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Emergence of the notion of system

“classical” mechanic, anatomy, physiology

Description of the““mm-“wm”f the world

Statistical physics, thermodynamics, quantum mechanic,
biochemistry, structural biology, molecular biology

Description of interactin%““‘“mm_

Cybernetics, Information theory, telecommunications,
automata, multi-agents, Systems Biology




Systems have been formalised for a while

Cybernetics:

THE

MATHEMATICAL

THEORY OF

COMMUNICATION

CLAUDE E. SHANNON

WARREN WEAVER




Systems have been formalised for a while

Cybernetics: Reaised Edilin

THE

MATHEMATICAL

THEORY OF

COMMUNICATION

CLAUDE E. SHANNON

WARREN WEAVER

“[A system consists of] a dynamic order of parts and processes
standing in mutual interaction. [...] The fundamental task of
biology [is] the discovery of the laws of biological systems"
Ludwig von Bertalanfy, Kritische Theorie der Formbildung, 1928



The three paradigms of Biology
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Computer simulations Vs. mathematical models

[ 37 ]

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found that there are six
essentially different forms which this may take. In the most interesting form stationary waves
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns

on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-
dered  Sarcl : Lats A rieat] : .
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THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

One would like to be able to follow this more general process
mathematically also. The difficulties are, however, such that one
cannot hope to have any very embracing theory of such processes,
beyond the statement of the equations. It might be possible,
however, to treat a few particular cases in detail with the aid of a
digital computer. This method has the advantage that it is not so
necessary to make simplifying assumptions as it is when doing a
more theoretical type of analysis.




Birth of Computational Systems Biology

J. Physiol. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGKIN anp A. F. HUXLEY
From the Physiological Laboratory, Unwversity of Cambridge
(Recetved 10 March 1952)

This article concludes a series of papers concerned with the flow of electric
current through the surface membrane of a giant nerve fibre (Hodgkin,
Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a—). Its general object is to
discuss the results of the preceding papers (Part I), to put them into
mathematical form (Part II) and to show that they will account for con-
duction and excitation in quantitative terms (Part ITI).
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90s: maturation of the community

Publication of modelling work in high visibility journals, e.qg.:

Tyson. modeling the cell-division cycle - cdc2 and cyclin interactions.
PNAS 1991; McAdams and Shapiro. Circuit simulation of genetic
networks. Science 1995; Barkai and Leibler. Robustness in simple
biochemical networks. Nature 1997; Neuman et al. Hepatitis C viral
dynamics in vivo and the antiviral efficacy of interferon-alpha therapy.
Science 1998; Yue et al. Genomic cis-regulatory logic: Experimental
and computational analysis of a sea urchin gene . Science 1998; Bray
et al. Receptor clustering as a cellular mechanism to control
sensitivity. Nature 1998; Bhalla ad lyengar. Emergent properties of
signaling pathways. Science 1998

Structuration of the community modelling metabolism
Large-scale modelling and simulation projects
E-Cell project 1996; The Virtual Cell 1998
Availability of high-throughput data on parts and interactions
Two-hybrids (1989); microarrays (1995) etc.
Large-scale funding for wet+dry studies of biological systems

Alliance For Cellular Signalling (http://www.afcs.org/). First of the NIH
“glue grants”. 1998



Formal revival of Systems Biology

= “Modelling” Systems Biology
1998 - Hiroaki Kitano founds the Systems Biology Institute in Tokyo

First appearance: Kyoda, Kitano. Virtual Drosophila project:
Simulation of drosophila leg formation. Genome Informatics Series

(1998)

Kitano, H. Perspectives on systems biology. New Generation
Computing Volume 18, Issue 3, 2000, Pages 199-216

= “Network” Systems Biology

First appearance: Leroy Hood. Systems biology: new opportunities
arising from genomics, proteomics and beyond. Experimental
Hematology. Volume 26, Issue 8, 1998, Page 681

Schwikowski B, Uetz P, Fields S. A network of protein-protein
interactions in yeast. Nat Biotechnol. 2000 Dec;18(12):1257-61.

2000 - Leroy Hood founds the Systems Biology Institute in Seattle
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What is Systems Biology?

m  First mention of the term:
1928 (L Von Bertallanfy)

m Modern revival of the term:
1998 (L Hood, H Kitano)

Systems Biology is the study of the emerging properties
of a biological system, taking into account all the necessary constituents,
their relationships and their dynamics.
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Systems-wide analysis (omics)
Born: 1990s

Technologies: high-throughput,
statistics

People's background: molecular
biologists, mathematicians

Key lesson: the selection of a
phenotype is done at the level of
the system, not of the component
(gene expression puzzle)

Application of systems-theory
Born: 1960s

Technologies: quantitative
measurements, modelling

People's background:
biochemists, engineers

Key lesson: the properties at a
certain level are emerging
from the dynamic interaction
of components at a lower level
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The challenges ahead: Bridging the gaps

Types of representation
Scales and the mesoscopic gap

Drug discovery models
Vs systems modelling

Drug discovery models
Vs “omics” data
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Interaction networks

Non-directional
Non-sequential
Non-mechanistic
Statistical modelling
Functional genomics
IntAct, DIP, String



Activity-Flows

= Directional

RAF >
J; = Sequential
= Non-mechanistic
MEK
= [ ogical modelling
JZ V = Signalling pathways,
ERK gene regulatory networks

= KEGG, STKEs



Process Descriptions

= Directional

= Sequential

= Mechanistic

J} = Subjected to combinatorial explosion

= _>® »= Process modelling

= Biochemistry, Metabolic networks
= KEGG, Reactome

P1




Entity Relationships

= Directional

= Non-sequential

= Mechanistic

“ = |ndependent rules: no explosion

= Rule-based modelling

= Molecular Biology
= MIM
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The problem of scales KAI’* !
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The mesoscopic gap
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Multi-scale does not mean fine scale plus massive power

= Computational issues

In 2008, largest simulations were 1 million atoms for 50
ns (using > 30 years CPU) and 10000 atoms for 0.5 ms.

E-coli ~ 1 million million atoms ...

We need at least 10** more power to simulate E coli
during 1 s

m Theoretical issues

Molecular dynamics does not scale linearly with number
of interactions

We do not know how to simulate mesoscopic
phenomena: conformational transitions, secondary
structure movements etc.



Drug discovery modelling: pharmacometrics
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Drug discovery modelling: pharmacometrics
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Drug discovery modelling: pharmacometrics
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Drug discovery modelling: pharmacometrics
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Systems modelling

diT] _
= —k1 x [T] x |D1]
[T]

time
diT| _
= —k2 x [T x [D2]

[T]

time




Systems modelling

d[T]
dt

= —k1 x| — k2 x [T] x | D2]

. TK‘ time
-




altentanll concentration {ug/ 1)

Drug discovery and pharmacometrics models




Drug discovery and pharmacometrics models




Signal Intensity (%)

Drug discovery and omics
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Thank-you for joining the meeting and discuss those
issues over the next couple of days
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