

Introduction to

Artificial Neural Networks

and Deep Learning

Nicolas Gambardella

nicolas.gambardella@univ-lille.fr

Create an image for my presentation

Suggest a recipe based on a photo of my fridge

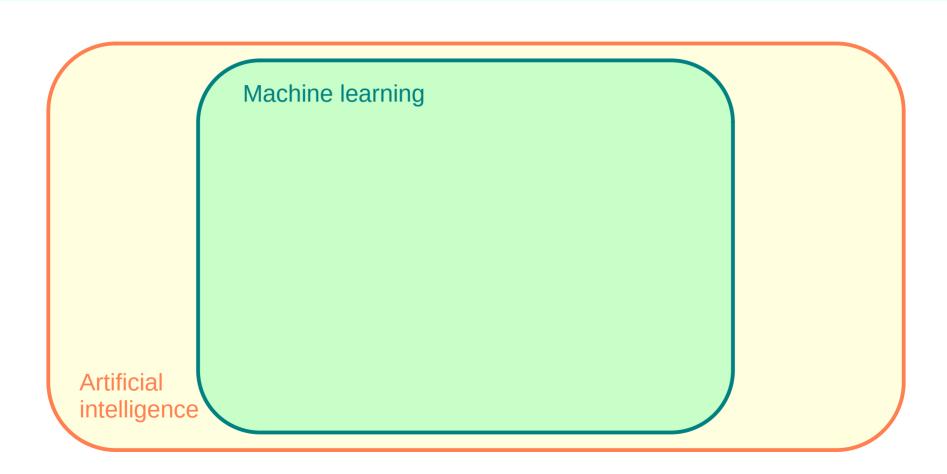
8

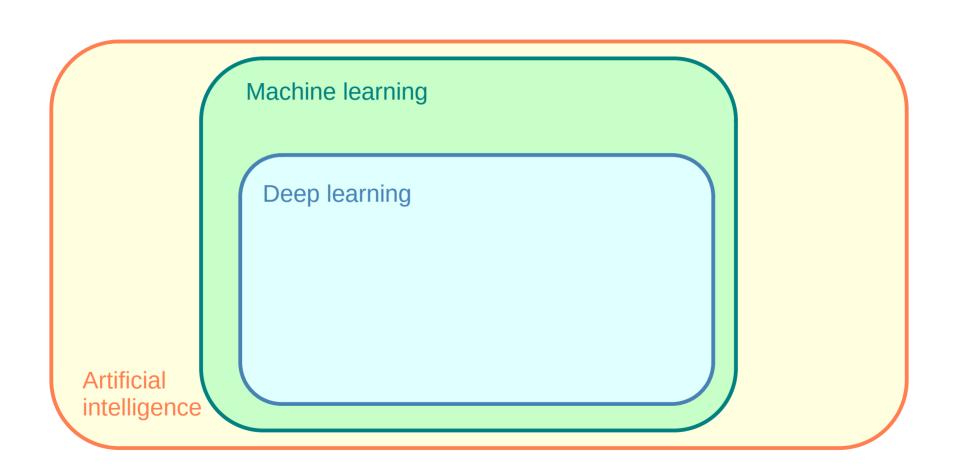
Create a workout plan

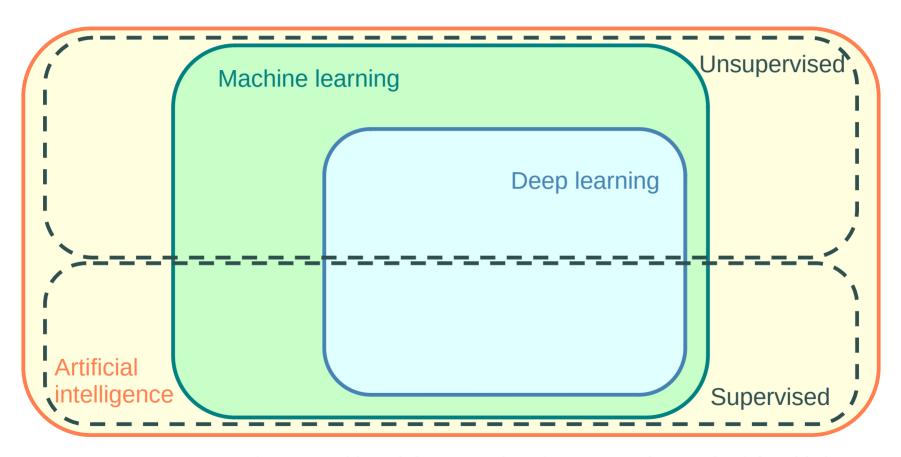
Write a report based on my data

Message ChatGPT

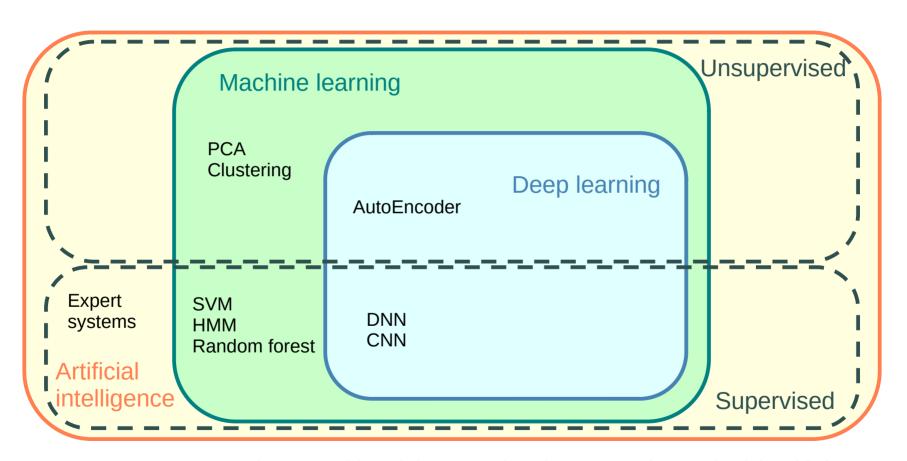
ChatGPT can make mistakes. Check important info.



