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Models are becoming larger

A Whole-Cell Computational Model
Predicts Phenotype from Genotype

Jonathan R. Karr,# Jayodita C. Sanghvi,2# Derek N. Macklin,2 Miriam V. Gutschow,? Jared M. Jacobs,?
Benjamin Bolival, Jr.,> Nacyra Assad-Garcia,® John |. Glass,® and Markus W. Covert®*

"Graduate Program in Biophysics

2Department of Bioengineering

Stanford University, Stanford, CA 94305, USA

2J. Craig Venter Institute, Rockville, MD 20850, USA
4These authors contributed equally to this work
*Correspondence: moovert@stanford.edu
hitp://dx.doi.org/10.1016/].cell.2012.05.044

SUMMARY

Understanding how complex phenotypes arise from
individual molecules and their interactions is a
primary challenge in bioclogy that computational
approaches are poised to tackle. We report a
whole-cell computational model of the life cycle of
the human pathogen Mycoplasma genitalium that
includes all of its molecular components and their
interactions. An integrative approach to modeling
that combines diverse mathematics enabled the
simultaneous inclusion of fundamentally different
cellular processes and experimental measurements.
Our whole-cell model accounts for all annotated
gene functions and was validated against a broad
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First, until recently, not enough has been known about the indi-
vidual molecules and their interactions to completely model
any one organism. The advent of genomics and other high-
throughput measurement techniques has accelerated the char-
acterization of some organisms to the extent that comprehensive
modeling is now possible. For example, the mycoplasmas,
a genus of bacteria with relatively small genomes that includes
several pathogens, have recently been the subject of an exhaus-
tive experimental effort by a European consortium to determine
the transcriptome (Gilell et al., 2009), proteome (Kuhner et al.,
2009}, and metabolome (Yus et al., 2009) of these organisms.
The second limiting factor has been that no single computa-
tional method is sufficient to explain complex phenotypes in
terms of molecular components and their interactions. The first
approaches to modeling cellular physiology, based on ordinary

differential eguations (ODEs) (Atlas et al., 2008; Browning
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Large-scale community curated pathways

A consensus yeast metabolic network reconstruction
obtained from a community approach to systems
biology
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What is a “pathway”

Wikipedia (May 29th 2012): “In biochemistry, metabolic pathways
are series of chemical reactions occurring within a cell. In each
pathway, a principal chemical is modified by a series of chemical
reactions. Enzymes catalyze these reactions [...]"

Different types: Signalling pathways, metabolic networks, gene
regulatory networks ...

Many “pathway” databases:

Biocarta, Bio/MetaCyc, Ingenuity IPA, KEGG Pathway, Panther
pathways, Reactome, STKE, Wikipathways etc.

-»Detailed representation of reality based on observation



What is a “model”

Wikipedia (May 29th 2012): “A mathematical model is a
description of a system using mathematical concepts and
language.”

A model is made up of variables, functions and constraints

Different types: Dynamical models, logical models, rule-based
models, multi-agent models, statistical models ...

Different levels of granularity for the variables and precision for the
functions based on the questions being asked and the data
available

[ Abstract representation of reality based on needs



Aim of the project

®m  To provide a starting point to model as many biochemical
pathways as possible in as many species as possible

®m To provide pathways in a standard format readable by most
systems biology software

BML | S

O [ @)
)
Pathways Models
In SBML In SBML
Pathways
In proprietary
formats

Graphical representation in SBGN



GBML The Systems Biology Markup Language

<?xml version="1.0" encoding="UTF-B"?>
<sbml level="3" version="1"-

xmlns="http://www.sbml .org/sbml/level3/versionl/core">

<model>
<list0fFunctionDefinitions> ='-- --= </list0fFunctionDefinitions>
<list0fUnitDefinitions> ='-- --= </list0fUnitDefinitions>
<listO0fCompartments> </'-- --= </list0fCompartments>
variables <list0fSpecies> </-- --= </list0fSpecies>
<listOfParameters> =/'-- --= <flist0fParameters>
<lListOflnitialAssignments> = -- --= </listOflnitialAssignments>
<list0fRules> =/-- --= </1ist0fRules>
relationships <list0fConstraints> ='-- --= <f/1ist0fConstraints>
<list0fReactions> =/'-- --= </list0fReactions>
<list0fEvents> =/ -- --= </1ist0fEvents>
</model>
</sbml> ]
discrete events
arbitrary rules @ P’ p

