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EMBL-EB {3 Calmodulin is ultra-sensitive

MOLES BOUND Ca’t/MOLE PROTEIN

Crouch TH and Klee CB (1980)
Positive cooperative binding of calcium to bovine brain calmodulin.
Biochemistry, 19: 3692-3698
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Bohr C (1903) Theoretische behandlung der quantitativen verhaltnisse
bei der sauerstoff aufnahme des hamoglobins Zentralbl Physiol 17: 682
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iv PROCEEDINGS OF THE PHYSIOLOGICAL

The possible effects of the aggregation of the molecules
of hemoglobin on its dissociation curves. By A. V. HiLt.

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant results.

Our work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hmmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hamoglobin in solutions of
various salts, and with hamoglobin prepared by Bohr's method,

The equation for the reaction would be

Hb +0, == HbLO,,
Hb, + n0,== Hb,0,,,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

K'a? K
yﬂlm+{lm—l)m ............... (A),

where 1%/, is as Hb,, (100 — 1)/, as Hb, K" is the equilibrium constant
of the reaction Hh, + 20, = Hb,0, and K that of Hb + 0, === HbO,:
K has the value ‘125 (Barcroft and Roberts).

Origins of cooperativity: Hill

Hill AV (1910) The possible effects
of the aggregation of the molecules
of haemoglobin on its dissociation
curves. J Physiol 40: iv-vii.




EMBL-EBI | i Origins of cooperativity: Hill
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Origins of cooperativity: Hill
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EMBL-EBI Origins of cooperativity: Hill Plot

v _ K] Hill equation
14+ Kn|z]”
Y .
log v = nloglx] +nlog K Hill plot A

< nlogK
Effect increases in function of
the signal to the power of n: Slope =n —__
n>1, ultra-sensitive
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log [x]

BUT cooperativity of ligand,
not of binding sites: unique affinity
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EMBL-EBI ::- Origins of cooperativity: Adair

THE HEMOGLOBIN SYSTEM, "

V1. THE OXYGEN DISSOCIATION CURVE OF HEMOGLO} Loa
By G, B. ADAIR, —!i-—

Wite taE CoLuasoraTion oF A. V. Bocg anxn H. Fienn, .

{From the Medical Laboraieries of the Massachuseits General Hos
Boston.)

~Nt

{Reeceived for publieation, January 7, 1925.) 0

This work gives the oxygen dissociation curves of so

previously investigated in regard to their acid-hindig ang

Adair GS (1925) The hemoglobin system
VI. the oxygen dissociation curve of
hemoglobin. J Biol Chem 63: 529

Loa ac

2

0.0 o5 1o
F1a. 2. Test of formula (6). Curve drawn from 6 experimental points
from Table IV,
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Origins of cooperativity: Adair

THE HEMOGLOBIN SYSTEM,

V1. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN . *

By G. 8. ADAIR.

Wite TaE CoLLaporaTion oF A. V. Bocg anp H. Fieun, Jr.

(From the Medical Laboratories of the Massachuseits General Hospital,

Boston.)

{Reeceived for publieation, January 7, 1925.)

This work gives the oxygen dissociation eurves of solutions
previously investigated in regard to their acid-bindi

Imai (1973) Analyses of Oxygen
Equilibria of Native and Chemically
Modified Human Adult Hemoglobins on
the Basis of Adair’s Stepwise
Oxygenation Theory and the Allosteric
Model of Monod, Wyman, and Changeux.
Biochemistry 12: 798-808
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EMBL-EBI Corresponding induced-fit model

Klotz | (1946) The Application of the Law of Mass
Action to Binding by Proteins. Interactions with
Calcium. Arch Biochem, 9:109-117.

1 Ky[Ca®t] + 2K Ky [Ca?T]? + 3K Ko K3[Ca”T]? + 4K Ko Ky Ky [Ca? Tt

Y = — :
nl+ K[Ca?t] + 2K Ky[Ca?t|? + 3K Ko K3[Ca?T]? + 4K Ko Ky Ky [Ca? |4
Ca’*+CaM ¢ ®» CaCaM K
2
+ Ca*t «——» Ca,CaM K
3
+ Ca*t «——— > Ca,CaM K

4
+Ca** «  » Ca,CaM

v

Binding to target
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EMBL-EBI © That does not work ...
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EMBL-EBI That does not work ...

m  Calmodulin bound to three calcium ions activates calcineurin
Kincaid and Vaughan (1986). PNAS, 83: 1193-1197

m  Calmodulin bound to two calcium ions can bind CaMKIl
Shifman et al (2006). PNAS, 103: 13968-13973

®  Calmodulin affinity for calcium increases once bound to CaMKI|

Shifman et al (2006) [but many previous reports on other targets:
e.qg. Burger et al (1983). JBC, 258: 14733-14739 ;
Olwin et (1984). JBC 259: 10949-10955]

m  Calcium activates both LTP and LTD through calmodulin
Lisman (1989) PNAS, 86: 9574-9578
High [Ca?*] (high freq) = CaMKIl ; Low [Ca**] (low freq) = Calcineurin

m  What is the cause of the increasing affinity? How do binding sites
communicate?

m  What is the relationship between the known structures and the
quantitative model? What causes the structural transitions?