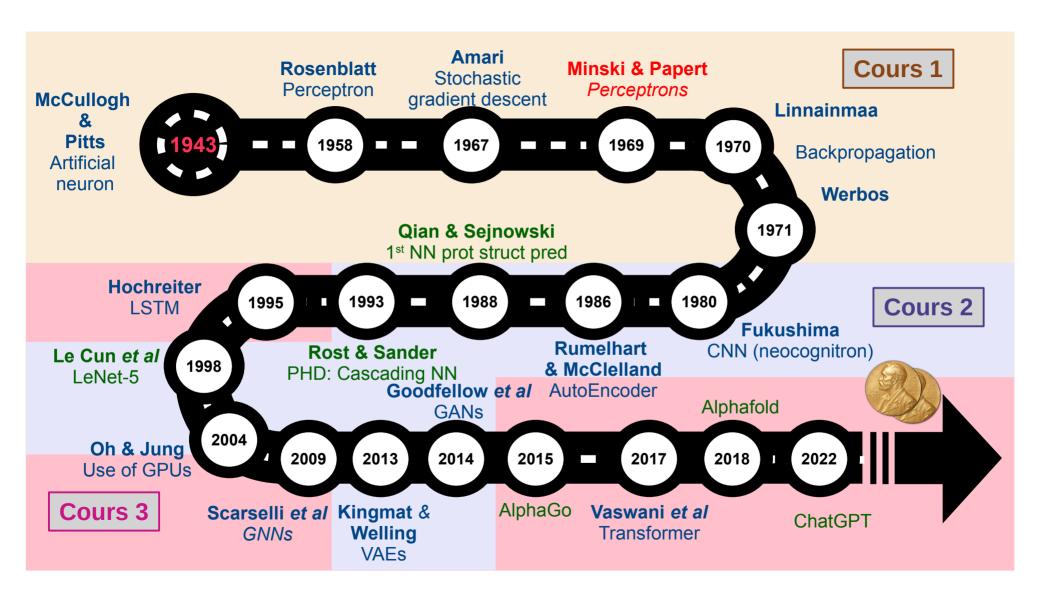




(NB: I consider reinforcement learning as part of supervised, but this is controversial)



(NB: I consider reinforcement learning as part of supervised, but this is controversial)

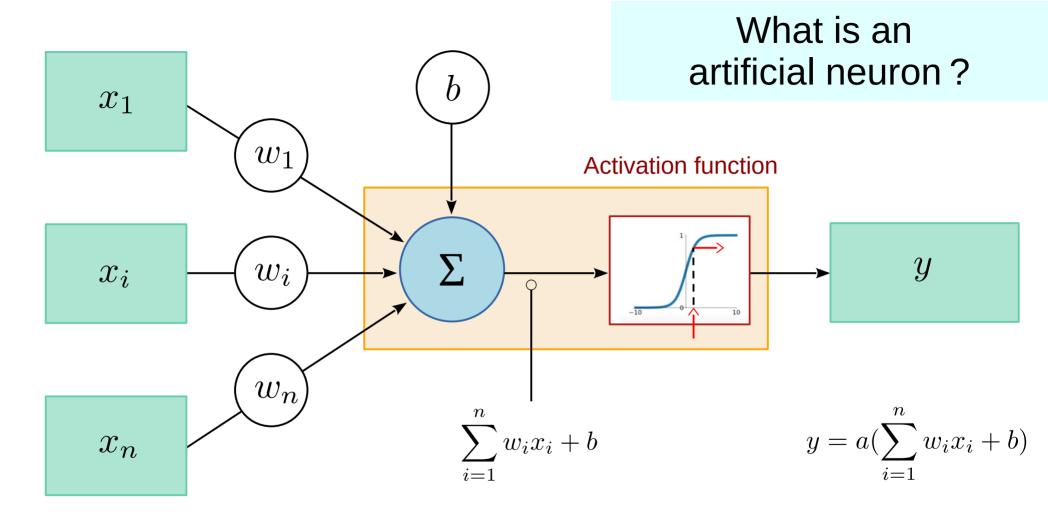


What is an ANN?

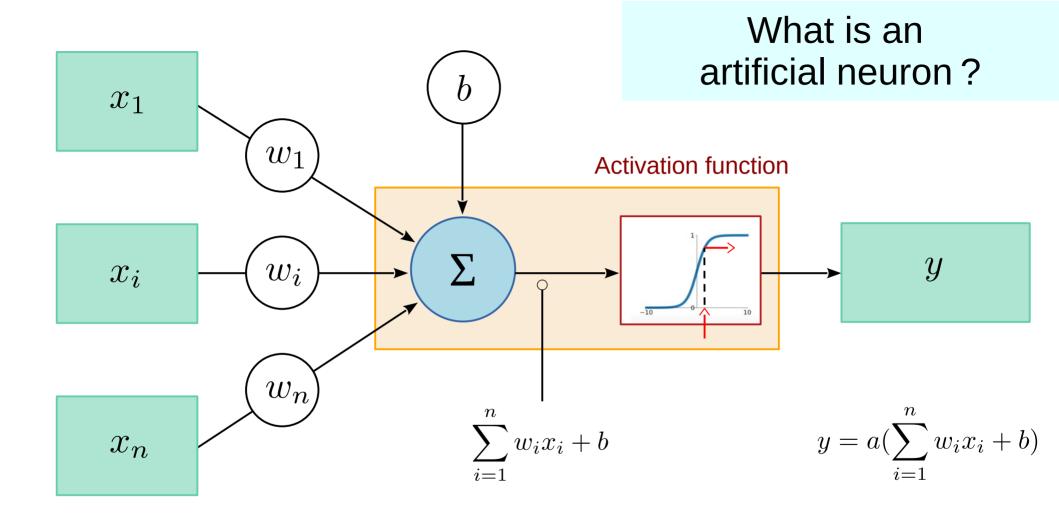
• A method to represent any possible equation