(3;;::::::;+n>h4r1 Mc




A very simple SBML file (A — B)

<?txml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/level2/versiond" level="2" version="4">
<model name="Simple Model">
<listO0fCompartments>
<compartment id="cell" size="1" />
</list0fCompartments>
<list0fSpecies>
<species id="A" compartment="cell" initialConcentration="1"/>
<species id="B" compartment="cell" initialConcentration="1"/>
</1list0fSpecies>
<listOfParameters>
<parameter id="kl" value="0.1"/>
</list0OfParameters>
<list0fReactions>
<reaction id="rl" reversible="false">
<list0fReactants>
<speciesReference species="A"/>
</list0fReactants>
<list0fProducts>
<speciesReference species="B"/>
</1list0fProducts>
<kineticlLaw>
<math xmlns="http://www.w3.0rg/19598/Math/MathML">
<apply>
<times/>
<ci> cell </ci>
<ci> kl </ci>
<ci> A </ci>
</apply>
</math>
</kineticlLaw>
</reaction>
</list0fReactions>
</model>
</sbml>
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SBML Level 3 packages

Core package — public specification

Graph Layout — specification finalised

Graph rendering — specification finalised
Complex species — specification finalised
Groups - specification finalised

Model composition — specification finalised
Qualitative models — specification finalised
Flux balance constraint — specification finalised

Distributions and ranges - specification under
discussion

Spatial diffusion — specification under discussion
Enhanced metadata — specification under discussion
Arrays and sets — specification proposed

Dynamic structures - needed

m 777
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KEGG PATHWAY Database

Wiring diagrams of molecular interactions, reactions, and relations

KEGG2 PATHWAY BRITE MODULE DISEASE DRUG KO GENOME GENES LIGAND DBGET

Select prefix Enter keywords

map | Organism | | Go | Help

Pathway Maps

KEGG PATHWAY is a collection of manually drawn pathway maps (see new maps, change history, and last
updates) representing our knowledge on the molecular interaction and reaction networks for:

0. Global Map

1. Metabolism
Carbohydrate Energy Lipid Nucleotide Amino acid Other amino acid Glycan
Cofactor/vitamin  Terpencid/FK  Other secondary metabelite Xenobiotics Overview

2. Genetic Information Processing

3. Environmental Information Processing

4, Cellular Processes

5. Organismal Systems

6. Human Diseases

and also on the structure relationships (KEGG drug structure maps) in:

7. Drug Development

Pathway Mapping

KEGG PATHWAY mapping is the process to map molecular datasets, especially large-scale datasets in
genomics, transcriptomics, protecmics, and metabelomics, to the KEGG pathway maps for biclogical
interpretaion of higher-level systemic functions.

* Search Pathway - basic pathway mapping tool
o Search&Color Pathway - advanced pathway mapping tool
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Process Descriptions

® Directional

m Sequential
P1 ® Mechanistic
l J) ® Subjected to combinatorial explosion

=5 4{9 ® Process modelling

®m Biochemistry, Metabolic networks
m KEGG, Reactome
= SBML core




Activity-Flows

B Directional

RAF >
J; m Sequential
® Non-mechanistic
MEK
m | ogical modelling
J7 V ® Signalling pathways,
ERK gene regulatory networks

m KEGG, STKEs
= SBML qual



\Whole genome Workflow
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Flux balance analysis models

®m  For any connected metabolic network, one can build the stoichiometry matrix
S. m rows are metabolites, n columns are reactions. Sij is positive for products,
negative for substrates and null of metabolite not affected by the reaction.



Network and stoichiometric matrix
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Flux balance analysis models

For any connected metabolic network, one can build the stoichiometry matrix
S. m rows are metabolites, n columns are reactions. Sij is positive for products,
negative for substrates and null of metabolite not affected by the reaction.

V is the vector of velocities for all the reactions. Vi is constrained by lower and
upper bounds. No need to know the rate-laws.

The solutions of S.V = 0 (that is the set of chemical kinetics differential
equations) provide the steady-states of the system. In general n>>m, resulting
in a continuum of solutions

One can add objective functions to find out single optimal fluxes. E.g.
maximum growth rate, or maximum ATP production.

The system is solved by linear programming and the result is one vector of
velocities.

