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Adair-Klotz induced-fit model

Binding to targets
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Adair-Klotz does not permit differential activations

dose-response normalised

P
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[CaN]=[CamKII]=[CaM]/10 ;
Kd CaMKIl = 10xKd_CaN;
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mol/fl

= Calmodulin can activate calcineurin with 3 Ca®*
(Kincaid and Vaughan 1986)

=  Calmodulin can bind CaMKIl with 2 Ca** (Shifman et al 2006)

= Calmodulin affinity for calcium increases once bound to CaMKIl
(Shifman et al 2006; Previous reports on other targets: e.g. Burger et
al 1983. Olwin et al 1984)
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@ Modulation of thermal equilibria # induced-fit
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@ Modulation of thermal equilibria # induced-fit

AG A Transition State
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c << 1 = ligand has strong effect ‘
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@ Concerted transitions # sequential model
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Allosteric model of Calmodulin activation

APO

liganded




Different targets stabilise lobes in different states

Lai M, Brun D, Edelstein S}, Le Novere N (2015)
Lai M, Edelstein SJ, Le Novere N (in preparation)
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Hemiconcerted model of calmodulin

=TT conformation
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Bindings of calcium and targets
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Calcium binding to lobes and whole CaM (exp)
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Calcium binding to lobes and whole CaM (sim)
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Parametrisation using accurate measurements

e Ca®* binding in presence of targets: none, skMLCK, PhK5, CaATPase
« Ca?* dissociation constants for complete calmodulin and N and C term mutants

1 in 20000 active w/o Ca**

!

0670 K®,=8.32 10°
K* =1.66 10°®

C=3.96 10> Kt =1.74 10°
{ KR =1.4510°

Affinity of Ca** for “open
state” 250 times higher

than for “closed state” 2 high, 2 low, as expected
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Activity of unsaturated calmodulin (state function)

Fractional activity depends on the number of calcium ions bound

Rs 1

T, L-c2

R,/T, = 1/20000 (1/L)
R,/T, = 1/170
R,/T, = 0.69 === half-saturation = equi-probability

R,/T, = 10000
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Targets as allosteric effectors
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Binding to target increases the affinity for Ca#

1

® ® CaM alcine. exp. (Baylely et al. 1996)

T 5H — CaM alone, simulation d
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— CaM + WFF, simulation
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Targets stabilises Ca* binding into the
physiological range
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Calmodulin its ligand and its targets
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CaM half activated at half saturation of Calmodulin
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Bidirectional synaptic plasticity
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Calcineurin stabilises CaM R — no deactivation
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Neurogranin binds to apo-CaM, decrease
affinity for [Ca?*] and increase dissociation rate
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Effect of R and T stabilising targets on CaM affinity
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No large effect of Ng on [Ca?*free]

With Ng
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Ng affects the distribution of CaM

(A) with Ng (B) Ng KO
Free CaM PP2B [ Free CaM PP2B | Free CaM
8.0% 1.2% EE CaMKIl Free CaM 2.4% BN CaMKIl
BN Ng 15.4% B PP2B

El PP2B

48.6% Ng

caMKil 42-2%

82.2%
CaMKll
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Neurogranin affects
Calmodulin function by
buffering it and
stabilising its T state
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Wait a minute!
Signal transduction is not at equilibrium!

AMPAR post-synaptic potential: 5 ms
Calcium spike: 50 ms
Half saturation calmodulin (kon=1.5e6, koff=100): 5 ms
Relaxation between calmodulin states: 1 ms

autophosphorylation of CaMKIl (kon=6): 100 ms
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Franks et al 2001
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Repeat 1000 times

P A given fraction of activated CaMKll monomers, Calculate the probabilities of having an active neighbour
on one specific side (indicated by the arrow) of the activated monomer of
+ interest (blue outline) (since only the asymmetrical situation is
considered), The possible positions of activated monomers are listed as

Randomly allocate activated monomers to CaMKIl hexamers. the following, with corresponding probabilities:

—= Record the number of hexamers containing different numbers of active

monomers (in red) as the following:

5

o Lo 18 ¢

B e 8
oP oy e ®

Repeat for every 1% increase
of CaMEKll active monomers

&

S

3

Calculate the average population for each number of
active mongmers per hexamer,

Multiply average populations of each number of active monomers
per hexamer by their corresponding probabilities of having an
active neighbour,

-—

a8

r,

The sum of these six numbers is a coefficient that can be used to
adjust CaMKIl autophosphorylation rate.