 A method to produce any possible curve in any number of dimensions

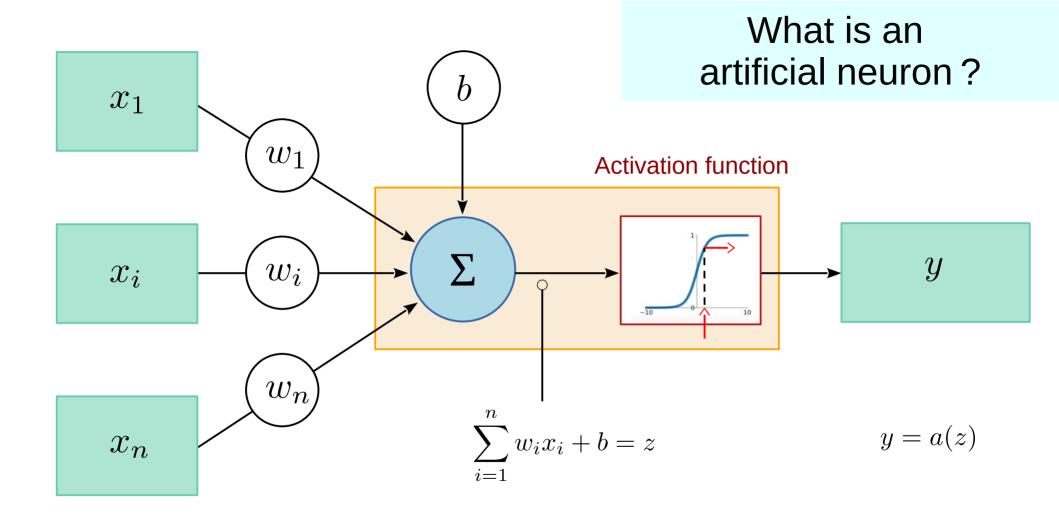
A tool that can learn to recognize spatio-temporal patterns



McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity. *Bull Math Biophys* 5:115-133 Rosenblatt (1958) The perceptron: a probabilistic model for information storage and organization in the brain. *Psychol Rev* 65(6):386-408 Widrow and Hoff (1960) Adaptive Switching circuits. *WESCON Convention record* part IV: 96-104

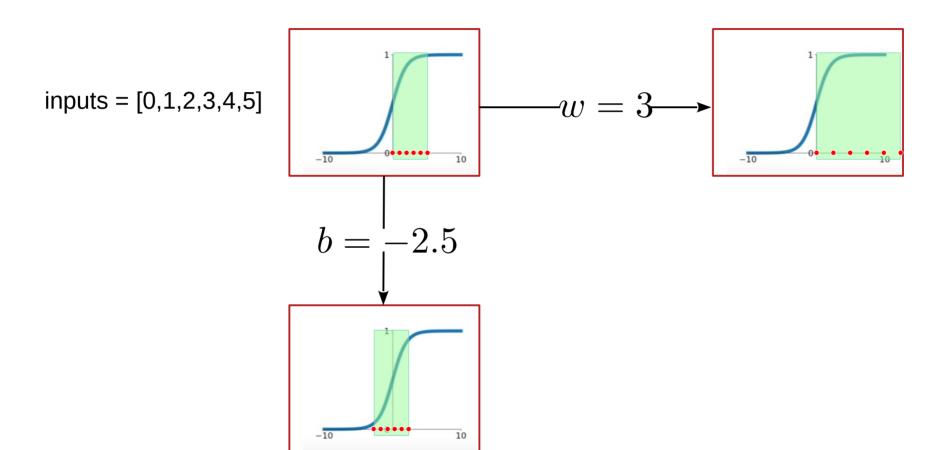


NB: when the activation function is logistic (sigmoid), this is actually a logistic regression...

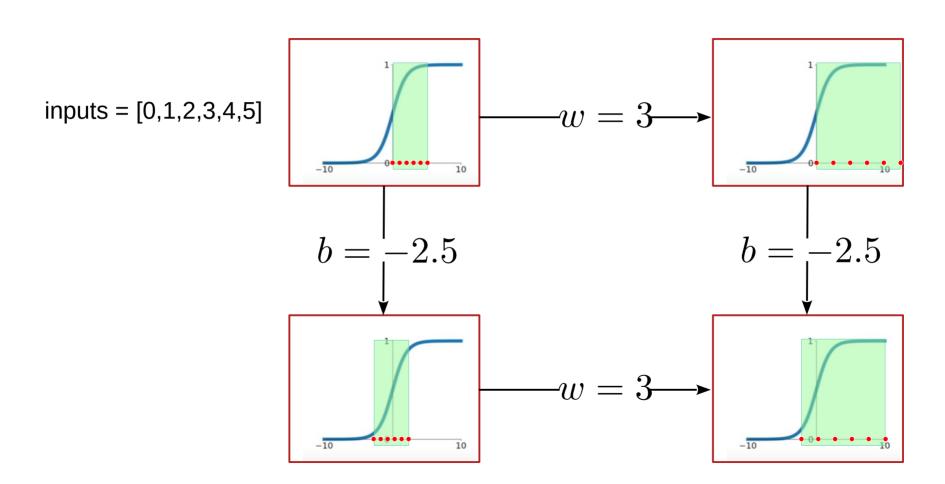


NB: when the activation function is logistic (sigmoid), this is actually a logistic regression...

