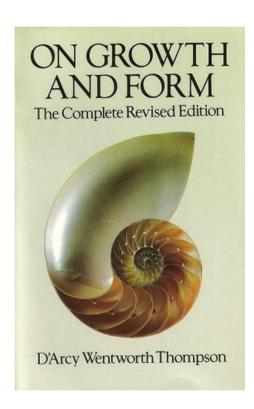


Standards and databases for sharing models in systems biology

Nicolas Le Novère n.lenovere@gmail.com

"You should not develop standards and easy to use modelling software. It allows biologists to write models, and they don't know how to do it properly."

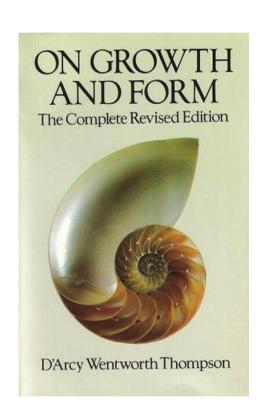
influential British biomathematician, EU Syst Biol centres meeting, 2007

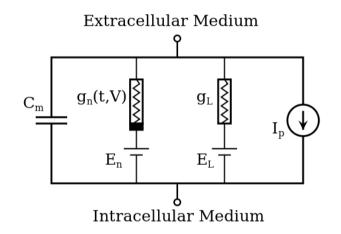

"By developing BioModels you harm the cause of modelling in biology. My students do not learn how to make a model, they download it ready to use instead"

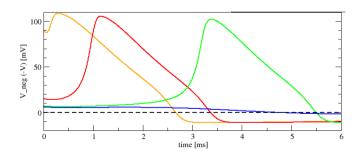
Famous theoretical biologist, BioScope 2006

Why using mathematical models?

Describe

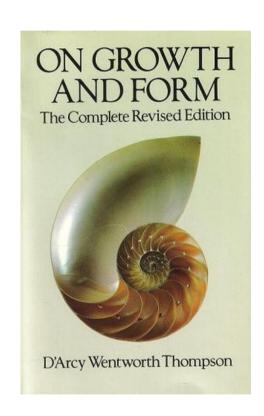

1917

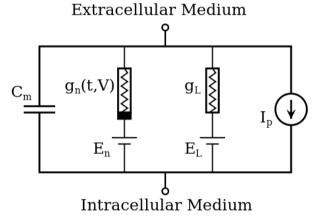


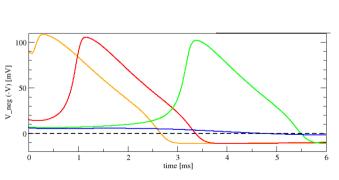

Why using mathematical models?

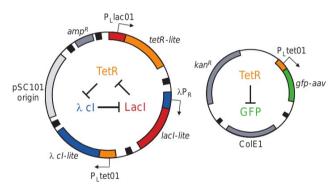
Describe

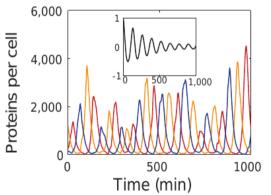
Explain


1917 1952


Why using mathematical models?


Describe


Explain


Predict

1917 1952

2000

Wikipedia (October 14th 2013): "A mathematical model is a description of a system using mathematical concepts and language."

Wikipedia (October 14th 2013): "A mathematical model is a description of a system using mathematical concepts and language."

variables [X] Vmax Kd EC₅₀ length t_{1/2}

What we want to know or compare with experiments

Wikipedia (October 14th 2013): "A mathematical model is a description of a system using mathematical concepts and language."

variables

[X]

Vmax

Kd

EC₅₀

length

t_{1/2}

relationships

$$K_d = \frac{[A] \cdot [B]}{[AB]}$$

$$d[X]/dt = k \cdot [Y]^2$$

$$\sum_{i} [X]_i - F(t) = 0$$

$$k(t) \sim N(k, \sigma^2)$$

If $\operatorname{mass}_t > \operatorname{threshold}$ then $\operatorname{mass}_{t+\Delta t} = 0.5 \cdot \operatorname{mass}$

What we already know or want to test

Wikipedia (October 14th 2013): "A mathematical model is a description of a system using mathematical concepts and language."

variables

[X]

Vmax

Kd

EC₅₀

length

t_{1/2}

relationships

$$K_d = \frac{[A] \cdot [B]}{[AB]}$$

$$d[X]/dt = k \cdot [Y]^2$$

$$\sum_{i} [X]_i - F(t) = 0$$

$$k(t) \sim N(k, \sigma^2)$$

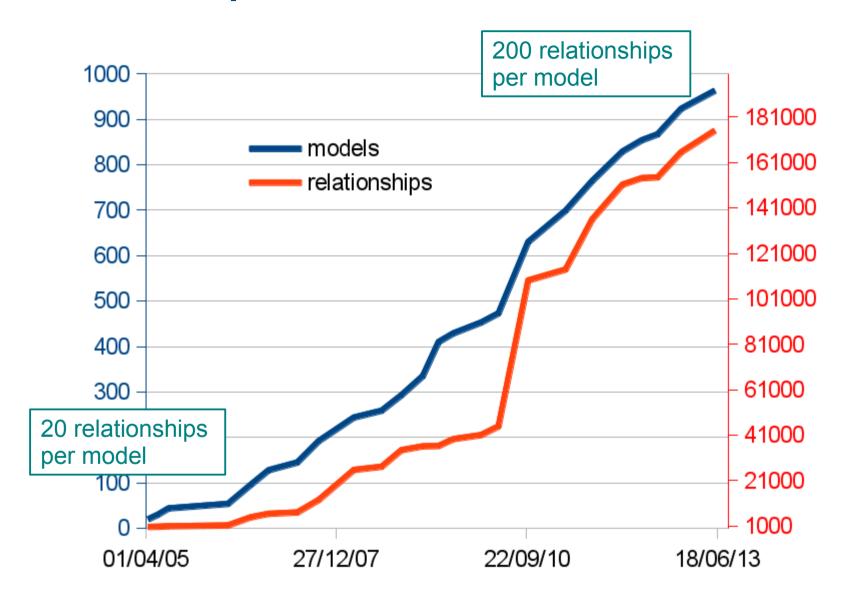
If $\mathrm{mass}_t > \mathrm{threshold}$ then $\mathrm{mass}_{t+\Delta t} = 0.5 \cdot \mathrm{mass}$

constraints

[x] > 0

Energy conservation

Boundary conditions (v < upper limit)


Objective functions (maximise ATP)

Initial conditions

The context or what we want to ignore

Computational models on the rise

BioModels Database growth (published models branch) since its creation

We need to

Verify

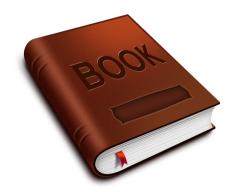
Re-use

Modify

Build upon

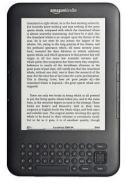
Integrate with

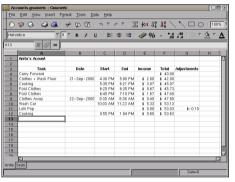
Therefore we need to share


Model descriptions

Simulation descriptions

Parametrisations

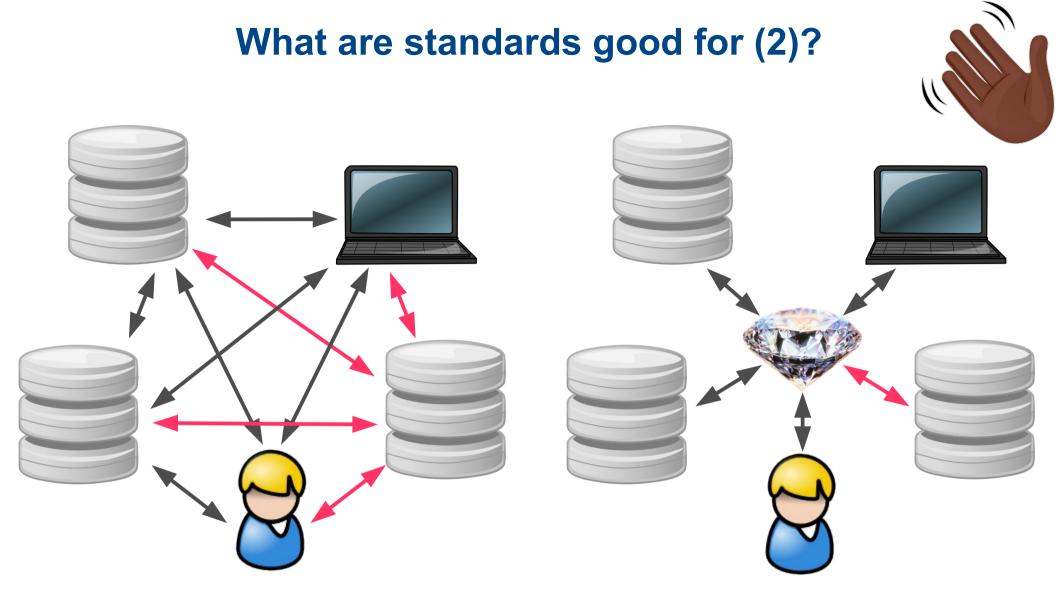



What are standards good for (1)?