Internal seminar, 21 January 2009, WT Genome Campus e T



EMBL-EBI | i7 Allostery and state selection

mm) Monod, Wyman, Changeux (1965). On the nature of allosteric
transitions: a plausible model. J Mol Biol, 12: 88-118
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EVMBL-EBI Modulation of thermal equilibria # induced-fit

AG A Transition State

o
“inactive”=T “active”=R
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EVBL-EB) “Hill” Plot for MWC model
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EMBL-EB Binding and State functions do not overlap
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EMBL-EB {3 Allosteric model of Calmodulin
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Stefan MlI, Edelstein SJ, Le Novere N (2008) An allosteric model of calmodulin explains
differential activation of PP2B and CaMKIl. Proc Natl Acad Sci USA, 105:10768-10773
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EMBL-EBI {; i Comparison with experiments
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Bidirectional synaptic plasticity
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EMBL-EBI But ... we're out of the physiological range?
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This Is Systems Biology!
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EMBL-EB Binding function on 25 uyM CaM
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Peersen et al. (1997) Intermolecular tuning of calmodulin by target
peptides and proteins: Differential effects on Ca2+ binding and
implications for kinase activation Prot Sci, 6: 794-807
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EMBL-EBI :;' Parameter-scan on 25 uM CaM

opasi oL dose-response

| Print Sawve Image Save Data Zoom out Show &ll Hide All
dose-response
4 "]
— +
- +++++
+
T +
- _ +
.
0,8 — +
B +
- +
= - '
) *
0.6 —
O ’
7 +
Ty i +
+ +
o™ d +
© g N
+
o | !
"
— +
+
| +
+
+
02 = ++
"
2l +++
| _'_++++
A+ +
4 ++++++
o~ M
I T T T T | T T T T | T T T | T T T T I
le-07 le-0& le-05 0.0001 0,001
mol/l
I + Values[ybar]|[ca]_0 — Values[Rbar]|[ca]_0

[ Ca** (M)

] Free

Internal seminar, 21 January 2009, WT Genome Campus e T



EMBL-EBI :;' Parameter-scan on 0.1 uM CaM
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Edelstein SJ, Stefan MI, Le Novere N. Ligand depletion in vivo modulates the
dynamic range of cooperative signal transduction. submitted
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Chemistry (mass-action law)
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EMBL-E8I What is ligand depletion?
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EVBL-EB) Ligand depletion
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EVBL-EB) Ligand depletion

This is generally not the case in signalling:
Concentrations of sensor are in micromolar

Chemistry (mass-action law)
range, as are the dissociation constants = T v
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EMBL-EB {3 Hill number not suitable for state function
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EMBL-EB {3 Hill number not suitable for state function
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EMBL-EB {3 number not suitable for state function

3_
08-
0.6 - 2
0.4 - 5
1_
D_E- r~— 4w
L=10 =
0! — 0 '
—~ 3
1 (r— 3 = -
_ i o
0.8 o 1
0.6+ c 2- Y, -
o 0.4- =
1 I _q-
0.2 ) L=1000 =
- -2
0 -t 0 ; [a et
1A o -3
3 o
08+ 4
D.ﬁ- 2- -5 T T T T T
-2 -1 0 1 2 3 4
0.4-
log

1
. L=100000 P

32401234 3240123 4
log o log &

Internal seminar, 21 January 2009, WT Genome Campus e T



EMBL-EB {3 Hill number not suitable for state function

04-
'1.
N ) L=1000
0 0

The maximum value of n, does not

depend on the free energy of
conformational transition and does
correspond to the maximal cooperativity

log [R/(1-R)] & log[Y/(1-Y)]
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EMBL-EB {3 Hill number not suitable for state function
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EMBL-EBI | i Aspartate transcarbamylase

X : sedimentalion
A:kPMB

Changeux and Rubin (1968) Allosteric
Interactions in Aspartate Transcarbamylase.
lll. Interpretation of Experimental Data in
Terms of the Model of Monod, Wyman, and
Changeux. J Biol Chem 63: 529
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EMBL-EB {3 Equivalent non-cooperative monomer

X : sedimentalion
A:kPMB

0 | | |
0 1 2 3

o =[Suce]! kgg

0.0

We assume that the free energy of
conformational change spread over all
the subunits (symmetrical protein)

A= VI
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EMBL-EBI i if New index of cooperativity

X : sedimentation
A:kPMB
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EMBL-EB {3 Aspartate transcarbamylase

X : sedimentation
A:kPMB

0.0
0 | | |
0 1 2 3
o=[Suec] ! kgs r1.2
-1.0
If all sites identical, the cooperativity - E-_S;
g Qo
— — Q
is maximum when § = R* = 1/2 ] 05 @
I!l
with a valueof p = NN %4 3
0.2
that is the number of binding sites. -
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EMBL-EBI Effect of ligand depletion on calmodulin response
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EMBL-EB Effect of ligand-depletion on cooperativity

[CaM]= 13.8 10° M
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Duke, Le Novere and Bray (2001) Conformational spread in a ring of proteins: a
stochastic approach to allostery. | Mol Biol, 308:541-553.
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EMBL-EB Effect of ligand depletion on motor response
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Sourjick and Berg (2002) Binding of the Escherichia coli
response regulator CheY to its target measured in vivo by
fluorescence resonance energy transfer. PNAS 99: 12669-12674
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Alon et al (1998) Response regulator
output in bacterial chemotaxis.
EMBO J 17: 4238-4248

Ligand depletion explains different measures
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m Ligand depletion decreases the effective cooperativity
m Ligand depletion increases the dynamic range

= Modifying the concentration of the sensor may be a
powerful way to quickly adapt to a new environment,
and switch from a measurement mode to a detection
mode.
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EMBL-EBI Conclusions

m Ligand depletion decreases the effective cooperativity
m Ligand depletion increases the dynamic range

= Modifying the concentration of the sensor may be a
powerful way to quickly adapt to a new environment,
and switch from a measurement mode to a detection
mode.

= Generic advice for the quantitative study of cellular
signalling:

Measure the parameters in vitro in controlled conditions
Measure quantities of interactants and subcellular location

Develop accurate quantitative models
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