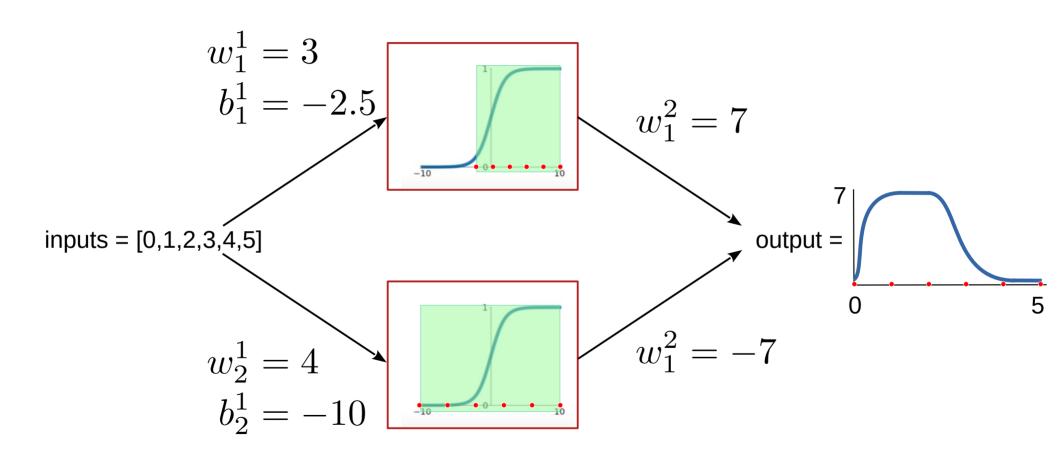
Impact of the weights and the bias



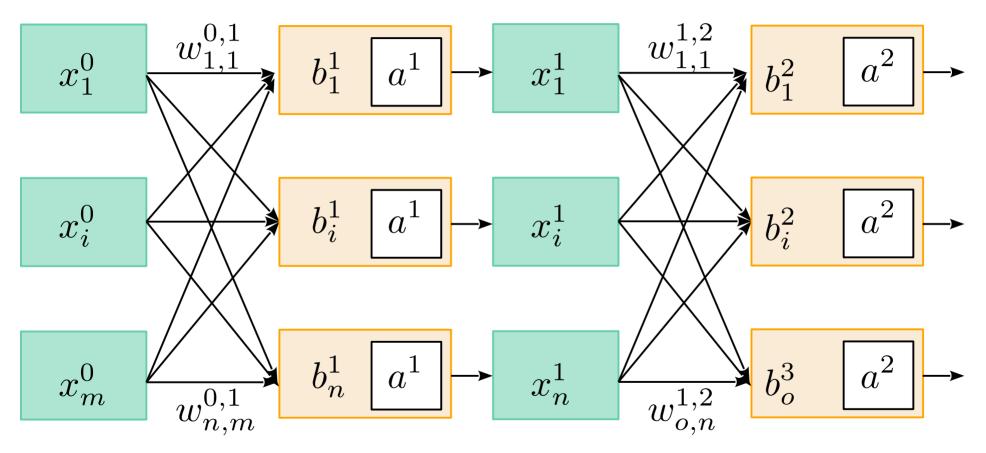
Impact of the weights and the bias



The magic happens with several neurons

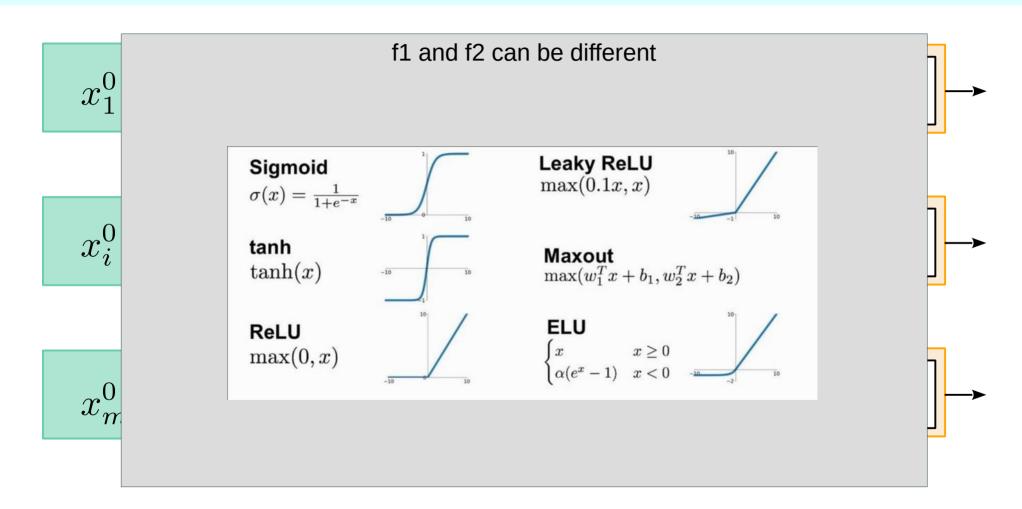


And then we add layers (the "Deep")

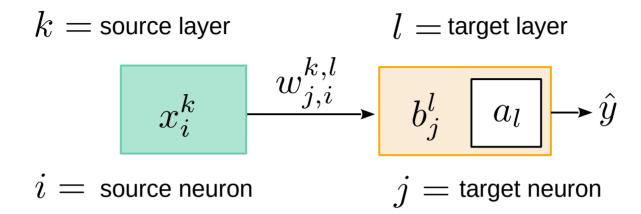


Rosenblatt (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386-408

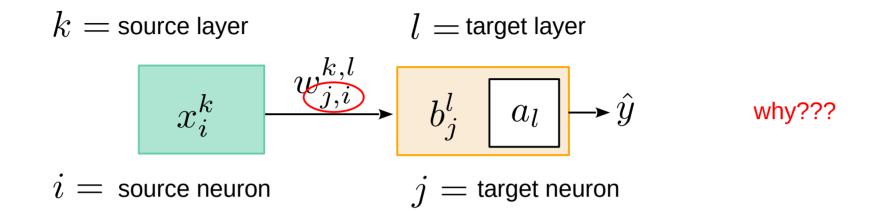
And then we add layers (the "Deep")



