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Specificities of signal transduction

● Low number of partners (x10 to x1000)

● High sensitivity (often due to allosteric factors)

● Robustness (affinity unimportant, role of transduction)

● Gain (multiple steps of enhancement)

● Adaptation (stay sensitive to various intensity; 
                    decrease response to continuous signals)

● Relative location of partners is crucial



(1)-The phenomenology

ƒ(x)dx∫
Inputoutput

Snapshot of the system          ⇒        Abstraction

Classical approaches in theoretical biology



(2)-The reductionism

Classical approaches in theoretical biology



Complex signalling pathways
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Systems Biology

● Reconstruction of dynamic systems from the properties 
of their elementary building blocks

● Made possible by large-scale data production 
& improvements of computing power and technics

● Cybernetics properties are conserved across systems
(control theory: feedback, feedforward, robustness...)
Relationships between building blocks are more 
important than their elementary properties.
The theoretical treatment is already available.

● A New Era:
Pre-molecular Biology was descriptive
Molecular Biology made Biology explicative
Systems Biology makes Biology predictive



Different approaches

Grand Probability function: P(X,t)

deterministic approach: (X,t)=f(X',t-1)

stochastic approach: P(X,t)/(X',t-1)



Limitation of deterministic approaches

Continuous, deterministic models can’t cope with:
1. Protein complexes with many states

2. Sensitivity to a very small number of molecules

3. Spatial heterogeneity



On small numbers

C
on

ce
nt

ra
tio

n 
(µ

M
)

10-17 litres

Substrate

Product

10-16 litres

10-15 litres

Number of calcium ions in a dendritic spine = 3-5



  Stochastic master equation (McQuarrie 1964)
 ~ grand probability function. Generally intractable

Stochastic approaches

  Gillespie method (Gillespie 1976)
 Reaction-based stochastic algorithm. No representation

   of individual particles. « Fast  »  

  particle-based methods. E.g. StochSim (Morton-Firth et al. 1998) 
 Molecule-based stochastic algorithm. individual particles are

   represented. Slow ...



A simple oscillating system
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A simple oscillating system

G R L D

Lotka, A.J. 1925. Elements of physical biology.  
                            Williams and Wilkins, Baltimore, M.D.

Volterra, V. 1926. "Fluctuations in the Abundance of a Species 
               Considered Mathematically," Nature 118, 558-560.

Predator-Prey model:
G = Grass
R = Rabbit (Snowshoe Hare)
L = Lynx
D = Death



StochSim

Carl Firth, Tom Shimizu, 
Nicolas Le Novère, Dennis Bray

http://www.anat.cam.ac.uk/
      ~comp-cell/StochSim.html



StochSim algorithm
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StochSim algorithm
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Kinetic constant to probability

d[R]/dt = k1[G][R]

d[L]/dt = -k3[L]

        k1 n(n+n
0
)∆t

P1 = 
                2VN

A

        k3 n(n+n
0
)∆t

P3 = 
                 n

0

n: # molecules in the system
n

0
: # pseudomolecules in the system

V: volume of the system
N

A
: Avogadro constant

 



X            Y1           Y2             Zdeterministic result

stochastic result

A simple oscillating system



Pathological situations



•  small size     ⇒ unable to read gradient
• small weight ⇒ no inertia

CCW = smooth

CW = tumble

Mechanism of bacterial chemotaxis
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Combinatorial explosion

NMDAc + CaMKIIc <=> NMDAc-CaMKIIc
NMDAo + CaMKIIc <=> NMDAc-CaMKIIc
NMDAc + CaMKIIo <=> NMDAc-CaMKIIo
NMDAo + CaMKIIo <=> NMDAc-CaMKIIo
pNMDAc + CaMKIIc <=> pNMDAc-CaMKIIc
pNMDAo + CaMKIIc <=> pNMDAc-CaMKIIc
pNMDAc + CaMKIIo <=> pNMDAc-CaMKIIo
pNMDAo + CaMKIIo <=> pNMDAc-CaMKIIo
NMDAc + pCaMKIIc <=> NMDAc-pCaMKIIc
NMDAo + pCaMKIIc <=> NMDAc-pCaMKIIc
NMDAc + pCaMKIIo <=> NMDAc-pCaMKIIo
NMDAo + pCaMKIIo <=> NMDAc-pCaMKIIo
pNMDAc + pCaMKIIc <=> pNMDAc-pCaMKIIc
pNMDAo + pCaMKIIc <=> pNMDAc-pCaMKIIc
pNMDAc + pCaMKIIo <=> pNMDAc-pCaMKIIo
pNMDAo + pCaMKIIo <=> pNMDAc-pCaMKIIo

P P

P

P

NMDAc + CaMKIIc <=> NMDAc-CaMKIIc
NMDAo + CaMKIIc <=> NMDAc-CaMKIIc
NMDAc + CaMKIIo <=> NMDAc-CaMKIIo
NMDAo + CaMKIIo <=> NMDAc-CaMKIIo

NMDA + CaMKII <=> NMDA-CaMKII

PP P

ATP CaM



• Internal states represented by binary flags
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Combinatorial explosion



• Reaction probabilities can be modified by the state of a 
participating multistate complex
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Where pbase is the base probability,
and is prel the state-dependent 
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• Instantaneously determines state of flag according to 
predefined probabilities.

• Probability can depend on the state of other flags.

