable food, involved either
in calcium and cAMP signaling (left inset) or protein
production (right inset). Nodes are colored with log2
fold changes of expression, blue genes being more
expressed in yoked animals and red genes more
expressed in master animals. Edge thickness and
darkness are proportional to the interaction score.
cAMP, cyclic adenosine monophosphate.
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We used Ncdn-cKO mice generated with Camk2a-Cre (48,65)
and compared them with their NcdnFlox/Flox littermates. Both
Ncdn-cKO and NcdnFlox/Flox mice displayed higher operant
responding when working for HP food than for ST food
(Figure 5A, B; Table S2). The response of Ncdn-cKO mice for
HP food was at some time points higher than that of NcdnFlox/
Flox mice (Figure 5A, B), showing that the mutation did not
impair operant learning, but appeared to increase it during
food-deprived FR1 and FR5 reinforcement schedules. During
ad libitum access to food, we observed a decrease in positive
pokes for ST food (Figure 5C), but not HP food (Figure 5D), in
NcdnFlox/Flox mice as above in wild-type mice (Figure 1F). In
contrast, a pronounced decrease in pokes was observed in
Ncdn-cKO mice working for HP food (Figure 5D). This result
suggested that despite their stronger learning phase than
NcdnFlox/Flox mice (Figure 5A, B), the Ncdn-cKO mice were less
motivated for HP food when they had ad libitum access in their
home cage. We tested this hypothesis using a progressive
ratio protocol 1 day after the conditioning paradigm
(Figure 5E). The Ncdn-cKO mice displayed a lower breakpoint
(i.e., the number of operant responses resulting in the last
obtained reward) than the NcdnFlox/Flox mice, confirming a
decreased motivation (Figure 5E).

To determine whether these operant results depended on a
change in reward sensitivity, we tested NcdnFlox/Flox and Ncdn-
cKO mice in a free choice paradigm over 43 days, during which
mice of either genotype had free access to both ST and HP
932 Biological Psychiatry May 15, 2024; 95:926–937 www.sobp.org/jo
food. The analysis of cumulative caloric intake showed that in
this free choice condition, both NcdnFlox/Flox and Ncdn-cKO
mice had an approximately 20-fold preference for HP over ST
food (Figure 6A). However, HP food intake was lower in Ncndn-
cKO mice than in NcdnFlox/Flox control mice (Figure 6A).
NcdnFlox/Flox mice in the free choice condition displayed a
significant weight gain compared with a matched group with
access to ST food only (Figure 6B). In contrast, in Ncdn-cKO
mice we did not observe any weight gain in the free choice
condition compared with ST only (Figure 6B). Thus, deletion of
Ncdn, a gene whose mRNA is less translated in NAc D2SPNs
following operant conditioning for HP food, tends to increase
operant behavior during food restriction but restores some
satiety-induced devaluation and decreases motivation for HP
food and weight gain in a free choice paradigm. These latter
results suggest that decreased expression of Ncdn in the NAc
could be a compensatory mechanism, counterbalancing the
persistent effects of HP food on motivation.
DISCUSSION

HP foods recruit and have the potential to hijack the brain
reward system, similar to drugs of abuse, leading to over-
eating, satiety-induced desensitization, and craving, thus
resulting in weight increase and contributing to increased
prevalence of obesity [see (3,6,23,66,67) for reviews]. The
mechanisms of these effects of food are typically investigated
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sumption and weight gain in food free choice con-
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access to ST and HP food, and the consumption of
each type of food was monitored (NcdnFlox/Flox, n = 8
mice; Ncdn-cKO, n = 7 mice). Although mice from
both genotypes clearly preferred HP food, the
Ncdn-cKO animals consumed less HP food than
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variance, interaction: F42,364 = 207.3, p , 1024; time
effect: F14, 364 = 736.7, p, 1024; group effect: F3,26 =
201.3, p , 1024. Post hoc multiple comparisons
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(B) Weight of mice in free choice conditions in

panel (A) was compared to weight of mice of the same genotype with access only to ST food. Weight of NcdnFlox/Flox mice was higher in free choice conditions
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knockout; HP, highly palatable; ns, not significant, ST, standard.
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in rodent models, using free access to fat- and/or sugar-rich
food. Even though these paradigms mimic in part the West-
ern diet, they do not probe the effects of palatability on goal-
directed actions. Here, using operant conditioning with food
rewards that differ only by their palatability, we specifically
monitored the effects of palatability on two major components
of food-seeking behavior, which are believed to be altered in
pathological feeding behavior, i.e., the incentive component
and sensitivity to satiety. As expected, HP food enhanced
motivation to exert effort in food-deprived and ad libitum
conditions, as described for highly caloric/palatable foods (62).
Although both the ST and the HP groups significantly
decreased responding when switched from restricted to ad
libitum access to food, the HP group was less sensitive to this
satiety-induced devaluation, resembling the accelerated
development of habit behavior in animals chronically exposed
to a high-fat diet (68). This suggests that palatability, inde-
pendently of caloric intake, could be sufficient to lead to
compulsive-like behavior toward food. The reinforcing effects
of rewards involve the meso-accumbens DA pathway (27,69).
The involvement of the NAc in our experimental conditions is
supported by the increase of dendritic spine density in this
region after 2 weeks of exposure to highly palatable food, in
line with previous reports of longer experiments (61,70).