A word on standard notation



A word on standard notation



A word on standard notation

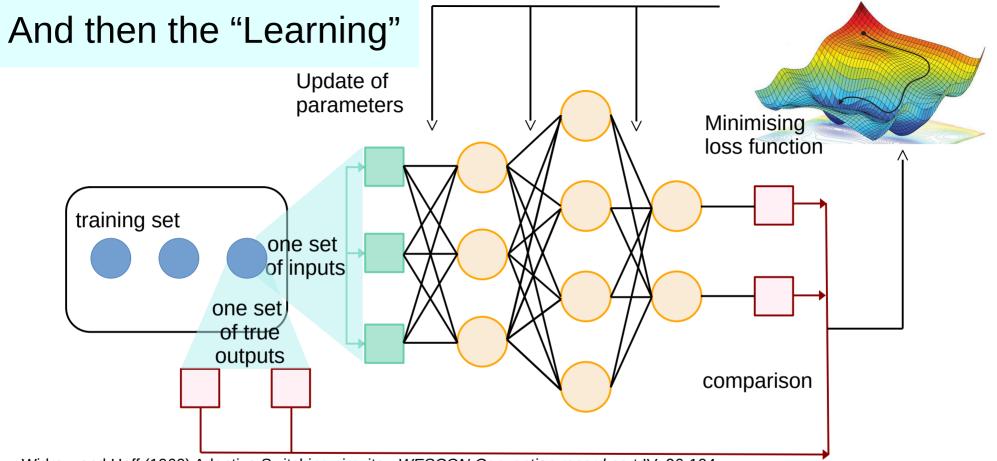
$$k = \text{source layer}$$
 $l = \text{target layer}$

$$x_i^k \qquad w_{j,i}^{k,l} \qquad b_j^l \qquad a_l \qquad \hat{y}$$

$$i = \text{source neuron} \qquad j = \text{target neuron}$$

$$\begin{pmatrix} \text{in}_1 \\ \text{in}_2 \\ \text{in}_3 \end{pmatrix} = \begin{pmatrix} w_{1,1} & w_{1,2} \\ w_{2,1} & w_{2,2} \\ w_{3,1} & w_{3,2} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 w_{1,1} + x_2 w_{1,2} \\ x_1 w_{2,1} + x_2 w_{4,2} \end{pmatrix}$$

Each portion of an ANN is stored as a multidimensional array: a tensor There are tensors of numbers and also tensors of functions connecting other tensors



Widrow and Hoff (1960) Adaptive Switching circuits. WESCON Convention record part IV: 96-104

S Amari (1967). A theory of adaptive pattern classifier. *IEEE Transactions*. EC (16): 279–307

S Linnainmaa (1970-1976). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors (Masters). University of Helsinki. p. 6–7.

P Werbos (1971-1982) Applications of advances in non-linear sensitivity analysis. *LNCIS* 38: 762-770

LeCun Y (1985) Une procédure d'apprentissage pour réseau à seuil asymétrique. *Proc Cognitiva* 85, 599-604.

Rumelhart, Hinton, and Williams (1986) Learning representations by back-propagating errors." *Nature* 323(6088): 533-536.

Parameters vs hyperparameters in DL

Parameters are <u>learned</u>: weights and biases Models can have a dozen to several hundreds billions parameters

Hyperparameters are set

<u>Architecture</u>: # layers, # neurons, type of activation functions and regularisations

Evaluation: Loss function, optimizer, learning rate, decay

Training duration: Epochs, batch size, early stop

Optimization, e.g., gradient descent

Objective: to minimize a loss function

(cost function in optimization)

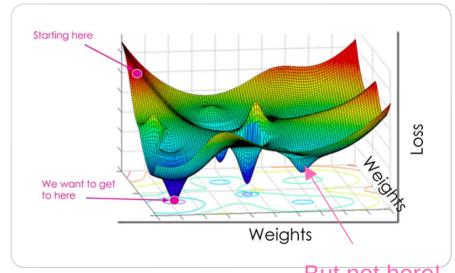
Regression: Number of samples
$$MSE = \frac{1}{S} \sum_{i=1}^{S} (y_{(i)} - \hat{y_{(i)}})^2$$
 True value Predicted value

MAE =
$$\frac{1}{S} \sum_{i=1}^{S} |y_{(i)} - \hat{y}_{(i)}|$$

Classification:

BCE =
$$-\frac{1}{S} \sum_{i=1}^{S} y_{(i)} \log(\hat{y}_{(i)}) + (1 - y_{(i)}) \log(1 - \hat{y}_{(i)})$$