Y

Fit these 100 coefficients into a polynomial function of activated CaMEI
monamers, and embed this function in the model.

o

315
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Calmodulin
[caMHFEGaM activation
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0
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CaM without targets. Low
frequencies do not activate
calmodulin (binding events
without conformational changes)

ooooooDo00—
=i Py 3L o L1 O~ 0O D

Molecular Mechanisms in the Synapse, Janelia Research Campus, 3 May 2



0.8
0.6 |
0.4 F
0.2 F

0
200
100

CaM with targets. Binding to
CaN and CaMKII stabilises
R state, with higher affinity.
Positive feedback loop

=¥ bistability
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Calmodulin
[caMHFEGaM activation

200

100 frequencies do not activate

calmodulin (binding events
without conformational changes)
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Temporal activation
of CaMKIl and CaN

activated calcineurin
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Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events
prop to integral of the activation curve

3
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kinase (CaMHKll} - phosphatase (PP2B,PP1) activities
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Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events
prop to integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas™*catalytic activities

kinase aclivity < phosphalase activity ——
kinase activity » phosphatase activity —s—
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Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events
prop to integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas™*catalytic activities

kinase aclivity < phosphalase activity ——
kinase activity » phosphatase activity —s—
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Effect of calcium duration and amount

10 spikes

20 spikes —=

30 spikes —=—

40 spikes —=—

50 spikes

60 spikes

70 spikes ——

80 spikes —a—

90 spikes
100 spikes ——
110 spikes
120 spikes ——
130 spikes
140 spikes
150 spikes
| 160 spikes —a—
170 spikes —e—
180 spikes —a—

calcineurin / CaMKll activated area

0.4 1

Freguency (Hz)

180 spikes
=3 Hz

10 spikes
=70 Hz

Prolonged or intense signals
decrease ®m: It is not an
intrinsic property of the synapse
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Effect of intrinsic system perturbations

- | P =T CaMKII not constitutively active
increased inhibition on PP1 —=— : NO CaM trapping

s Never any positive plasticity
Giese et al (1998) Science, 279:870-873

\;\\——‘ 07 <4 Lower deactivation of CaMKI|

calcineurin / CaMKII activated area

0.1 ¢

o — e — 200 5 :

v 1.3 Hz 4.3 Hz 0 [CaMaout —— |

[CaM]=60 uM —=— |

Competition for CaM, CaN wins ~ 5
Effect of Ng” (Huang et al 2004). §
Better performance at low frequencies. h %
NB: No need of direct interactions between § : p.24
CaN and CaMKIl to explain effect of T306 8 : "
phosphorylation (Pi et al 2010). T206P 0.01 SO ' ' '

releases limiting CaM, that can then activate CaN *'  05Hz  45Hz 40 Hz"
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Hemi-concerted model of Calmodulin, 2 states for EF hands,
binding Ca?* with different affinities.

Apparent affinity for Ca2* increases when bound to target.
CaM able to bind targets with less than 4 Ca?* bound.

Allosteric stabilisation triggers bistable CaM response to Ca?*
Above a certain freq, CaM activation longer than initial signal.

CaN can bind calmodulin at low concentration of calcium, while
both CaN and CaMKIl binds CaM at high calcium concentrations.
Calcium signals activate both CaN and CaMKIl at ALL
frequencies. The ratio of activity changes.

Neurogranin stabilises Calmodulin in the T state, resetting
the system and acting as a Calmodulin reservoir.

®m is not an intrinsic property of the synapse, but a
dynamical one that depends on the length and amplitude of
stimulations. ®m and intensity are affected by reactions, parameters
and initial conditions. [CaM] decides the balance CaN/CaMKI|
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Axial Resistence

Axial Rasistence
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Scaling and
Converting

AMPAR :
[AMPAR'P]t Synaptic T
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; 4761 compartments / :
16362 channels : N\ , !
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