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The brain as an electrical circuit?
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The brain as an electrical circuit?
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Excitatory post-synaptic potential
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Bidirectional synaptic plasticity

I

e.g. high frequency stimulation
e.g. low frequency stimulation
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Calmodulin, the memory switch
NMDAR AMPAR
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Structure of Calmodulin
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State transitions of calmodulin
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State transitions of calmodulin
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Calmodulin is ultra-sensitive
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Origins of cooperativity: Bohr
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Bohr C (1903) Theoretische behandlung der quantitativen verhaltnisse
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Origins of cooperativity: Hill
iv PROCEEDINGS OF THE PHYSIOLOGICAL

Hill (1910) J Physiol 40: iv-vii.

The possible effects of the aggregation of the molecules
of hemoglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hmmoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb=16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves & relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant resulta.

Qur work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hzmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hemoglobin in solutions of
various salts, and with hamoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb +0, .T_"' Hbo:n

Hb, + n0, == Hb, Oy,
where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

K'a® K
y—lm+(lw—l)m ............... (A),
where A ¢/, is as Hb,, (100 — 1)*/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20,2 Hb,0, and K that of Hb + O, == HbO,:
K has the value ‘125 (Barcroft and Roberts),
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Origins of cooperativity: Hill
iv PROCEEDINGS OF THE PHYSIOLOGICAL

Hill (1910) J Physiol 40: iv-vii.
The possible effects of the aggregation of the molecules
of h@moglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidenc Now 1t 18 unlikely that in eit,her of t,hege cases t,here 18 O[]ly
seemed to us to prove conclusively that dialysed hamoglobin

simply of molecules containing each one atom of iron. Them« Hb and Hb,: and as the calculation of the constants in these
weight is therefore Hb = 16,660. These experiments have m : - : : :
Pubﬁishad get, but T shall assume the ol equations is very tedious I decided to try whether the equation

Other observers (Reid, Roaf, Hiifner and Gansser) worl
different solutions have obtained divergent results. The meth Ka» B
by all of them was the direct estimation of the osmotic press ; y 1001+K n """""'”“'"""'"“( }
means of 2 membrane permeable to salts, but not to heemoglobir
method involves a relatively large error, because the quantity m
is small. It is doubtful however whether this can exzplain t
cordant results.

Qur work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hzmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with h@moglobin in solutions of
various salts, and with hemoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb +0, == HbO,,
Hb, + 70, == Hb, 04y,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

would satisfy the observations.

Kz
y=Mrgst (100 1)1+Ka= ............... (A),

where 1%/, is as Hb,, (100 — 1)*/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20,5 Hb,0, and K that of Hb + 0, == HbO,:
K has the value 125 (Barcroft and Robaerts).
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Origins of cooperativity: Hill
iv PROCEEDINGS OF THE PHYSIOLOGICAL

Hill (1910) J Physiol 40: iv-vii.
The possible effects of the aggregation of the molecules
of h@moglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidenc Now 1t 18 unlikely that in eit,her of t,hege cases t,here 18 O[]ly
seemed to us to prove conclusively that dialysed hamoglobin

simply of molecules containing each one atom of iron. Them« Hb and Hb,: and as the calculation of the constants in these
weight is therefore Hb = 16,660. These experiments have m : - : : :
Pubﬁishad get, but T shall assume the ol equations is very tedious I decided to try whether the equation

Other observers (Reid, Roaf, Hiifner and Gansser) worl
different solutions have obtained divergent results. The meth Ka» B
by all of them was the direct estimation of the osmotic press ; y 1001+K n """""'”“'"""'"“( }
means of 2 membrane permeable to salts, but not to heemoglobir
method involves a relatively large error, because the quantity m
is small. It is doubtful however whether this can exzplain t
cordant results.

Qur work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hzmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with h@moglobin in solutions of
various salts, and with hemoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb +0, == HbO,,
Hb, + 70, == Hb, 04y,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

would satisfy the observations.

Kz
y=Mrgst (100 1)1+Ka= ............... (A),

where 1%/, is as Hb,, (100 — 1)*/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20,5 Hb,0, and K that of Hb + 0, == HbO,:
K has the value 125 (Barcroft and Robaerts).
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Hill equation can be linearised

n n
}7 — B [X] Hill equation
1+ K" X|n
Y
log T - nlog K 4+ nloglx| Hill plot A

Effect increases in function of

the signal to the power of n: Slope =n —

n>1, ultra-sensitive

n<1, infra-sensitive - >
BUT cooperativity of ligand, _log K

not of binding sites: unique affinity
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM. -

V1. THE OXYGEN DISSOCIATION CURVE OF HEMOGLO} Loa

By G. 8. ADAIR. _l;}_

Wit THE CoLraBoraTiON OF A, V. Bock ann H. Fieup, .