$$\int_{1}^{t} \frac{dx}{x}$$

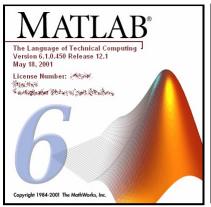

```
<int/>
  <br/><br/><br/><br/>ci>x</ci><br/><br/>/bvar>
  <lowlimit><cn>1</cn></lowlimit>
  <uplimit><ci>t</ci></uplimit>
  <apply>
    <divide/>
       <cn>1</cn>
       <ci>x</ci>
  </apply>
</int>
```

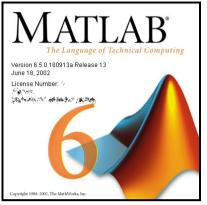
Formal languages can be read and written by computers

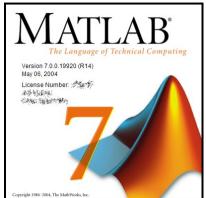


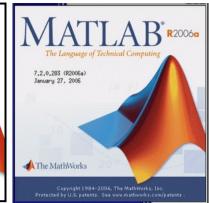
What are standards good for (2)?

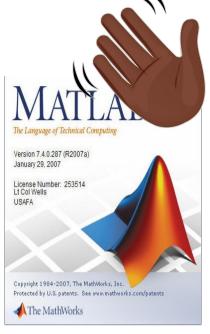
N tools require N conversions for exchange and not N(N-1)/2

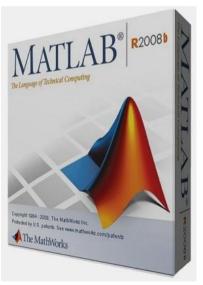


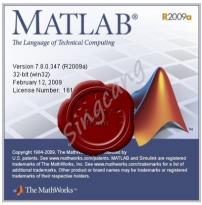


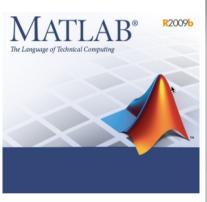

N tools require N conversions for exchange and not N(N-1)/2

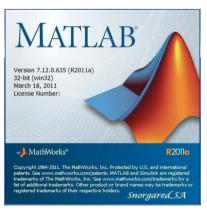



What are standards good for (3)?









Open standards are more stable than proprietary formats

What are standards good for (4)?

SBToolbox2 MatLab SBMLToolbox **CySBML** Cytoscape **libSBML JSBML** SBML

Open standards can be built on. They generate new science

Three types of standards

Minimal requirements	What to encode in order to share experiments and understand results		
Data-models	How to encode the information defined above in a computer-readable manner		
Terminologies	Structured representation of knowledge, with concept definitions and their relationships Structured representation OBO foundry		

A matrix of standards

	Model descriptions	Simulations and analysis	results
Minimal requirements	MIRIAM	MIASE	
Data-models	SML SGN	SEDML	NuML
Terminologies	S30	KISAO	TEDDY

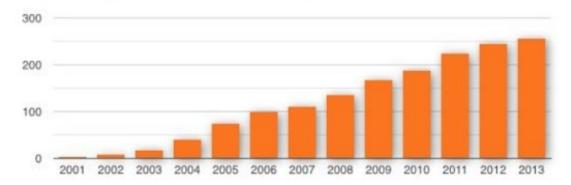
A language to describe computational models in biology

Born in Caltech 2000 Model descriptions John Hiroaki Doyle Kitano Data-models Mike Herbert Hamid Andrew Hucka Sauro Bolouri Finney

SBML Software Guide

The following pages describe SBML-compatible software packages known to us. We offer different ways of viewing the information, all drawn from the same underlying data collected from the systems' developers via our **software survey**. The *Matrix* provides a table listing all known software and a variety of their features; the *Summary* provides general descriptions of most of the software; and the *Showcase* provides a sequential slideshow of a subset of the software.

Number of software packages listed in the matrix today: 262.

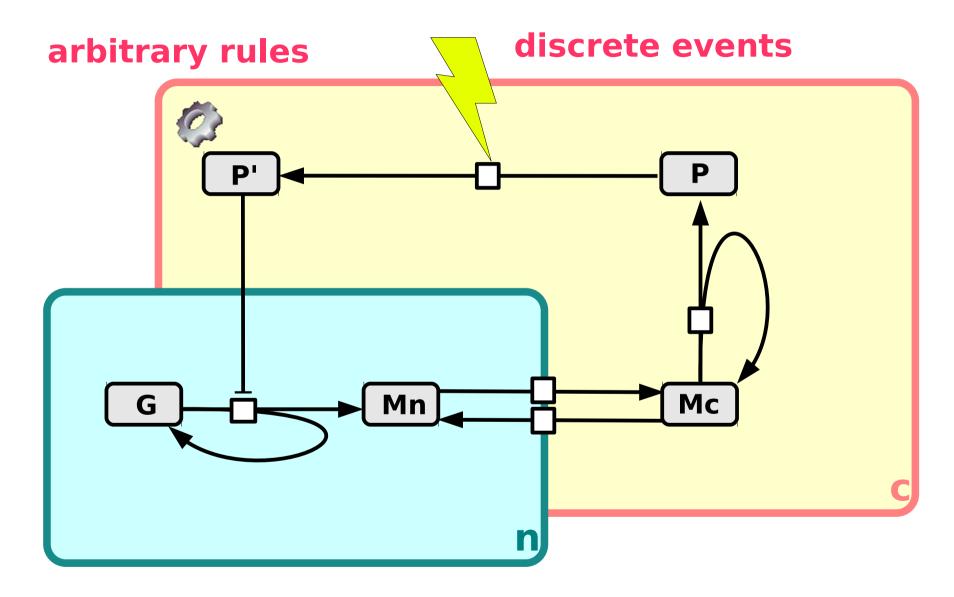


Go to the SBML

Please use the survey form do to notify us about additions and suggestions.

Historical trend

The following graph shows the total number of known SBML-compatible software packages each year, as counted by the SBML Team. The counts shown are for approximately the middle of each year.



SBML conformance testing

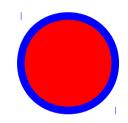
The **SBML Test Suite** provides an operational means of testing SBML support in software simulation and analysis systems. Software authors can choose to make the test results for their software public in the **SBML Test Suite Database**, where you can inspect them.

What can we encode in SBML (core)?

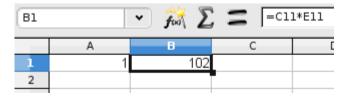
Why the Extensible Markup Language (XML)?