CCE =
$$-\frac{1}{S} \sum_{i=1}^{S} \sum_{j=1}^{C} y_{(i)j} \log(y_{(i)j})$$

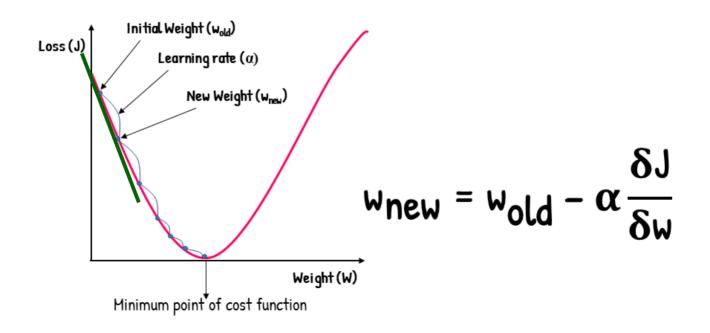


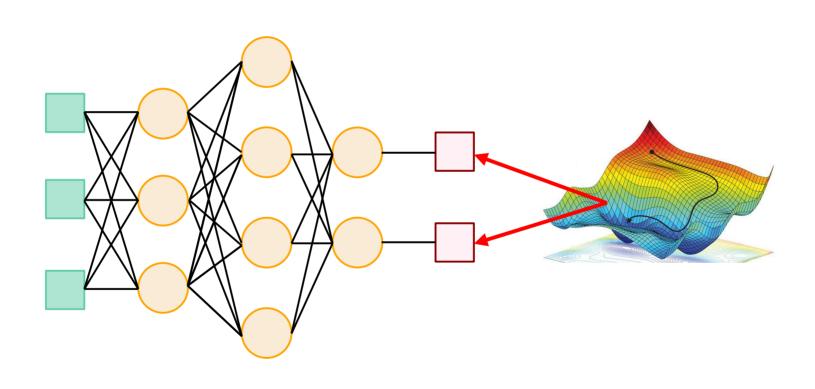
MSE: mean squared error MAE: mean averaged error BCE: binary cross-entropy

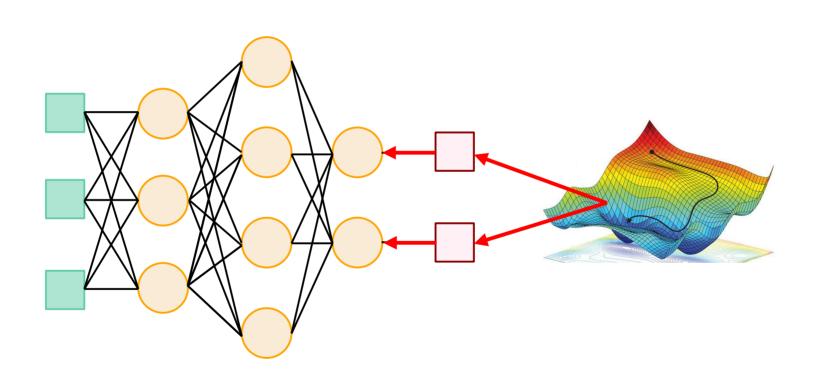
CCE: categorical cross-entropy

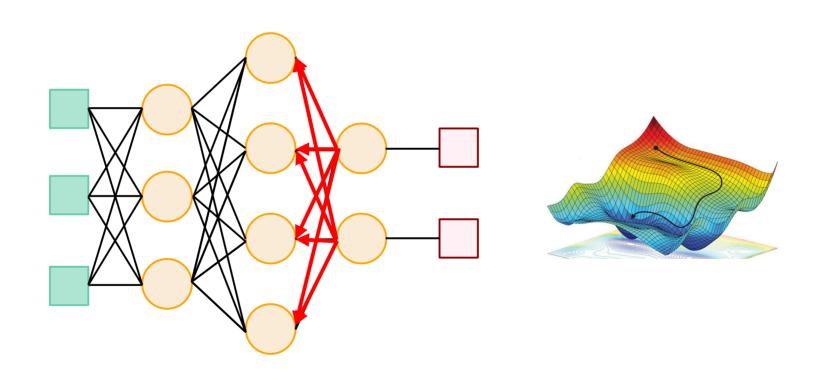
Optimization, e.g., gradient descent

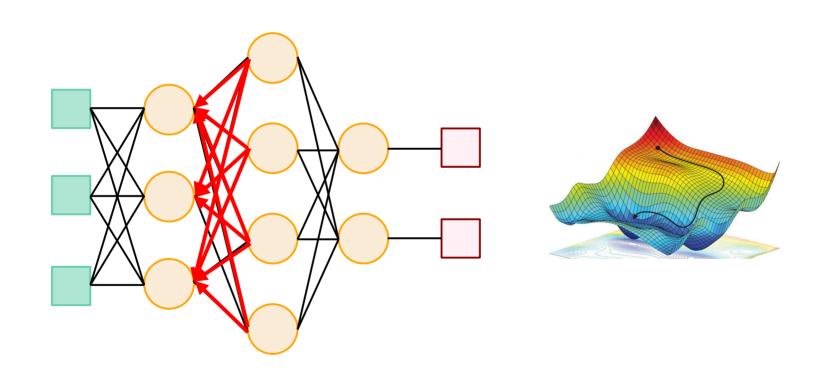
To minimise the loss function (called L, C, or most often J), we will calculate the "gradient" – the derivative – of the loss function with a set of parameters and calculate a new set using this gradient and the *learning rate*.