(From the Medical Laboratories of the Massarhuseits General Hos
Boston.)

~Nt

{Reeceived for publieation, January 7, 1925.) 0

This work gives the oxygen dissociation curves of so

previously investigated in regard to their acid-bindinﬁ anc
Adair (1925) J Biol Chem 63: 529

1 Ki[z] + 2K>2[z]? + 3K3[z]3 + 4K4[z]*

Y= n 1+ Kilz] + Kz[z]? + K3[z]3 + Ka[x]? | Loa oc

0.0 05 ‘0
Fia. 2. Test of formula (6). Curve drawn from 6 experimental points
from Table IV,
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM.
VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN.* 3r B

By G. 5. ADAIR. A

Wit tHE CoLrasoraTion or A, V. Boce anp H. FieLn, Jr.

(From the Medical Laborateries of the Massachusetts General Hospital, 2
Boston.)

{Reeceived for publieation, January 7, 1925.)

This work gives the oxygen dissociation eurves of solutions
previously investigated in regard to their acid-binding and base-

Adair (1925) J Biol Chem 63: 529

10g [Y/(1-Y)]
o

1 Ki|x] —|—2K2[x]2—|—3K3[:C]3—|—4K4[£C]4 -1+ 4

V= n 1+ Kiz] + K>[z]2 + K3[x]3 + Ka[x]4

Imai (1973) Biochemistry 12: 798-808
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Adair-Klotz model applied to Calmodulin

Klotz (1946) The Application of the Law of Mass
Action to Binding by Proteins. Interactions with
Calcium. Arch Biochem, 9:109-117.

1 K1[Ca] 4+ 2K1K>[Ca)? + 3K1K>K3[Cal® + 4K1K>K3K4[Cal?

g1
nl+ Ki|Ca] + Kle[C’a]z + K1K2K3[CCL]3 + K1K2K3K4[Ca]4

z

=

£ 4-

o

5] i

o

2 3-

A Crouch and Klee (1980)
S Biochemistry, 19: 3692-3698
z 2

o

Q I

o |

s

el !

<

=
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Corresponding induced-fit model

K1 Binding to targets
Ca?*+CaM <« »> CaCaM < /4
2
+ Ca’* <> Ca,CaM K /
3 /7
+ Ca*t «———»> Ca_CaM K

4
+ Ca*t > Ca,CaM
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That does not work ...

dose-response normalised

12-05 0.0001 0.001
mol/l

[CaN]=[CamKII]=[CaM]/10 ; Kd_CaMKIl = 10xKd_CaN; Software COPASI
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We knew it would not work

= Calmodulin bound to 3 calcium ions can activate calcineurin
- Kincaid and Vaughan (1986). PNAS, 83: 1193-1197
= Calmodulin bound to 2 calcium ions can bind CaMKI|
- Shifman et al (2006). PNAS, 103: 13968-13973
=  Calmodulin affinity for calcium increases once bound to CaMKI|

- Shifman et al (2006) [but many previous reports on other targets:
e.qg. Burger et al (1983). JBC, 258: 14733-14739 ;
Olwin et (1984). /JBC 259: 10949-10955]

= Calcium activates both LTP and LTD through calmodulin
- Lisman (1989) PNAS, 86: 9574-9578

- High [Ca?*] (high freq) = CaMKIl ;
Low [Ca?*] (low freq) = Calcineurin
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Allostery and state selection

=) Monod, Wyman, Changeux (1965). On the nature
of allosteric transitions: a plausible model.
J Mol Biol, 12: 88-118




Modulation of thermal equilibria #Z induced-fit

AG A Transition State
/

“inactive”=T “active”=
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Modulation of thermal equilibria #Z induced-fit

AG A Transition State
/

“Inactive”=T “active”=R
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Concerted transitions #Z sequential model
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Monod-Wyman-Changeux model

A=
- »®
R ff
‘Lc
- »
K" ¢ $ KR
Lc?
7

K" ¢ $ KR
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Monod-Wyman-Changeux model
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Monod-Wyman-Changeux model
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“Hill” Plot for MWC model

log K,
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108/ [Y/(1-Y)]