HTML

A strong word and an hyperlink


SVG

```
<circle r="100" fill="red"
stroke="blue" stroke-width="10" />
```


MathML

Excel

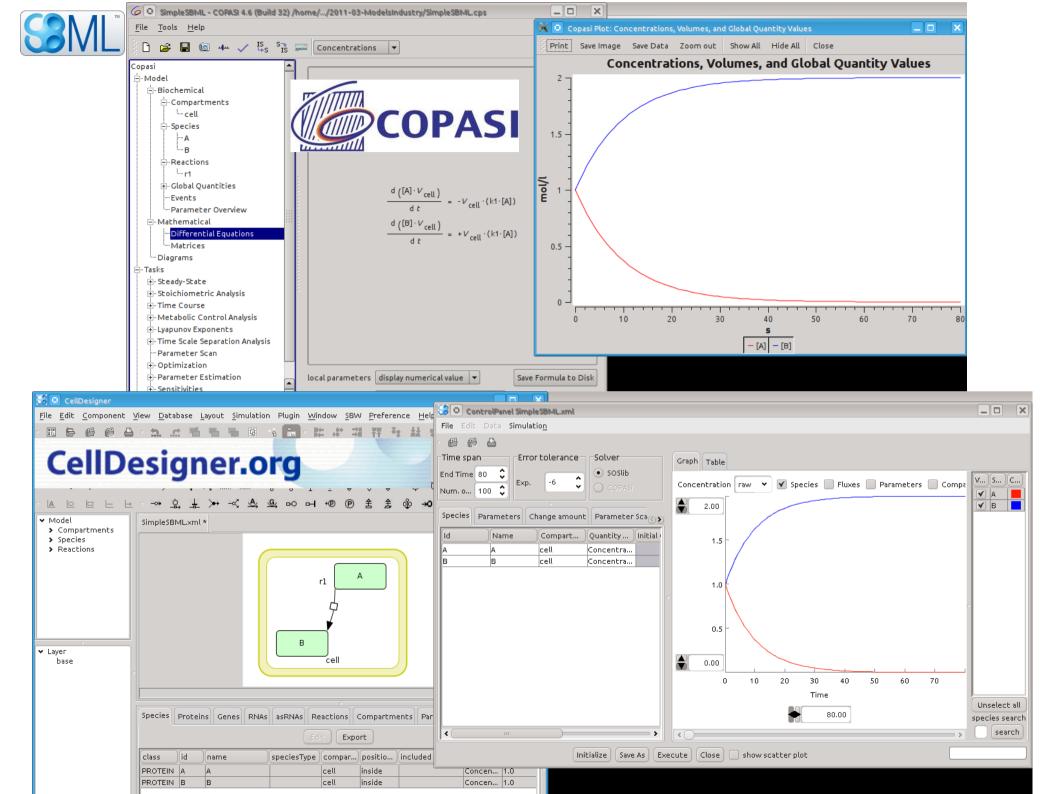
A **strong word** and an **hyperlink**

$$\int_{\mathbf{0}}^{\mathbf{a}} f(x) \, dx$$

Why the Extensible Markup Language (XML)?

- Easy to define and validate
 - Rapid prototyping, processing tools can be generated and thrown away
- Existence of a very large toolkit
 - Libraries in every programming languages
 - A very large number of description formats in life sciences are in XML
- Associated technologies
 - Definition: XML Schema, Schematron (themselves XML)
 - Conversion: XSLT (using XSL in XML)
 - Linking: XPath and XQuery

Structure of SBML


```
<?xml version="1.0" encoding="UTF-8"?>
           <sbml level="3" version="1".</pre>
                 xmlns="http://www.sbml.org/sbml/level3/version1/core">
              <model>
                <listOfFunctionDefinitions> </-- --> </listOfFunctionDefinitions>
                <listOfUnitDefinitions> </-- --> </listOfUnitDefinitions>
                <list0fCompartments> </-- --> </list0fCompartments>
                <list0fSpecies> </-- --> </list0fSpecies>
  variables
                <list0fParameters> </-- --> </list0fParameters>
                <list0fInitialAssignments> </-- --> </list0fInitialAssignments>
                t0fRules> </-- --> </list0fRules></-->
                <list0fConstraints> </-- --> </list0fConstraints>
relationships
                <listOfReactions> </-- --> </listOfReactions>
                <list0fEvents> </-- --> </list0fEvents>
              </model>
           </sbml>
```



```
<?xml version="1.0" encoding="UTF-8"?>
  <sbml xmlns="http://www.sbml.org/sbml/level2/version4" level="2" version="4">
   <model name="Simple Model">
     <compartment id="cell" size="1" />
     <species id="A" compartment="cell" initialConcentration="1"/>
       <species id="B" compartment="cell" initialConcentration="1"/>
     </listOfSpecies>
     <parameter id="k1" value="0.1"/>
     </listOfParameters>
     A very simple
       <reaction id="r1" reversible="false">
       IstOfReactants>
          <speciesReference species="A"/>
                                           SBML file (A \longrightarrow B)
        Ist0fProducts>
          <speciesReference species="B"/>
        <kineticLaw>
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
             <times/>
             <ci> cell </ci>
MathML
             <ci> k1 </ci>
             <ci> A </ci>
            </apply>
          </kineticLaw>
       </reaction>
     </listOfReactions>
   </model>
  </sbml>
```


<species ·</pre>

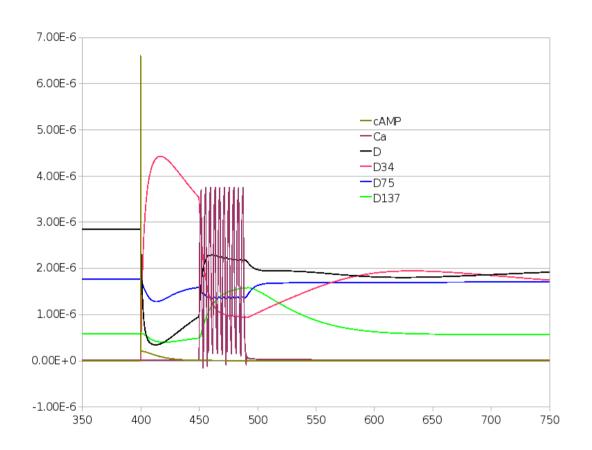
id="A".

A more realistic example ...

```
name="a-tubulin"
   compartment="cell"
    initial Amount="1000"
    substanceUnits="item"
   hasOnlySubstanceUnits="true"
   boundaryCondition="true"
   constant="false"
   charge="0"
   metaid="PX"
   sboTerm="SB0:0000245" >
  <notes>
    <body xmlns="http://www.w3.org/1999/xhtml">
      One of the components of a microtubule
    </body>
  </notes>
  <annotation>
    <rdf:RDF.
        xmlns:bgbiol="http://biomodels.net/biology-gualifiers/".
        xmlns:bqmodel="http://biomodels.net/model-qualifiers/"
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
      <rdf:Description rdf:about="#PX">
        <br/>dpiol:is>
          <rdf:Bag>
            <rdf:li rdf:resource="urn:miriam:uniprot:P68370"/>
            <rdf:li rdf:resource="urn:miriam:obo.go:G0%3A0045298"/>
          </rdf:Bag>
        </bqbiol:is>
      </rdf:Description>
    </rdf:RDF>
  </annotation>
</species>
```

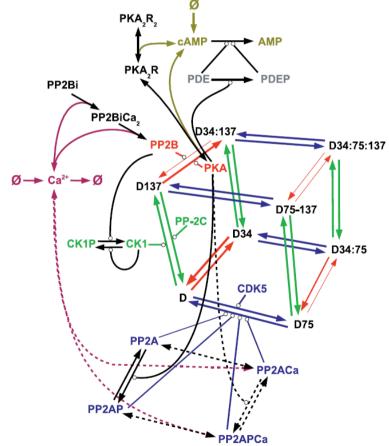


```
<species ·</pre>
                                          A more realistic example ...
           id="A".
           name="a-tubulin"
           compartment="cell"
           initialAmount="1000"
           substanceUnits="item"
           hasOnlySubstanceUnits="true"
           boundaryCondition="true"
           constant="false"
           charge="0"
           metaid="PX"
                                      biological semantics: macromolecule
           sboTerm="SB0:0000245" >
         <notes>
           <body xmlns="http://www.w3.org/1999/xhtml">
XHTML
             One of the components of a microtubule
           </body>
         </notes>
         <annotation>
           <rdf:RDF.
               xmlns:bqbiol="http://biomodels.net/biology-qualifiers/".
               xmlns:bqmodel="http://biomodels.net/model-qualifiers/"
               xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
             <rdf:Description rdf:about="#PX">
               <br/>dpiol:is>
                 <rdf:Bag>
RDF
                   <rdf:li rdf:resource="urn:miriam:uniprot:P68370"/>
                   <rdf:li rdf:resource="urn:miriam:obo.go:G0%3A0045298"/>
                 </rdf:Bag>
               </bqbiol:is>
             </rdf:Description>
           </rdf:RDF>
         </annotation>
       </species>
```



SBML is not limited to biochemistry!