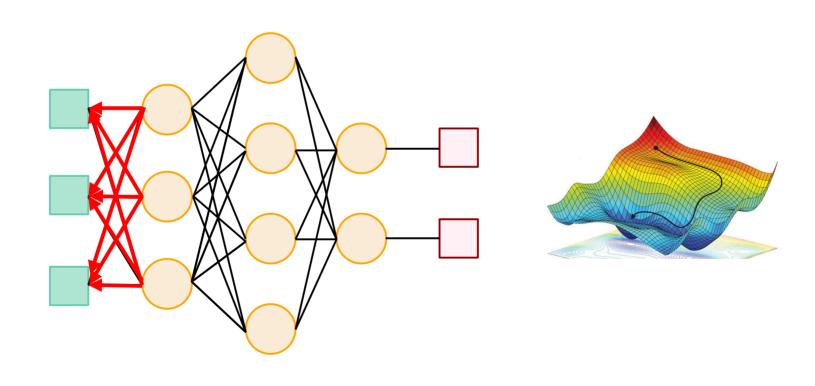




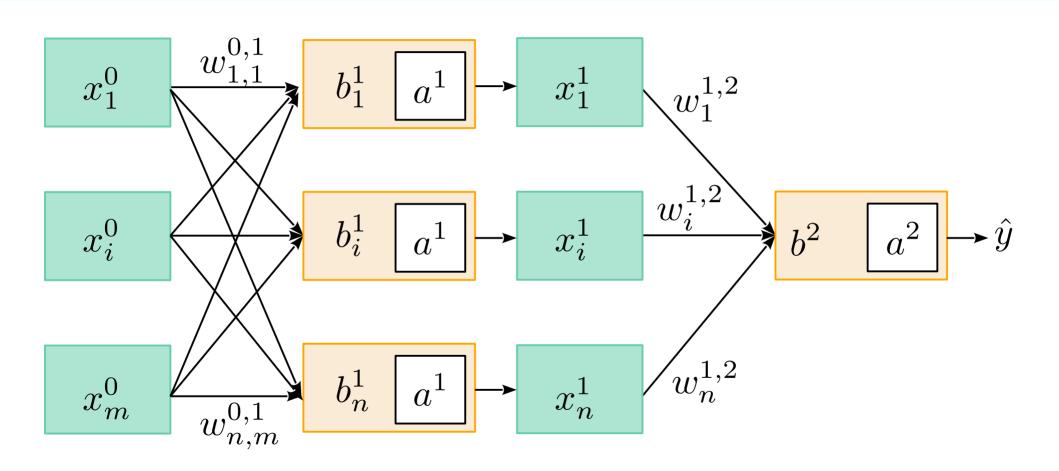




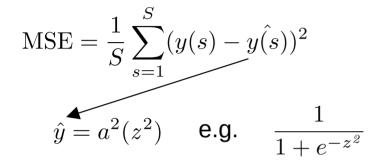


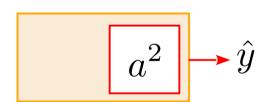


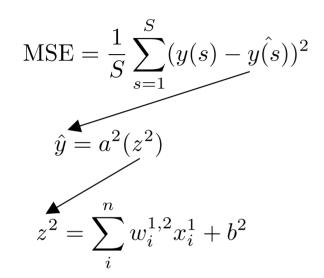
Learning: Backpropagation

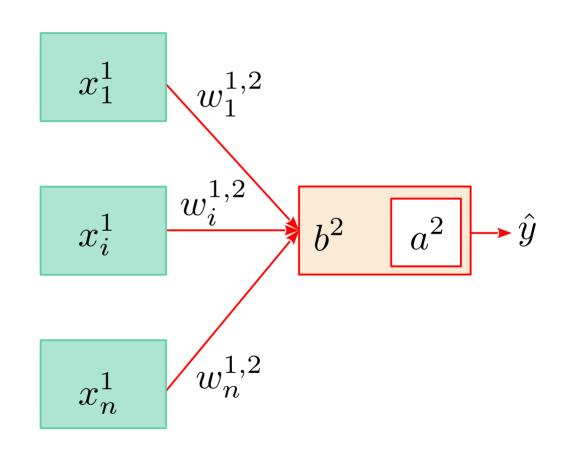


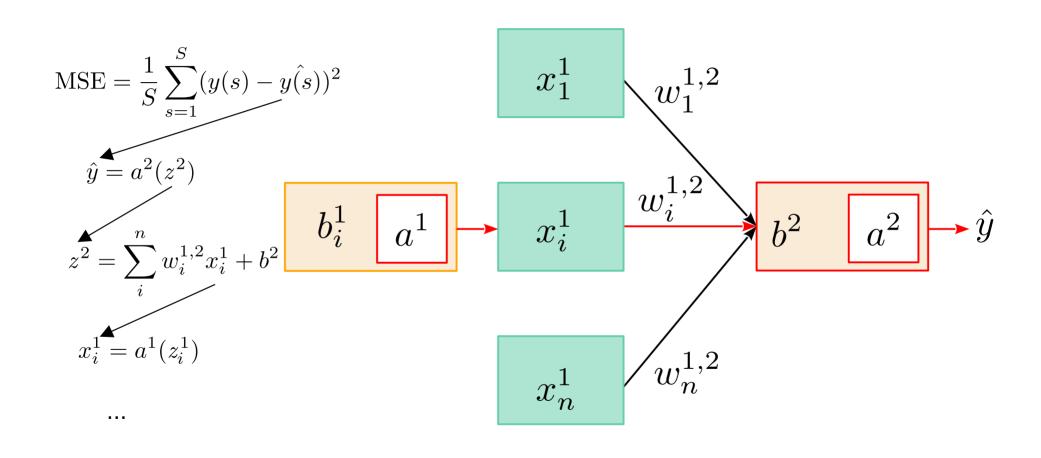
MSE =
$$\frac{1}{S} \sum_{s=1}^{S} (y(s) - y(\hat{s}))^2$$











Backpropagation: the chain rule

$$h(x) = f(g(x)) \qquad \qquad h'(x) = f'(g(x))g'(x)$$

Backpropagation: the chain rule

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Correction of the bias b^2

$$\frac{\partial \text{MSE}}{\partial b^2} = \frac{\partial \text{MSE}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z^2} \cdot \frac{\partial z^2}{\partial b^2}$$

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Correction of the bias b^2

$$\frac{\partial \text{MSE}}{\partial b^2} = \frac{\partial \text{MSE}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z^2} \cdot \frac{\partial z^2}{\partial b^2} \qquad \frac{\partial \text{MSE}}{\partial \hat{y}} = -\frac{2}{S} \sum_{s=1}^{S} (y - \hat{y})$$

$$\frac{\partial \hat{y}}{\partial z^2} = \frac{1}{1 + e^{-z^2}} \left(1 - \frac{1}{1 + e^{-z^2}} \right)$$