L]

log K_
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Allosteric model of Calmodulin activation
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Allosteric model of Calmodulin activation
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Observation Vs. Prediction

closed (T)  open (R) 200007 i\

Observed by X-Ray and NMR
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Observation Vs. Prediction

closed (T)  open (R) 200007 i\

APO

liganded

Inferred from Zn binding

Stem Cell Institute, 25 October 2013




Warren et al. (2007).
J Mol Biol 374: 517-527
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closed (T)
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Procedure for parameter estimations

= Extension of the MWC model to support any number of sites, with
different affinities, per “protomer”; several protomers per subunit

Stefan M.l., Edelstein S.]., Le Novere N. BMC Systems Biology (2009), 3: 68 J

= Hypothesis: homogeneous distribution of transition energy = unique c.
Estimation of L and c based on Ca** binding in presence of targets:
none, skMLCK, PhK5, CaATPase (Peersen et al (1997) Prot Sci 6:
794-807). 100 000 parameter sets. 13 identical minima.
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Targets as allosteric effectors
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Peersen et al. (1997) Prot Sci, 6: 794-807
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Procedure for parameter estimations

= Extension of the MWC model to support any number of sites with
different affinities per “protomer” and several protomers per subunit

Stefan M.l., Edelstein S.]., Le Novere N. BMC Systems Biology (2009), 3: 68 J

= Hypothesis: homogeneous distribution of transition energy = unique c.
Estimation of L and c based on Ca** binding in presence of targets:
none, skMLCK, PhK5, CaATPase (Peersen et al (1997) Prot Sci 6:
794-807). 100 000 parameter sets. 13 identical minima.

= Estimation of affinities for the four sites using calcium dissociation
constants for Complete CaM (Bayley et al (1996) Prot Sci 5: 1215-1228),
N and C term Mutants (Shifman et al (2006) PNAS, 103: 13968-13973),
R-only - skMLCK (Peersen et al (1997) Prot Sci 6: 794-807). 25 millions
parameter sets.
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1 in 20000 active w/o Ca**

}

R _ -6
| 20670 K*,=8.32 10
K? =1.66 10
C=3.96 107 Kt =1.74 10°
; K? =1.45 10
Affinity of Ca** for “open
state” 250 times higher _ o
than for “closed state” 2 high, 2 low, as antmpated‘
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Full mechanistic thermodynamic model

LcaCsCcCp

320 reactions

g
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Comparison with experiments
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Binding to target increases the affinity for Ca
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Activity of unsaturated calmodulin

=  Fractional activity depends on the number of calcium ions
bound. E.qQ.:

Ry 1

T ~ L-c2

- R/T, = 1/20000 (1/L)
. R/T, =1/170

- RJ/T,=0.69 ===p half-saturation = equi-probability

. R/T, =80
- R,/T, = 10000
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But ... we're out of the physiological range?
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Targets stabilises Ca** binding: This is systems biology!

|| PrintPrint-#=tmage Save data Zoom out

dose-response
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Bidirectional synaptic plasticity
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Bidirectional synaptic plasticity

half saturation of calmodulin: CaN half activated
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activity (normalised)

Bidirectional synaptic plasticity
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Conclusions of part 1

Allosteric model of Calmodulin, with only two states for
the EF hands, binding calcium with different affinities, and
a concerted transition for all 4 EF hands. Parameters
estimated from experimental data-sets.

Model fits independent experimental datasets.
Affinity for calcium increases upon binding of the target.
CaM significantly “active” with less than 4 Ca** bound.

CaM bind its targets with less than 4 Ca** bounds.

The model displays an activation of the sole PP2B at low
concentration of calcium, while high concentrations
activate both PP2B and CaMKII.
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Wait a minute!
Signal transduction is not at equilibrium!

AMPAR post-synaptic potential: 5 ms
Calcium spike: 50 ms
Half saturation calmodulin (kon=1.5e6, koff=100): 5 ms

Relaxation between calmodulin states: 1 ms

autophosphorylation of CaMKIl (kon=6): 100 ms




Ca_buffS % Dynamic of calcium
slow Main input in the spine
Ca_buffM {channel)
a_bu moder. Ca_CNA
\ Y /
Ca Li L, Stefan MlI, Le novere N.
fast PLoS ONE (2012), 7(9): e43810
Ca_buffF pump Ca_CaM
(Michaelis-Menten)
ultrafast \J
@ by 2¢
Ca_buffU s | Crs Biomanae e
PR - ? Ca’* spikes at 0.98 Hz
2 o7} g 15}
'g 06 F E :
E 05 8
S iy 1r
&, 04 ﬁ i
E 03 F § |
5 o, 3 os w w u
g 01 E E [ ‘\
0 : : : : =S 0 > - L
01 0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 1.5 2 2.5

time (s) time (s)

Stem Cell Institute, 25 October 2013




Are those spikes realistic?