- A species is a pool of entities participating to a reaction, not always a chemical entity
 - It can be a pool of molecules
 - It can be a pool of cells
 - It can be a pool of organs
 - It can be a population of organism
- Rate Rules can describe the temporal evolution of <u>any</u> <u>quantitative parameter</u>, e.g. transmembrane voltage, tumour size etc.
- Events can describe any discontinuous change, e.g. neurotransmitter release, repolarisation, cell division etc.
 - → SBML (Core) is about process descriptions

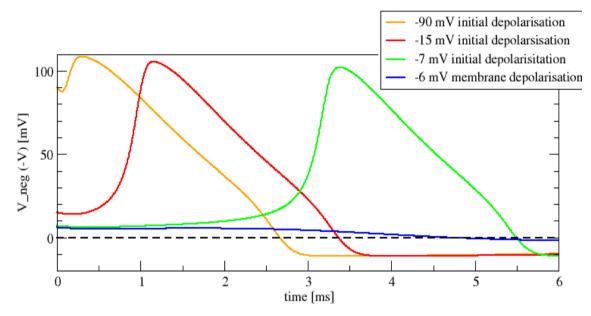
Biochemical models

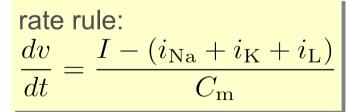


reaction:

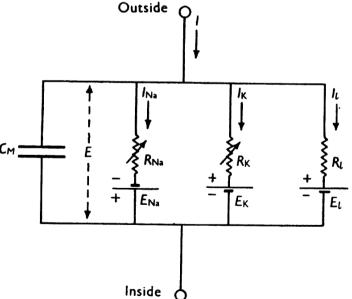
$$v_{\rm on} = k_{\rm on} \times [{\rm D}] \times [{\rm CDK5}] \times {\rm Vol}$$

Fernandez et al. DARPP-32 is a robust integrator of dopamine and glutamate signals *PLoS Comput Biol* (2006) 2: e176.

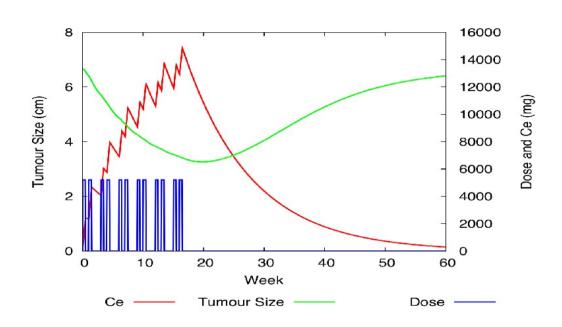




Conductance-based model


Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. *J Physiol* (1952) 117:500-544.

assignment rule:

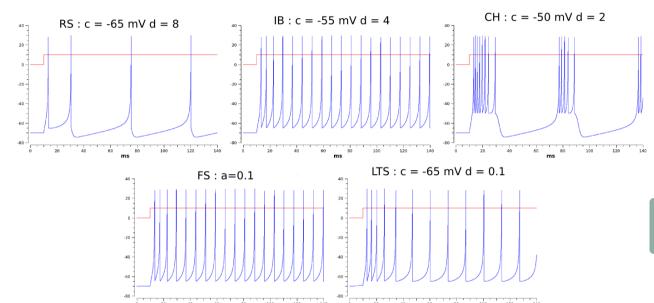

$$i_{\text{Na}} = g_{\text{Na}} \times m^3 \times h \times (V - E_{\text{Na}})$$

Pharmacometrics models

Tham et al (2008) A pharmacodynamic model for the time course of tumor shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients.

Clin Cancer Res. 2008 14(13): 4213-8.

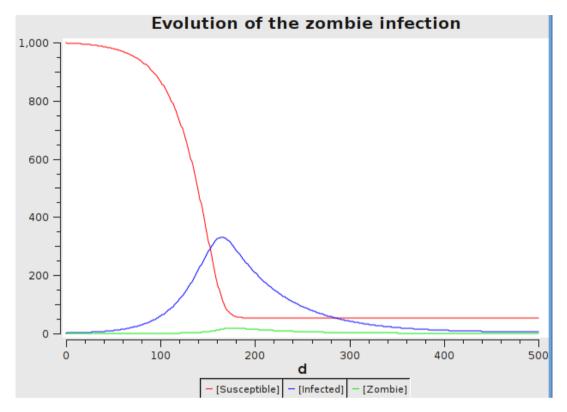
rate rule:
$$dSize$$


$$\frac{dSize}{dt} = (Rate_{in} \times Effect - K_{over} \times Size) \times Size$$

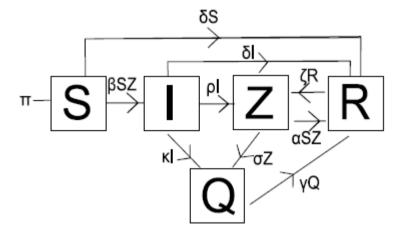
$$Effect = 1 - \frac{E_{max} \times Ce}{Amt_{50} + Ce}$$

Single-compartment neurons

Izhikevich EM. Simple model of spiking neurons. *IEEE Trans Neural Netw* (2003) 14(6):1569-1572.


$$\frac{dv}{dt} = 0.04^2 + 5 \times V + 140 - U + i$$

event:
$$\text{when } v > V_{\text{thresh}} \begin{cases} v = c \\ U = U + d \end{cases}$$


Spread of infection diseases ...

Munz P et al. When zombies attack!: Mathematical modelling of an outbreak of zombie infection. in "Infectious Disease Modelling Research Progress", (2009)133-150

A community-driven global reconstruction of human metabolism

Ines Thiele^{1,2,37}, Neil Swainston^{3,4,37}, Ronan M T Fleming^{1,5}, Andreas Hoppe⁶, Swagatika Sahoo¹, Maike K Aurich¹, Hulda Haraldsdottir¹, Monica L Mo⁷, Ottar Rolfsson¹, Miranda D Stobbe^{8,9}, Stefan G Thorleifsson¹, Rasmus Agren¹⁰, Christian Bölling⁶, Sergio Bordel¹⁰, Arvind K Chavali¹¹. Paul Dobson¹², Warwick B Dunn^{3,13}, Lukas Endler¹⁴, David Hala¹⁵, Michael Hucka¹⁶, Duncan Hull⁴, Daniel Jameson^{3,4}, Neema Jamshidi⁷, Jon J Jonsson⁵, Nick Juty¹⁷, Sarah Keating¹⁷, Intawat Nookaew¹⁰, Nicolas Le Novère 17,18, Naglis Malys 3,19,20, Alexander Mazein 21, Jason A Papin 11, Nathan D Price 22, Evgeni Selkov, Sr23, Martin I Sigurdsson1, Evangelos Simeonidis22,24, Nikolaus Sonnenschein25, Kieran Smallbone3,26, Anatoly Sorokin^{21,27}, Johannes H G M van Beek^{28–30}, Dieter Weichart^{3,31}, Igor Goryanin^{21,32}, Jens Nielsen¹⁰, Hans V Westerhoff^{3,28,33,34}, Douglas B Kell^{3,35}, Pedro Mendes^{3,4,36} & Bernhard Ø Palsson^{1,7}

Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type-specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.

An understanding of metabolism is fundamental to comprehending is now well-established and has been applied to a growing number the phenotypic behavior of all living organisms, including humans, where metabolism is integral to health and is involved in much of human disease. High quality, genome-scale 'metabolic reconstructions' are at the heart of bottom-up systems biology analyses and represent the entire network of metabolic reactions that a given organism is

of model organisms3. Metabolic reconstructions allow for the conversion of biological knowledge into a mathematical format and the subsequent computation of physiological states 1,4,5 to address a variety of scientific and applied questions3,6. Reconstructions enable networkwide mechanistic investigations of the genotype-phenotype relationknown to exhibit1. The metabolic-network reconstruction procedure ship. A high-quality reconstruction of the metabolic network is thus

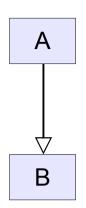
1 Center for Systems Biology, University of Iceland, Reykjavík, Iceland. 2 Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Reykjavik, Iceland. 3 Manchester Centre for Integrative Systems Biology, University of Manchester, Manchester Institute of Biotechnology, Manchester, UK. ⁴School of Computer Science, University of Manchester, Manchester, UK. ⁵Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik, Iceland. 6Computational Systems Biochemistry Group, Charité-Universitätsmedizin Berlin, Berlin, Germany. 7Department of Bioengineering, University of California, San Diego, La Jolla, California, USA, 8 Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands, 9Netherlands Bioinformatics Centre, Nilmegen, the Netherlands, 10Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden. 11Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA, 12Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK. 13Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK, 14 Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria, 15 Department of Biology, University of North Texas, Denton, Texas, USA, 16Computing and Mathematical Sciences Department, California Institute of Technology, Pasadena, California, 15 European Molecular Biology Laboratory, European Bioinformatics Institute, Hiroxton, UK. 18 Babraham Institute, Babraham Research Campus, Cambridge, UK. ¹⁹Faculty of Life Sciences, University of Manchester, Manchester, UK. ²⁰School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK. ²¹School of Informatics, University of Edinburgh, Edinburgh, UK. 22Institute for Systems Biology, Seattle, Washington, USA. 23Genome Designs, Inc., Walnut Creek, California, USA ²⁴Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Campus Belval, Esch-sur-Alzette, Luxembourg. ²⁵School of Engineering and Science, Jacobs University Bremen, Bremen, Germany. 26School of Mathematics, University of Manchester, Manchester, UK. 27Institute of Cell Biophysics, Russian Academy of Sciences, Moscow region, Pushchino, Russia. ²⁸Department of Molecular Cell Physiology, Vrije Universiteit, Amsterdam, the Netherlands. ²⁹Section Medical Genomics, Department of Clinical Genetics, Vrije Universiteit University Medical Centre, Amsterdam, the Netherlands. 30 Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands. 31School of Dentistry, The University of Manchester, Manchester, UK. 32Okinawa Institute Science and Technology, Okinawa, Japan. 33School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK. 34Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands, 35School of Chemistry, The University of Manchester, Manchester, UK. 36Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, USA. 37These authors contributed equally to this work. Correspondence should be addressed to I.T. (ines.thiele@gmail.com).