• Primarily used to represent conformational 'flipping’.

pset pclr

Multistate rapid equilibria

                    p
set

∆G = -RT ln 
                    p

clear



Species p ∆G (kcal/mol) Species p ∆G (kcal/mol)

0.017 2.37 0.003 3.55

0.125 1.18 0.017 2.37

0.500 0.00 0.125 1.18

0.874 -1.18 0.500 0.00

0.997 -3.55 0.980 -2.37

Non-ligand bound Ligand bound

Free-energy based activation probabilities



• Chemotactic receptors form clusters at cell poles in E. coli. 
(Maddock and Shapiro 1993, Shimizu, Le Novère et al 2000).

•

•

•

•

•

• Clustered Receptors could enhance sensitivity (Changeux et al. 
1967, Bray et al. 1998).

• Integration of various signals (Hazelbauer et al. 1989).

Receptor clustering and sensitivity



Species 0 1 2 3 4 Species 0 1 2 3 4

p 0.00 0.00 0.02 0.08 0.30 0.00 0.00 0.00 0.01 0.07

∆ G 4.47 3.49 2.50 1.51 0.53 5.55 4.56 3.58 2.59 1.61

p 0.01 0.03 0.13 0.41 0.78 0.00 0.00 0.02 0.08 0.30

∆G 3.17 2.18 1.20 0.21 -0.77 4.47 3.49 2.50 1.51 0.53

p 0.04 0.17 0.50 0.83 0.96 0.01 0.03 0.13 0.41 0.78

∆G 1.97 0.99 0.00 -0.99 -1.97 3.17 2.18 1.20 0.21 -0.77

p 0.22 0.58 0.87 0.97 0.99 0.04 0.17 0.50 0.83 0.96

∆G 0.78 -0.21 -1.19 -2.18 -3.16 1.97 0.99 0.00 -0.99 -1.97

p 0.93 0.99 1.00 1.00 1.00 0.67 0.91 0.98 1.00 1.00

∆G -1.61 -2.59 -3.58 -4.56 -5.55 -0.43 -1.41 -2.40 -3.38 -4.37

Ligand unbound Ligand bound

Free-energy values for coupled receptors



• Conformational changes could be 
propagated through the network 
via CheA/CheW
⇒Enhanced gain;

• Hybrid networks containing 
multiple types of receptors could 
integrate signals at the level of 
CheA activity;

•  Receptor dimers are close enough 
(6-10 nm) for adaptational cross-
talk.

Consequences for signalling
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Interaction between receptors and CheR (methyltransferase)
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Molecular brachiation



Excess brachiating molecule

Effective Kd

Limiting brachiating molecule



 Each CheR molecule visits 
more receptors, some of 

them repetitively;

 CheR molecules are 
trapped into the receptor 

lattice.

Segregation by affinity









Kneussel & Betz (2000) Trends Neurosci, 9: 429-435

Alright, but what about Neurobiology

Sol et al (2004) EMBO J, 23: 2510-2519

Shimizu, Le Novère et al (2000) 
Nat Cell Biol, 2:792-796



Complexité structurale 

Shoop et al. (2002)
J Neurosci, 22: 748-756

Atlas of Ultrastructural Neurocytology 
http://synapses.mcg.edu/atlas/eurosci



Complex post-synaptic machinery



Barry and Ziff. (2002)
Curr Opin Neurobiol, 12: 279-286

Complexité temporelle

Choquet & Triller (2003) 
Nat Rev Neurosci, 4: 251-265



MCell

Thomas Bartol, Joel Stiles

http://www.mcell2.cnl.salk.edu/



Position of receptors affects the signal

Franks et al. (2003) J Neurosci, 23: 3186-3195



Abstracted Protein Simulator

Dan Mossop, Fred Howell

http://www.anc.ed.ac.uk/~fwh/protsim/index.php/



Smoldyn

Steven Andrews, Dennis Bray

http://sahara.lbl.gov/~sandrews/software.html
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Cable theory
1µm-1m
1ms-1week

Signaling network
ODE
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Dendritic spine
Diffusion, PDE
100nm-1µm
1ms-1s

Synapse
Stochastic algorithm
1nm-100nm
1µs-1ms

Need for modular multi-scale hyrid program



Modelisation: the collaborative approach

VCell E-Cell MCell

StochSim

Jarnac
Gepasi

Whole-cell

deterministic stochastic

SBW

NEOSIM

BioSPICE

GENESIS

KEGG

DB interface

MesoRD
SmartCell

Reactome
CellDesigner

GRID, RPC

All these programs speak SBML
(Systems Biology Markup Language)



ESF Course Modelling - 3 September 2004



E-Cell System 3 (Kouichi Takahashi)
shared memory, hyper-threading
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Useful quantitative models 

● Systems Biologists need:

– to retrieve easely existing relevant models

● Computational Systems Biologists need:

– reuse existing models rather than reimplement them

– construct models from building blocks

● No true database of models, only repositories

● No quality control on the models available online

● No annotation of models: reactants are A,B,C etc

● MIRIAM: 
Minimum Information Requested In the Annotation of Models

● Controlled vocabularies: 

– Parameters: Kd, Ka, Kp, IC50 ARE DIFFERENT!

– “Michaelis-Menten”, “Hopf bifurcation” etc.

● Biomodels, a database of “Systems Biology Models” 



Biomodels database

● Collaboration between SBML teams of Caltech and University 
of Herdfordshire (curation) and EBI (DB)

● Each model served will be published or in the press
(submitted will be processed but kept private)

● To be accepted in biomodels, a model will have to be 
semantically sound: simulation should correspond to results 
described in the referenced paper

● Models will be annotated: GO, NCBI Taxonomy, UniProt, 
ChEBI, Reactome etc.
=> search for all models related to “synaptic plasticity”, or 
“CALM_HUMAN”

● Possibility of online simulation
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