1.2 0.8

e 82 . ot
: el
S 06}
g 0.8 %
.% 0.6 &ii 04
€ a4 =
2 o2
0.2 / g
0 L T 0
0 0.1 0.2 0 0.05 0.1 0.15 0.2
time (s) time (s)
Relative uncertainty increases when
concentration decreases, both in
“Uﬂ% AF/F _ concentration and time, but no
35 nM —— spine . . .
5 ms — denarite  difference in dynamics.
i A Sabatini et al (2002)
Fluorescence Free calcium Neuron 33: 439-452.
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Validation of CaM kinetics

Ca®* released from CaM

simulation result
Black 2007 experimental points

+

0 250

time (ms)

Black DJ, Selfridge JE, Persechini A (2007). Biochemistry 46: 13415-13424.
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Calcium/calmodulin kinase Il

T306P inhibits CaM
binding

CaM binding site

T286P causes

Calmodulin trapping is constitutive activity

an apparent increase of
affinity of CaMKII for CaM
when T286 is phosphorylated

Stefan MI, Marshall D, Le Novere N. PLoS ONE (2012), 7(1): e29406J
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Calcium/calmodulin kinase Il

T306P inhibits CaM
binding

CaM binding site

T286P causes

Dodecamer; constitutive activity

Trans-phosphorylation of T286
by neighbouring subunits

Stefan MI, Marshall D, Le Novere N. PLoS ONE (2012), 7(1): e29406J
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Repeat 1000 times

P A given fraction of activated CaMKll monomers, Calculate the probabilities of having an active neighbour
on one specific side (indicated by the arrow) of the activated monomer of
+ interest (blue outline) (since only the asymmetrical situation is
considered), The possible positions of activated monomers are listed as

Randomly allocate activated monomers to CaMKIl hexamers. the following, with corresponding probabilities:

—= Record the number of hexamers containing different numbers of active

monomers (in red) as the following:

5

o Lo 18 ¢

B e 8
oP oy e ®

Repeat for every 1% increase
of CaMEKll active monomers

&

S

3

Calculate the average population for each number of
active mongmers per hexamer,

Multiply average populations of each number of active monomers
per hexamer by their corresponding probabilities of having an
active neighbour,

-—

a8

r,

The sum of these six numbers is a coefficient that can be used to
adjust CaMKIl autophosphorylation rate.

Y

Fit these 100 coefficients into a polynomial function of activated CaMEI
monamers, and embed this function in the model.

o

315




Validation of CaMKII kinetics

T286-phosphorylated-CaMKII (normalised)

simulation result
0 ! : : Bradshaw 2002 fit  +

0 10 20 30 40 50
time (s)

Bradshaw M, Kubota Y, Meyer T, Schulman H (2003). PNAS 100: 10512-10517.
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Validation of calcium-activation of CaN

1.1 }

1 E_ — T ‘
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= 03¢
& E ;
0.2

0 ' simulation result -

0.1 F Quintana 2005 fit - :

0.2 ., Quintana 2005 experimental points ——

0.1 1 10 100 1000
CaM initial [nM]
Quintana AR, Wang D, Forbes JE, Waxham MN (2005). BBRC 334: 674-680.
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Calmodulin
activation

CaM without targets. Low
frequencies do not activate
calmodulin (binding events
without conformational changes)




(a) Calmodulin
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(a) Calmodulin
[camﬁls[caM activation
1

200

100 frequencies do not activate

calmodulin (binding events
without conformational changes)

\ time (s)
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Temporal activation
(o) 1 _ activated calcineurin Of CaM K" and CaN
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Bidirectional
plasticity

(a) (b)

Assuming that catalytic rates of active
enzyme do no change, the quantity of
catalysed reaction events is proportional
to the integral of the activation curve
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(a) (b)
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30 ¢
20

10 F

10 L

Bidirectional
plasticity

Assuming that catalytic rates of active
enzyme do no change, the quantity of
catalysed reaction events is proportional
to the integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas™*catalytic activities

kinase aclivity < phosphalase activity ——
kinase activity » phosphatase activity —s—