Our study identifies alterations in the translatome of NAc
D2SPNs 24 hours after the last operant conditioning session.
Although FR5 operant training and high palatability reward
could each be considered as relatively mild stimuli, with no
effect on translatome in our conditions, their combination
changed translating mRNA at this measurement time. This
result indicates that a physiologically relevant combination of
stimuli is able to alter gene expression in the NAc, presumably
contributing to plasticity underlying learning. Translating
mRNA alterations in response to operant conditioning for HP
food were virtually restricted to D2SPNs. Despite the important
early role of D1SPNs in food-induced long-term behavioral
adaptations (71,72), we found almost no significant changes in
their translatome at the end of the operant protocol. Although
the lack of change in D1SPNs could result from insufficient
experimental power of the experiment, raising the significance
934 Biological Psychiatry May 15, 2024; 95:926–937 www.sobp.org/jo
threshold does not yield many more positive findings
(Tables S3–S6) and argues against this possibility. Rather, it is
possible that translatome alterations in D1SPNs occur at an
earlier time in conditioning, not explored in our study. The
persistent changes in D2SPNs align with indirect observations
that point to the role of these neurons in feeding disorders and
obesity (14,73,74). Striatal hypofunction and increased body
mass index are more frequent in individuals harboring the
ANKK1 TaqIA A1 allele, which is associated with decreased
striatal availability of D2Rs (75–77). Data in rodents also sup-
port a role of D2Rs in the development of some features of
obesity (39,40). Recent findings highlight a particular sensitivity
of D2SPNs to circulating lipids (78,79) and implicate D2Rs and
D2SPNs in the regulation of energy output (80,81), peripheral
glucose levels, glucose-dependent reinforcement learning (82),
and diet-induced obesity (83). Our findings also support the
role of D2SPNs and identifies pathways and gene networks
possibly underlying long-term adaptive modifications in these
neurons, including downregulation of genes related to
signaling and synaptic functions and upregulation of genes
related to DNA and transcription.

To test the functional importance of the genes disclosed by
our analysis, we focused on Ncdn, a highly expressed gene
involved in synaptic function and downregulated in NAc
D2SPNs. Ncdn neuronal deletion had restricted consequences
on HP food–related behavior. Ncdn-cKO mice showed an
increased initial operant response for HP food, suggesting that
the basic mechanisms of reward-induced procedural learning
were not impaired. However, the mutant mice displayed
satiety-induced devaluation for HP food and decreased moti-
vation for HP food in a progressive ratio task performed when
mice were fed ad libitum. The same Ncdn-cKO mutation
generates a depressive-like phenotype (48) and a decreased
preference for sucrose (65). In our experiments, Ncdn-cKO
mice preferred HP food to ST food and readily learned to work
for it. Yet this preference was slightly blunted and did not result
in the weight gain observed in control mice. These results
suggest a partial alteration of motivation in Ncdn-mutant mice.

The molecular actions of neurochondrin in feeding behavior
are not known and may combine several components.
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Neurochondrin inhibits melanin-concentrating hormone re-
ceptor 1 (84), which, in the NAc, stimulates feeding behavior
(85), possibly contributing to the increased operant response in
food-restricted cKO mice. In hippocampus, neurochondrin is
important for mGluR5 endocytosis and mGluR-mediated
AMPA receptor endocytosis (48,86), and Ncdn cKO alters
long-term depression and long-term potentiation of synaptic
transmission (48). A similar plasticity defect in Ncdn cKO mice
may interfere with the establishment of persistent motivation
for HP food. In wild-type mice, Ncdn downregulation after HP
food operant training might contribute to persistent increased
feeding behavior and provide a stabilizing mechanism after
initial plasticity, leading to persistent behavioral alterations.

Our study has methodological limitations that include using
Camk2a promoter–dependent Ncdn cKO mice in which the
lack of neurochondrin in diverse neuronal populations or brain
regions other than the NAc may contribute to the behavioral
phenotype. Further investigations are also needed to identify
the SPN populations in which spines are increased and their
relation to mRNA alterations. Yet, our study provides the first
description of the footprint of HP food–operant conditioning on
the translating mRNA landscape in dopaminoceptive neurons
of the NAc. It underlines the involvement of D2SPNs and
identifies networks of implicated genes. Downregulation of
Ncdn in response to HP food may play a dual role by
increasing initial feeding behavior and modulating the
conditioning-induced persistent motivational drive to eat HP
food. Further exploration of Ncdn actions is warranted to
explore novel approaches to counteract overeating and its
contribution to obesity.
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