Received 7 September 2012; accepted 19 December 2012; published online 3 March 2013; doi:10.1038/nbt.2488

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION

A not so simple SBML file (Recon2)

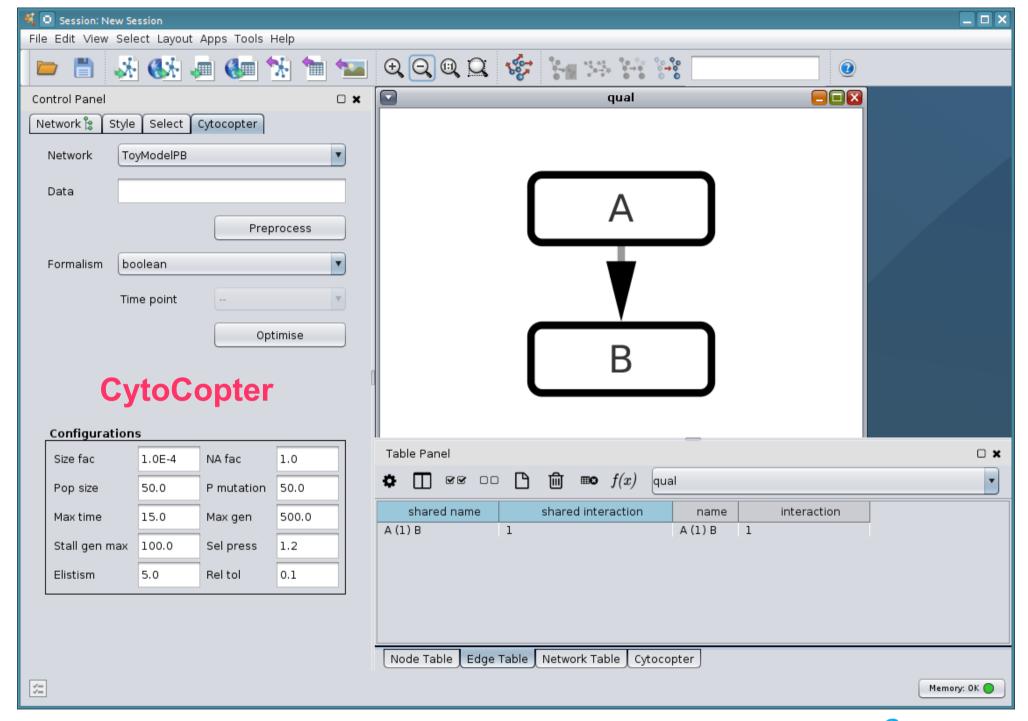
- 8 compartments
- 5 063 metabolites
- 2 194 proteins
- 7 440 reactions

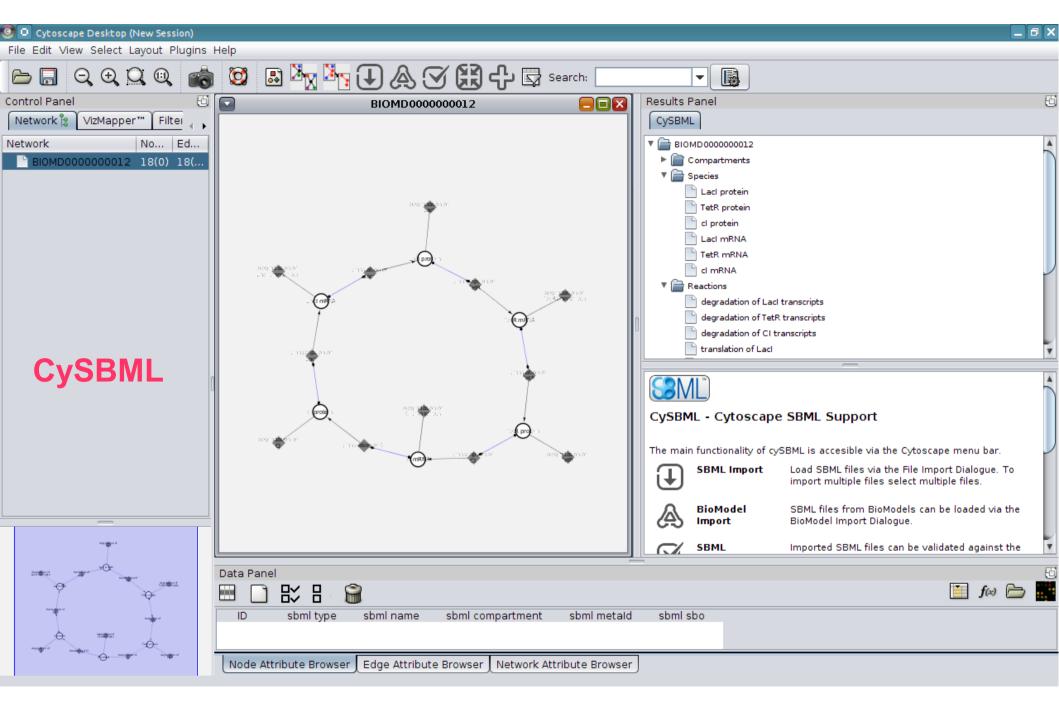


- Core package public specification
- Flux balance constraint public specification
- Qualitative models public specification
- Model composition public specification
- Graph Layout public specification
- Graph rendering specification finalised
- Complex species specification finalised
- Groups specification finalised
- Distributions and ranges specification under discussion
- Spatial diffusion specification under discussion
- Enhanced metadata specification proposed
- Arrays and sets specification proposed
- Dynamic structures discussed

SBML Level 3 is modular

$$A \geqslant 1 \Rightarrow B = 1$$


Logical model with SBML Qual


```
xmlns:qual="http://www.sbml.org/sbml/level3/version1/qual/version1" qual:required="true":
  <model id="example">
   <compartment id="cytosol" name="cytosol" constant="true"/>
    <qual:list0fQualitativeSpecies>
      <qual:qualitativeSpecies qual:compartment="cytosol" qual:constant="false"</pre>
                              qual:id="A" qual:maxLevel="2"/>
      <qual:qualitativeSpecies qual:compartment="cytosol" qual:constant="false"</pre>
                              qual:id="B" qual:maxLevel="1"/>
    </gual:list0fQualitativeSpecies>
    <qual:listOfTransitions>
      <qual:transition qual:id="tr B">
        <qual:listOfInputs>
          <qual:input qual:id="theta B A" qual:qualitativeSpecies="A" qual:sign="positive"</pre>
                     qual:thresholdLevel="1" qual:transitionEffect="none"/>
        </gual:listOfInputs>
        <qual:list0f0utputs>
          <qual:output qual:transitionEffect="assignmentLevel" qual:qualitativeSpecies="B"/>
        </gual:list0f0utputs>
        <qual:listOfFunctionTerms>
         <qual:functionTerm qual:resultLevel="1">
            <math xmlns="http://www.w3.org/1998/Math/MathML">
             <apply>
                <qeq/>
               <ci>A</ci>
               <ci>theta B A</ci>
             </apply>
           </qual:functionTerm>
          <qual:defaultTerm qual:resultLevel="0"/>
        </gual:listOfFunctionTerms>
     </gual:transition>
    </gual:listOfTransitions>
  </model>
</sbml>
```

<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3" version="1"</pre>

<?xmlversion="1.0" encoding="UTF8"?>

Adding the semantics to the syntax

Model descriptions

Minimal requirements

Data-models

Born in Heidelberg 2004

Terminologies

Minimal Information Required In the Annotation of Models

Reference correspondence

- 1. In a public, standardized, machine-readable format
- 2. Comply with the standard in which it is encoded
- 3. Clearly related to a single reference description
- 4. Reflect biological processes
- 5. Instantiable in a simulation all numbers provided
- 6. Able to reproduce results