1Om

01

1 1 10 100 200
Frequency (Hz)

/3
Stem Cell Institute, 25 October 2013 IBtE:rt:_rb



o
=2
.

calcineurin / CaMKIl activated area
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(b)

Bidirectional
plasticity

Assuming that catalytic rates of active
enzyme do no change, the quantity of
catalysed reaction events is proportional
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(@) 4r

calcineurin / CaMKll activated area

Effect of calcium duration and amount
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Effect of intrinsic system perturbations

wild type ——

45 L et Bl CaMKII not constitutively active
' No CaM trapping

s Never any positive plasticity

0.24

107 < Lower deactivation of CaMKI|
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0.01 —— A PP, . |
0.1 1 10 100 200 [CaM]=30 uM ——
PR3 o S = |
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> 5
(Pi, Otmakhov, Lemelin, De Koninck, Lisman. % i V| . . T -
Autonomous CaMKIl can promote either 2 NS UV VNN YR §
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depression, depending on the state of 3 F :
T305/T306 phosphorylation. oo TR A

J Neurosci. 2010 Jun 30;30(26):8704-9) o 1 1
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Summary of part 2

Allosteric stabilisation by targets triggers bistable CaM
response to calcium. Above a certain frequency, CaM
activation lasts longer than the initial signal.

Calcium signals do not choose between CaN and CaMKIll,
BOTH enzymes are activated at ALL frequencies. The
ratio of activity changes.

The frequency at which a synapse switches from a
depression to a potentiation mode is not an intrinsic
property of the synapse, but depends on the length and
amplitude of stimulations.

Modifications of topology (T286A), parameters (PP1
Inhibition) and initial conditions ([CaM]) affect both
response intensity and threshold frequency. Some
mutants can't have positive plasticity for any stimulation.
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Extended MWC model necessary for Calmodulin

L+ ey
14+ Tk

1 D ('ﬂ'ﬂ' Hj;éi(l + ﬂ'j)) + L[], (

Y = —
L L+ epi
L1+ o) + LT (5552 ) T+ o
1.) Any number of different . ai = [ligand]/K*
sites per protomer ilig
= Yk = [modulator]/K*
2) Several protomers can '
be carried by one subunit - ¢ =K /K
— R T
Based on Rubin and Changeux - ek =K k,mod /K k,mod

(1966) J Mol Biol, 21: 265-274

Stefan M.l., Edelstein S.]., Le Novere N. BMC Systems Biology (2009), 3: 68J
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Simplification of the model for finding L and ¢

= Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: c is unique

= Additional simplification to determine L: affinities are

identical
I + ve

all + a) + L( )Cﬂ(l + ca)?

_ 1+ y
Y= I + vye
(1+ a)*+ L|-
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Simplification of the model for finding L and c

= Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: ¢ is unique

= Additional simplification to determine L: affinities are

identical
I + ve

all + a)’ +L(

)Cﬂ(l + ca)?
A+

Y =

= Model constraints for the determination of c and L

- Ca binding in presence of target: none, skMLCK, PhKS5,
CaATPase (Peersen et al (1997) Prot Sci 6: 794-807).
Concentration at 50% saturation.

- 100 000 parameter sets plus least-square

- 13 identical minima. e for skMLCK is 10*°, which can be taken
as skMLCK binding only to R state.
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Relaxation of the model for finding individual Kd

= Determination of individual affinities:

2:‘ (af Hj (1+ rxj)) + L E,; (C Q; Hj (1+ Cr_:tj))
[La+a)+L]L 0O +ca

Y =0.25
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Relaxation of the model for finding individual Kd

= Determination of individual affinities:

2:‘ (af Hj (1+ rxj)) + L E,; (C Q; Hj (1+ Cr_:tj))
[La+a)+L]L 0O +ca

Y =0.25

= Model constraints for calcium dissociation constants

- Complete CaM (Bayley et al (1996) Prot Sci 5: 1215-1228)

- N and C term Mutants (Shifman et al (2006) PNAS, 103:
13968-13973)

- R-only - skMLCK (Peersen et al (1997) Prot Sci 6: 794-807)
- Concentration at 25% and 50% saturation.

- Systematic logarithmic sampling of the affinity space
(coarse-grained, 50 values per affinity, then refined 66 values
per affinity) = 25 millions parameter sets
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