Va Va Va
A Constraints & Optimization &
1)Sv=0 maximize £
E} E,-{ u]:{ Df
ﬁ-

} V1

Allowable
solution space

Unconstrained
solution space




KEGGtranslator workflow
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Common modular rate-law
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Liebermeister, Uhlendorf, Klipp (2010) Modular rate laws for enzymatic reactions:
thermodynamics, elasticities and implementation. Bioinformatics 26: 1528-1534




Logical models in biology

®m Variables can take a discrete number of values, at least 2

®m  Transitions of output are expressed as logical combinations of
iInput values

®m  Simulations can be:
synchronous: all the nodes are updated at once

asynchronous: nodes are updated one after the other
mixed

®  One can add delays, inputs etc.

AB C
A B 111)1 |+—|1]1]0
110(1 }—{1]0]0
C

Influence diagram state diagram



22" BioModels Database release

20" May 2012 — first release of Path2ZModels data

112 898 common modular rate law models of
metabolic networks

27 306 qualitative models of signalling pathways

1 836 whole genome flux balance analysis models
239 models for human, 234 models for mouse
444 133 925 cross references



http://www.ebi.ac.uk/biomodels-main/path2models

BioModels Home Models Submit Support About BioModels Contact us Search

Path2Models

The pathZmodels project aims atthe large scale generation of quantitative models form pathways.

Browse models

Madels from this project are classified in 3 distinct categaries:

o metabolic models
* non-metabolic models
* whole genome metabolism models

One can also browse those models by arganism:

e |istof all organisms

Search models

The following search will anly look for models coming from the path2models project:

| search |
Help about the search

s The keywords AND or OR (in upper cases) are availahle to refine the search. By default, if more than one word is present in a query, OR
will be used to combine them.

* Double quotes (") can be used to force the search engine to match a whole expression containing several words.
e The colon character (7) must be escaped in the queries; one can use a backslash for this purpose (1)

Download all models

s Archives of all models (from the latest releasa)

Computational Systems Meurohiology Group, European Bininformatics Institute. ¢ Terms of Lse : Contact s : Developed by the BioModels.net Team




Glutamatergic synapse - Homo sapiens

Download SBML Additional file(s) Send feedback
Mode | information

Identifier: EMIDO0000001 7781 Project: path2models Submission: 17 May 2012 16:53:41 UTC
Format: SBML L3%1 (Layout, Qualitative Models) Categories: non-metabolic Last modified: 17 May 2012 16:59:41 UTC

Published: 19 May 2012 23:49:21 UTC

Annotations

occursin Homo sapiens Taxonomy
isDescribedBy regulation of synaptic transmission, glutamatergic Gene Ontology
isDescribedBy Glutamatergic synapse KEGG Pathway

Notes

Model of “Glutamatergic synapse” in “Homo sapiens (human)”

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system(CNS). Glutamate is packaged into synaptic
vesicles in the presynaptic terminal. Once released into the synaptic cleft, glutamate acts on postsynaptic ionotropic glutamate receptors
(iGluRs) to mediate fast excitatory synaptic transmission. Glutamate can also act on metabotropic glutamate receptors (mGIluRs) and exert
a variety of modulatory effects through their coupling to G proteins and the subsequent recruitment of second messenger systems.
Presynaptically localized Group [l and Group Il mGluR's are thought to represent the classical inhibitory autoreceptor mechanism that
suppresses excess glutamate release. After its action on these receptors, glutamate can be removed from the synaptic cleft by EAATs
located either on the presynaptic terminal, neighboring glial cells, or the postsynaptic neuron. In glia, glutamate is converted to glutamine,
which is then transported back to the presynaptic terminal and converted back to glutamate.

Graphical representation of 'Glutamaterdgic synapse (PMNG image hosted by the Kyoto Encyclopedia of Genes and Genomes, KEGG)

Qriginal pathway (from the KEGG PATHWAY Database)
This model has been generated by the pathZmodels project and is currently hosted on Biohodels Database and identified by: EMIDO0000001 7781,

To the extent possible under law, all copyright and related ar neighbouring rights to this encoded model have been dedicated to the public domain
worldwide. Please referto CCO Fublic Domain Dedication for more information.

Computational Systems Meurobiology Group, European Bioinformatics Institute. ¢ Terms of Use : Contactlls : Developed by the BioModels.net



Glutamatergic synapse - Homo sapiens

Download SBML Additional file(s) Send feedback

Mode | information

Identifier: EMIDO0000001 7781 Project: path2models Submission: 17 May 2012 16:53:41 UTC
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