Attribution

- 1. Has to be named
- 2. Citation must be provided
- 3. Model creators details
- 4. Date and time of creation and last modification
- 5. Link to precise statement about terms of distribution

External resources

- 1. Annotation unambiguously model constituent to data
- 2. Link to external information as a triplet{collection, identifier, qualifier}
- 3. Annotation written as a Uniform Resource Identifier
- 4. Identifier considered within framework of the collection.
- Collection namespace and record identifier in one URI
- Qualifiers to refine the link between model constituent and external knowledge
- 7. Standard set of valid URIs agreed upon by community

http://co.mbine.org/standards/miriam

Minimal Information Required In the Annotation of Models

Reference correspondence

- 1. In a public, standardized, machine-readable format
- 2. Comply with the standard in which it is encoded
- 3. Clearly related to a single reference description
- 4. Reflect biological processes
- 5. Instantiable in a simulation all numbers provided
- 6. Able to reproduce results

Attribution

- 1. Has to be named
- 2. Citation must be provided
- 3. Model creators details
- 4. Date and time of creation and last modification
- 5. Link to precise statement about terms of distribution

External resources

- 1. Annotation unambiguously model constituent to data
- 2. Link to external information as a triplet {collection, identifier, qualifier}
- 3. Annotation written as a Uniform Resource Identifier
- 4. Identifier considered within framework of the collection.
- Collection namespace and record identifier in one URI
- Qualifiers to refine the link between model constituent and external knowledge
- Standard set of valid URIs agreed upon by community

http://co.mbine.org/standards/miriam

identifiers (aka new MIRIAM URIs)

Camille Laibe


Nick Juty

Sarala Wimalaratne

identifiers (aka new MIRIAM URIs)

http://identifiers.org/pubmed/22140103

http://identifiers.org/ec-code/1.1.1.1

http://identifiers.org/go/GO:0000186

MIRIAM Registry

Examples: ontology, enzyme, Japan, EMBL

Browse

Download

Web services

Documentation

Contribute

Identifiers.ora

Persistent identification for life science data

The MIRIAM Registry provides a set of online services for the generation of unique and perennial identifiers, in the form of URIs. It provides the core data which is used by the Identifiers.org resolver.

The core of the Registry is a catalogue of data collections (corresponding to controlled vocabularies or databases), their URIs and the corresponding physical URLs or resources. Access to this data is made available via exports (XML) and Web Services (SOAP).

All provided data and services are free for use by all.

Access data

Browse by data collection name Browse by types of data (categories & tags) Web services

Download complete dataset (XML)

Identifiers.org

Contribute

Contact the team and community Edit existing data collection Request new data collection(s) Provide feedback

Learn & discover

Getting started with the Registry Frequently Asked Questions Publications, presentations, posters,

Review of URI based identification

systems

Documentation

About the Registry

Latest publication

Identifiers.org and MIRIAM Registry: community resources to provide persistent identification.

Juty N., Le Novère N., Laibe C.

Nucleic Acids Research, 2012; 40 (Database issue): D.

[Europe PMC] [Oxford Journals]

http://www.ebi.ac.uk/miriam/ http://identifiers.org/registry

Registry statistics

Published

Data collections: 502 (508) Resources: 610 (649)

Last update: Oct 29, 2013

Under curation

Data collections: 411 Resources: 417

Last update: Oct 28, 2013

Dataset descriptor and RDF representations

August 2013

The Registry now provides a dataset descriptor and RDF representations of the whole Registry and individual data collections (in RDF/XML and Turtle formats). Read more...

Primary resources

July 2013

Identifiers.org and its Registry now highlight the "primary resource" for data collections. Read more...

Presentation at BioHackathon 2013

June 2013

Presentation "Identifiers.org: practical integration tool for heterogeneous datasets" at the BioHackathon 2013 Symposium in Tokyo, Japan (slides, PDF)

SBML and **MIRIAM** cross-references

```
<species id="ca calmodulin" metaid="cacam">
  <annotation>
    <rdf:RDF
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">
      <rdf:Description rdf:about="#cacam">
        <br/><bqbiol:hadPart>
          <rdf:Bag>
            <rdf:li rdf:resource="http://identifiers.org/uniprot/62158"/>
            <rdf:li rdf:resource="http://identifiers.org/chebi/CHEBI:29108"/>
          </rdf:Bag>
        </bqbiol:hasPart>
      </rdf:Description>
    </rdf:RDF>
  </annotation>
</species>
```

Data collection: Enzyme Nomenclature

Overview

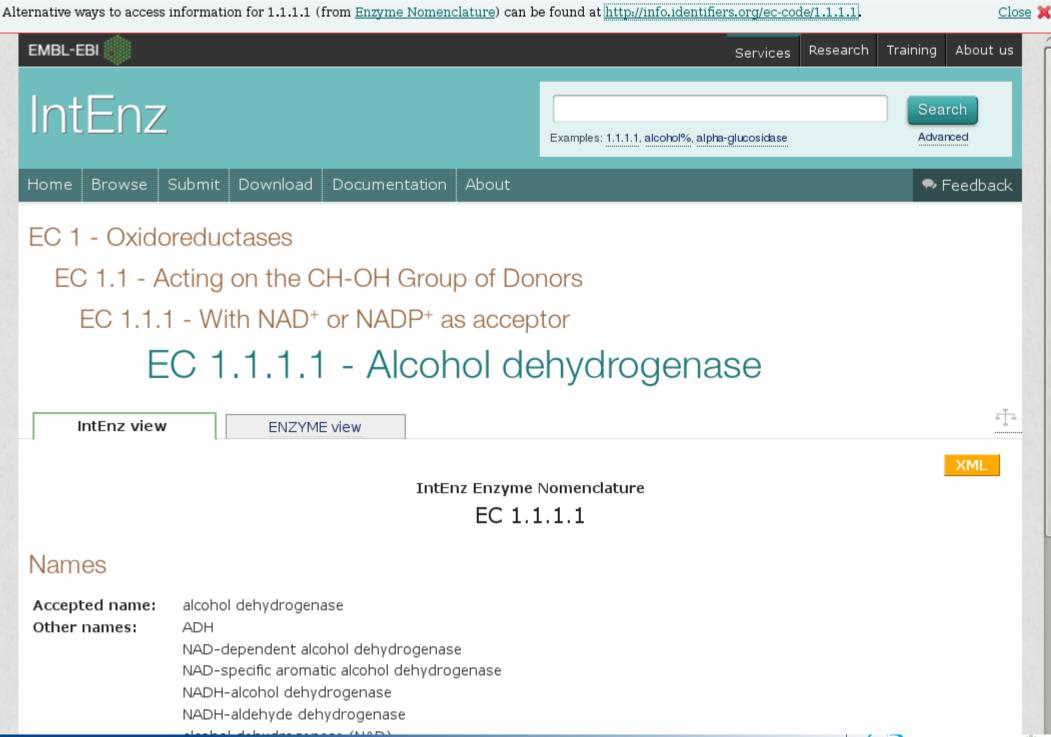
Miscellaneous

★ RDF/XML Turtle

General information

Recommended name	Enzyme Nomenclature protein en:	yme • classification • taxonomy			
	Enzyme Classification				
Alternative name(s)	EC code				
	EC				
Description	The Enzyme Classification contains the recommendations of the No	menclature Committee of the International Union			
Description	of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalysed reactions.				
Identifier pattern	^\d+\\\ \d+\.\d+\.\d+\.\d+\.\d+\.\d+\.\d+\.\n)?\d+\$				
Registry identifier	MIR:0000004				

Identification schemes


Namespace	ec-code
Root URL	http://identifiers.org/ec-code/
Root URN	urn:miriam:ec-code:

Available as HTML or RDF, through browsers or Web Services

Other root URI(s) :

Physical locations (resources)

		Description	ExploreEnz at Trinity College	
	Resource	Access URL	http://www.enzyme-database.org/query.php?ec= <u>\$id</u> [Example: <u>1.1.1.1</u>]	
	MIR:00100308	Institution	Trinity College, Dublin, Ireland	
		Website	http://www.enzyme-database.org/	
		Description	KEGG Ligand Database for Enzyme Nomenclature	
	Resource	Access URL	http://www.genome.jp/dbget-bin/www_bget?ec:\$id [Example: 1.1.1.1]	
	MIR:00100002	Institution	Kyoto University Bioinformatics Center, Japan	
		Website	http://www.genome.jp/dbget-bin/www_bfind?enzyme	
		Description	Enzyme nomenclature database, ExPASy (Expert Protein Analysis System)	
	Resource	Access URL	http://enzyme.expasy.org/EC/\$id [Example: 1.1.1.1]	
	MIR:00100003	Institution	Swiss Institute of Bioinformatics, Switzerland	
		Website	http://enzyme.expasy.org/	
		Description	IntEnZ (Integrated relational Enzyme database)	
	Resource	Access URL	http://www.ebi.ac.uk/intenz/querv?cmd=SearchEC&ec=\$id [Example: 1,1.1.1]	•••

http://identifiers.org/ec-code/1.1.1.1

Identifiers.org URI for identifying 1.1.1.1 from Enzyme Nomenclature.

