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What are we going to talk about?

● Networks
● Analysing networks
● Reconstructing networks
● Biochemical networks
● Example of synthetic gene network
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Networks are everywhere
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Power grid
(detail, US)
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Internet
(portion, 2005)
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Web
(LOD, 2014)
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My Facebook
nodes = “friends”
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My twitter
mentions last week
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Protein
interactome

(yeast)
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Metabolic network
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Ecological network
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Analysing Networks
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Definitions

A B“node” or “vertex”
(plural: vertices)

Undirected “arc” or “edge”

Directed “arc” or “edge”

“network” or “graph”
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Node degree (k): number of ending edges

A

F

G

D

E B

C

node k

A 5

B 3

C 2

D 1

E 4

F 3

G 2
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random 
networks

(Erdős & Rényi)

Power law
networks

(Barabási & Albert)
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Actor 
collaboration

WWW Power grid

Examples of power-law networks
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Metabolic networks are power-law

Metabolism of 
different organisms
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Creation = random, Evolution = power-law

● Random creation at once:
Do v times: pick a node among n, pick another among the same
→ random network

● Evolution:
Repeat until n nodes: add a new node, link it to existing nodes with a 
probability depending on their existing degree
→ power-law network 
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Gene duplications and power-law interactomes
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Power law
networks

Random
networks

Hierarchical
networks
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Clustering (C): Proportion of possible cliques

A

F

G

D

E B

C

node k C

A 5 0.1

B 3 0.33

C 2 1

D 1 0

E 4 0

F 3 0

G 2 0
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Metabolic networks are hierarchical
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Shortest path (<SP>)

A

F

G

D

E B

C

node k C <SP>

A 5 0.1 1.167

B 3 0.33 1.5

C 2 1 1.67

D 1 0 2

E 4 0 1.67

F 3 0 1.67

G 2 0 1.67

shortest path between A and B

longest path between A and B
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Example of 
shortest path:
Erdős number

● 13 Field medals with En=2 

● 2 Nobel Physics with En=2, 14 with En=3 

● 4 Nobel Chemistry with En=3 

● 3 Nobel Medecine with En=3

● 1 Nobel Economy with En=2. 8 with En=3

● My Erdős number is 4

(Le Novère – Doyle – Boyd – Diaconis – Erdős
 Le Novère – Sauro – Nadim – Salamon - Erdős)
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Power law often = small-world

city

town

village

The perfect road systme
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Betweenness centrality (Cb)

A

F

G

D

E B

C

node k C <SP> Cb

A 5 0.1 1.167 0.567

B 3 0.33 1.5 0.111

C 2 1 1.67 0

D 1 0 2 0

E 4 0 1.67 0.044

F 3 0 1.67 0.1

G 2 0 1.67 0.044

betweenness = fraction of encountered shortest paths
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No need to be highly connected to be important

1

2 3

4

5

8

6

7 9

14

11

13

10 12

4

17

16

19 15

18

node 1 has low degree, low clustering
but largest betweenness
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Reconstructing networks
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Pre-existing knowledge



observations: yeast two hybrid system

Bait

Prey (coming from a library of many proteins)

Direct physical
interactions

All possible
interactions
(may never 

actually occur)




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B

observations: protein complex precipitation

C

D

A

Complex

tag

Purification

Identification

B

A

D

C

actual complex

not direct
interactions 
(A-C and B-C

wrongly predicted)




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network inference from data
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e.g. linear regression

1>r>0 Values of X are somewhat 
positively related to values of Y

-1>r>0 Values of X are somewhat
negatively related to values of Y

r ≈ 0 Values of X are not related 
to values of Y

Network inference (1): correlation
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Correlation does not tell nature or relation 
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Correlations might not be linear
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e.g. Mutual information

Fix the value of Y. Look at the 
corresponding values of X. Does 
the knowledge of Y reduces the 
uncertainty on the values of X?

If yes, then X and Y are linked

Network inference (2): information theory
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Bayesian inference

Which is the network that most probably 
generated this dataset.

Network inference (3): Bayes
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Ordinary Differential Equations

Equations best describing 
observed time courses

Network inference (4): temporal model
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Biochemical Networks
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Four types of (incompatible) networks
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   Statistical modelling

   Functional genomics

Interaction networks
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  Logical modelling

  Signalling pathways,  
gene regulatory networks

Activity Flows
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Logic models

 Variables can take a discrete number of values, at least 2

 Transitions of output are expressed as logical combinations of input values

 Simulations can be:
synchronous: all the nodes are updated at once
asynchronous: nodes are updated one after the other

 One can add delays, inputs etc. 

Influence diagram state diagram
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   Process modelling

 Biochemistry, Metabolic networks

 Generally within “closed world”

 Subjected to combinatorial explosion

Process Descriptions
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Quantitative models

 Variables are concentrations or amounts

 Reactions rates are calculated based on quantitative values

 Simulations deterministic or stochastic
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   Rule-based modelling

 Molecular Biology

 “Open world”

 Independent rules: no explosion

Entity Relationships
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time

open

T286P

Le Novère 2001, Stefan et al 2015

5 binary state variables

Open/Closed
T286 P/nonP
T306 P/nonP
CaM on low affinity
CaM on high affinity

260 states = 1 billions of billions

Multi-agent simulation of CaMKII

distant
correlations

molecular
memory

dimer
coil
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An example of synthetic
gene regulatory network
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The Repressilator -structure



UTC, 26 January 2015

 

The Repressilator -function

Fluorescence

deterministic
simulation

stochastic
simulations
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Demo?

Using COPASI (Complex Pathway Simulator, http://www.copasi.org)

Original article: 

Elowitz, Leibler. A synthetic oscillatory network of transcriptional regulators. 
Nature (2000) 403: 335-338

Repressilator model to import in COPASI:

http://identifiers.org/biomodels.db/BIOMD0000000012

http://www.copasi.org/
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Any question: n.lenovere@gmail.com

Further information:

Barabási & Zoltán. Network biology: understanding the 
cell’s functional organization. Nature Reviews Genetics 
(2004) 5: 101-113

Le Novère. Quantitative and logic modelling of molecular 
and gene networks. Nature Reviews Genetics (2015) 16: 
in the press

mailto:n.lenovere@gmail.com
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