Information about 1.1.1.1 from Enzyme Nomenclature can be accessed from any of the following locations:

KEGG Ligand Database for Enzyme Nomenclature

Kyoto University Bioinformatics Center

<u>Iapan</u>

(Uptime: 100%)

IntEnZ (Integrated relational Enzyme database)

European Bioinformatics Institute

United Kingdom

(Uptime: 100%)

Enzyme nomenclature database, ExPASy (Expert Protein Analysis System)

Swiss Institute of Bioinformatics

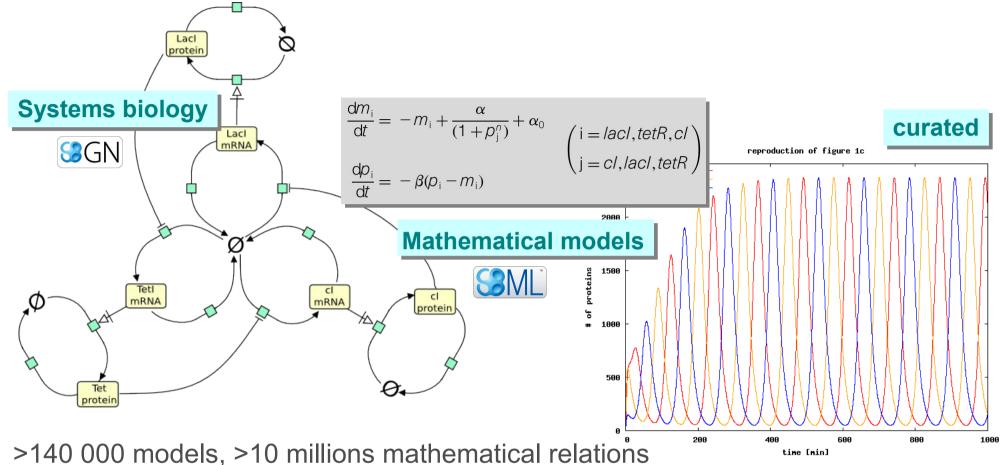
Switzerland

(Uptime: 99%)

ExploreEnz at Trinity College

Trinity College, Dublin

<u>Ireland</u>


(Uptime: 100%)

Powered by MIRIAM Registry

Information also available in: RDF/XML

BioModels Database – http://www.ebi.ac.uk/biomodels

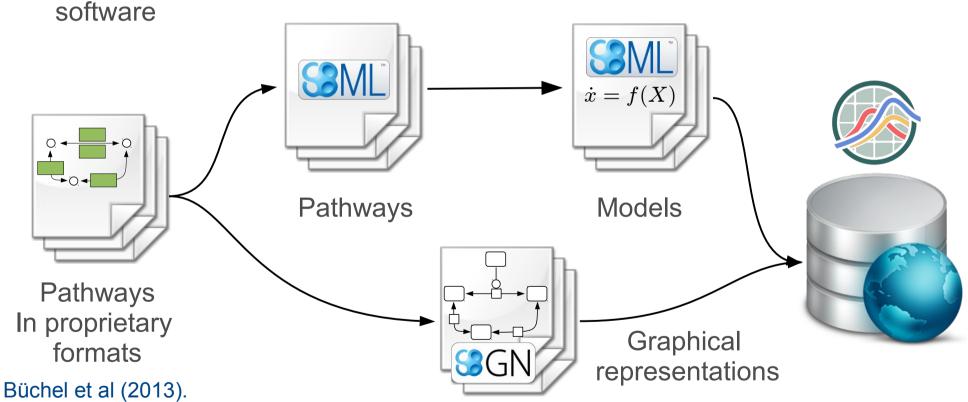
>140 000 models, >10 millions mathematical relations

Deposition advised by >300 journals, database ~1000 citations

1 million page requests per year

Submission in SBML and CellML; Export in SBML, CellML, XPP, SciLab, BioPAX, Octave, PDF, VCML, SBGN

Live demo ...


Was it worth it?

What interoperability can do: the Path2Models project

- To re-use existing pathway data to generate biochemically based models
- To provide a starting point to model as many biochemical pathways as possible in as many species as possible

To provide models in a standard format readable by most systems biology

Path2Models: large-scale generation of computational models from biochemical pathway maps.

BMC Systems Biology (2013) 7: 116

Mihai Glont
Henning Hermjakob
Sarah Keating
Camille Laibe
Nicolas Rodriguez
Julio Saez-Rodriguez
Martijn van Iersel
Michael Schubert

Andreas Dräger
Roland Keller
Matthias Rall
Clemens Wrzodek
Andreas Zell
Finja Bünel
Florian Mittag

Douglas Kell Pedro Mendes Neil Swainston

INSTITUTO GULBENKIAN DE CIÊNCI*A*

Claudine Chaouyia

Heidelberg Institute for Theoretical Studies

Martin Golebiewski Wolfgang Müller

Three parallel workflows

Logical models of individual signalling pathways

Three parallel workflows

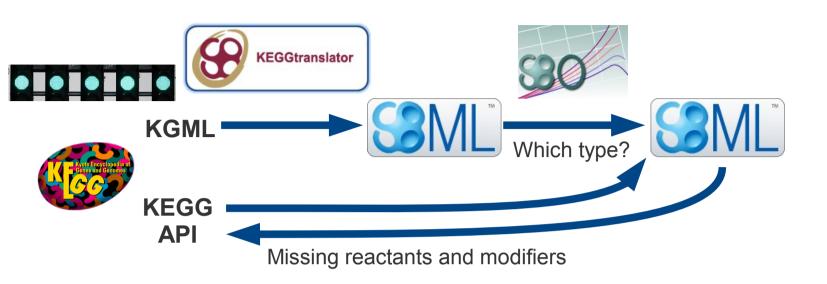
Logical models of individual signalling pathways

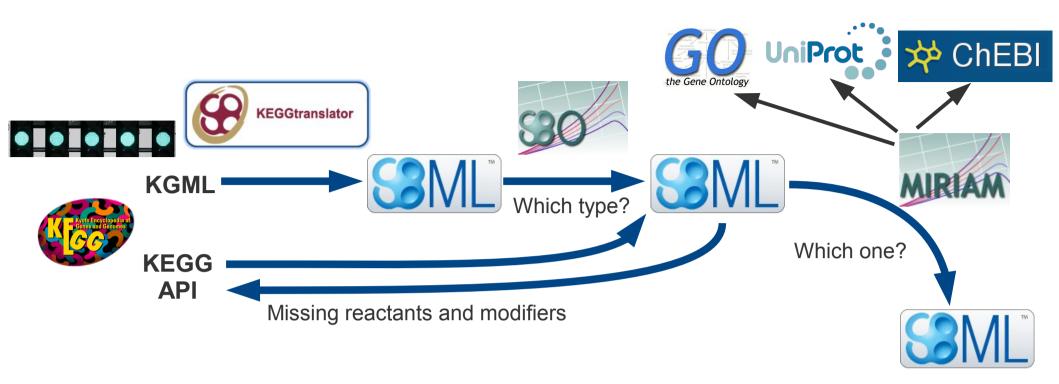
Chemical kinetics models of individual metabolic pathways

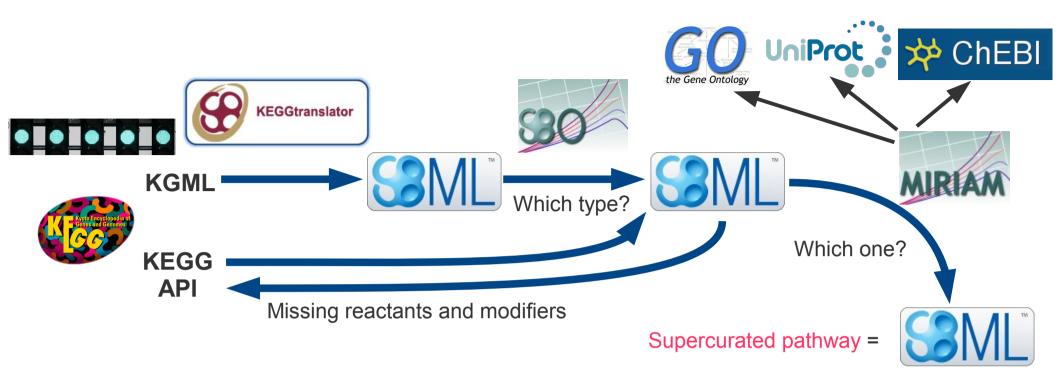
Three parallel workflows

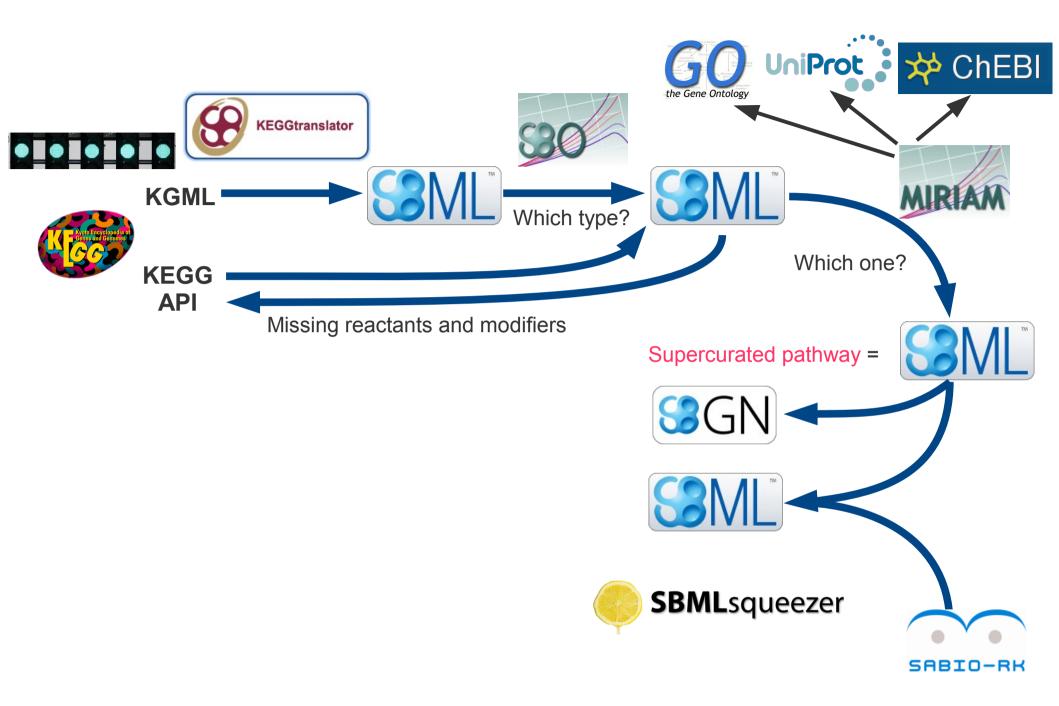
Logical models of individual signalling pathways

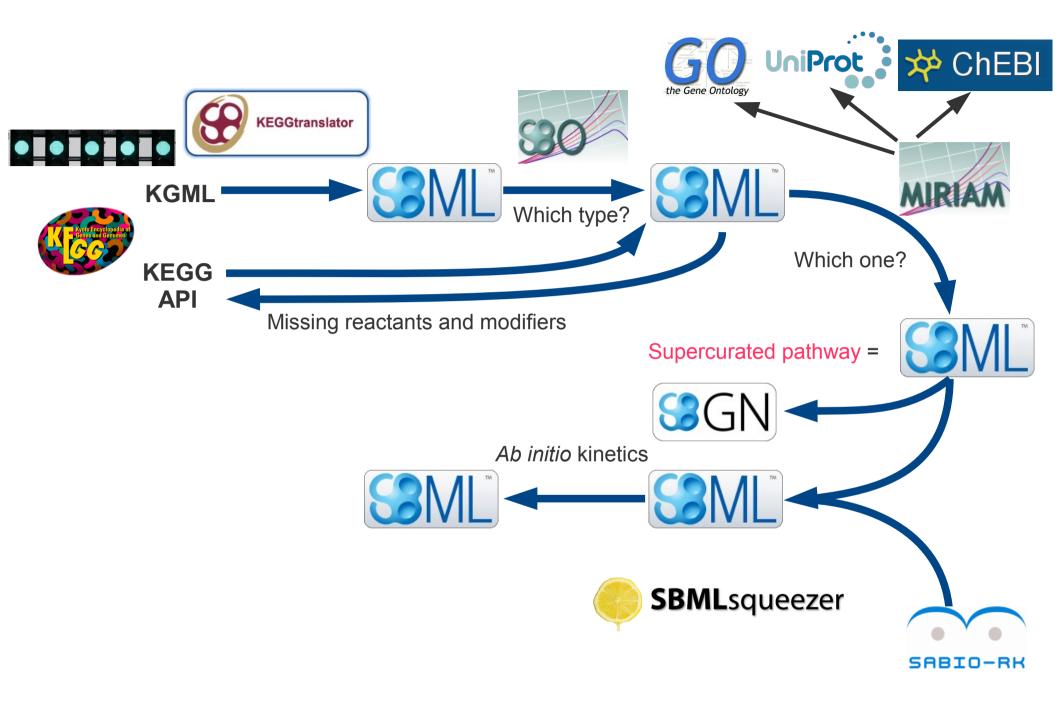
Chemical kinetics models of individual metabolic pathways

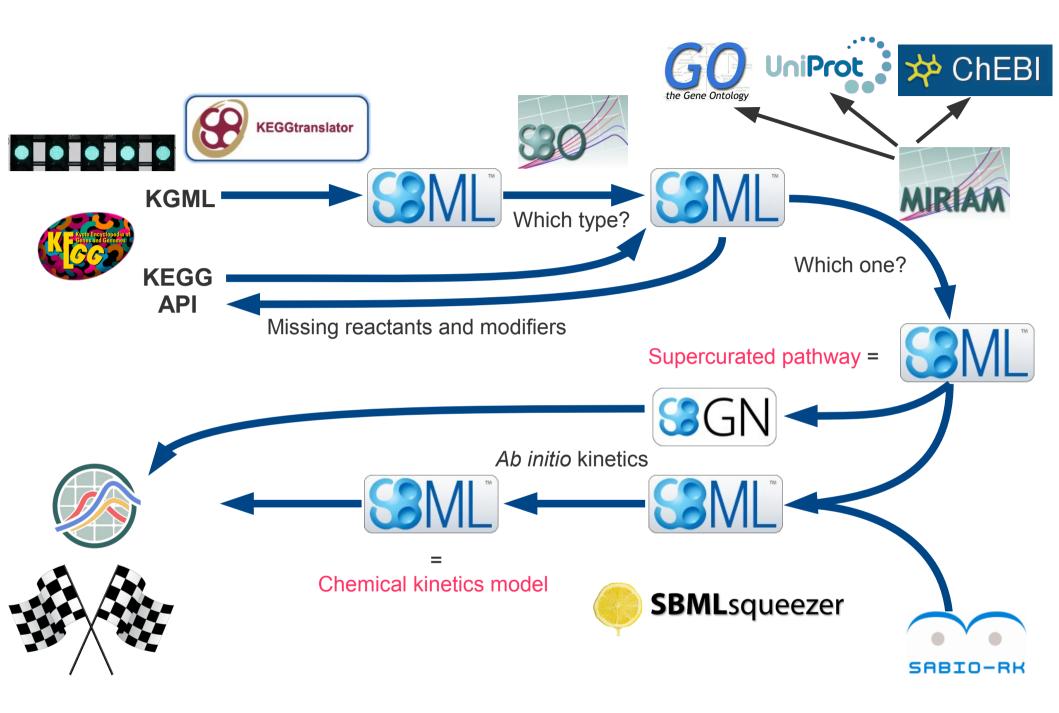

Flux Balance Analysis of whole genome reconstructions











I am grateful and indebted to

All the collaborators listed during the presentation

Editors of COMBINE standards

Developers of BioModels Database

Developers of related ontologies and software

Organisers of meetings and efforts to support our standards

The community of Computational Systems Biology

You for staying awake

National Human Genome Research Institute