Recorded forward

$$\frac{\partial z^2}{\partial b^2} = 1$$

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Correction of the bias b^2

$$\frac{\partial \text{MSE}}{\partial b^2} = \frac{\partial \text{MSE}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z^2} \cdot \frac{\partial z^2}{\partial b^2}$$

$$b_{\text{new}}^2 = b_{\text{old}}^2 - \alpha \left(-\frac{2}{S} \sum_{s=1}^{S} (y - \hat{y}) \cdot \frac{1}{1 + e^{-z^2}} \left(1 - \frac{1}{1 + e^{-z^2}} \right) \right) \cdot 1$$

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Correction of the bias b^2

$$\frac{\partial \text{MSE}}{\partial b^2} = \frac{\partial \text{MSE}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z^2} \cdot \frac{\partial z^2}{\partial b^2}$$

$$h(x) = f(g(x)) \qquad \qquad h'(x) = f'(g(x))g'(x) \qquad \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$$

Correction of the bias b^2

$$\frac{\partial \text{MSE}}{\partial b^2} = \frac{\partial \text{MSE}}{\partial a^2} \cdot \frac{\partial \hat{y}}{\partial z^2} \cdot \frac{\partial z^2}{\partial b^2}$$

Contribution of b² to the error of a²'s output

Backpropagation: feeding errors backwards

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Correction of the bias b_i^1

$$\frac{\partial \text{MSE}}{\partial b_i^1} = \frac{\partial \text{MSE}}{\partial a^2} \cdot \frac{\partial a^2}{\partial z^2} \cdot \frac{\partial z^2}{\partial a_i^1} \cdot \frac{\partial a_i^1}{\partial b_i^1}$$

Already computed

Backpropagation: feeding errors backwards

$$h(x) = f(g(x))$$
 $h'(x) = f'(g(x))g'(x)$ $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Correction of the bias b_i^1

$$\frac{\partial \text{MSE}}{\partial b_i^1} = \frac{\partial \text{MSE}}{\partial a^2} \cdot \frac{\partial a^2}{\partial z^2} \cdot \frac{\partial z^2}{\partial a_i^1} \cdot \frac{\partial a_i^1}{\partial b_i^1}$$

Correction of the weight $\,w_{1,1}^{0,1}\,$

$$\frac{\partial \text{MSE}}{\partial w_{1,1}^{0,1}} = \frac{\partial \text{MSE}}{\partial a_1^1} \cdot \frac{\partial a_1^1}{\partial w_{1,1}^{0,1}}$$

Already computed

Backpropagation: feeding errors backwards

$$h(x) = f(g(x)) \qquad \qquad h'(x) = f'(g(x))g'(x) \qquad \frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$$

Correction of the bias b_i^1

$$\frac{\partial \text{MSE}}{\partial b_i^1} = \frac{\partial \text{MSE}}{\partial a^2} \cdot \frac{\partial a^2}{\partial z^2} \cdot \frac{\partial z^2}{\partial a_i^1} \cdot \frac{\partial a_i^1}{\partial b_i^1}$$

Correction of the weight $\,w_{1,1}^{0,1}\,$

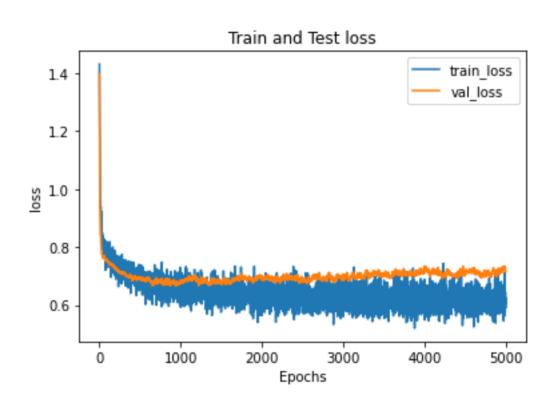
$$\frac{\partial \text{MSE}}{\partial w_{1,1}^{0,1}} = \frac{\partial \text{MSE}}{\partial a_1^1} \cdot \frac{\partial a_1^1}{\partial w_{1,1}^{0,1}}$$

Already computed

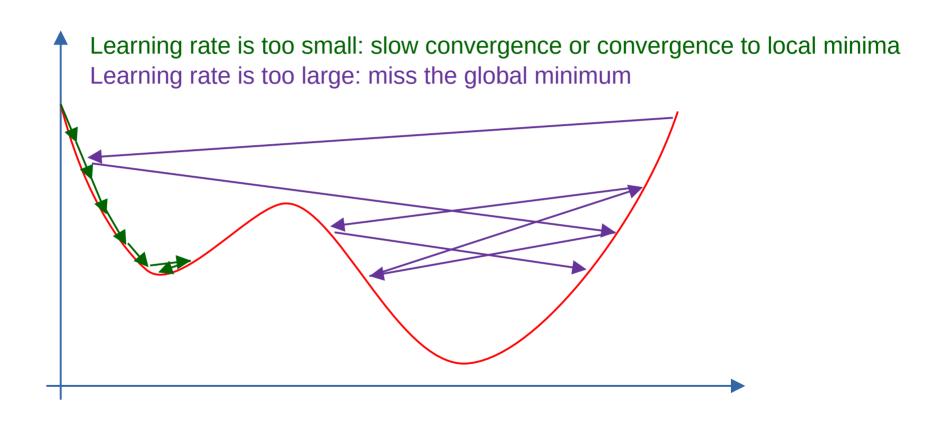
All that is done simultaneously for all weights and biases of a layer using tensors and Hadamard products (i.e. element-wise multiplication \odot)

To know much more than you would like: http://neuralnetworksanddeeplearning.com/chap2.html and LeCun, Bengio, and Hinton (2015) Deep learning. *Nature*, 521 (7553), pp.436-444.

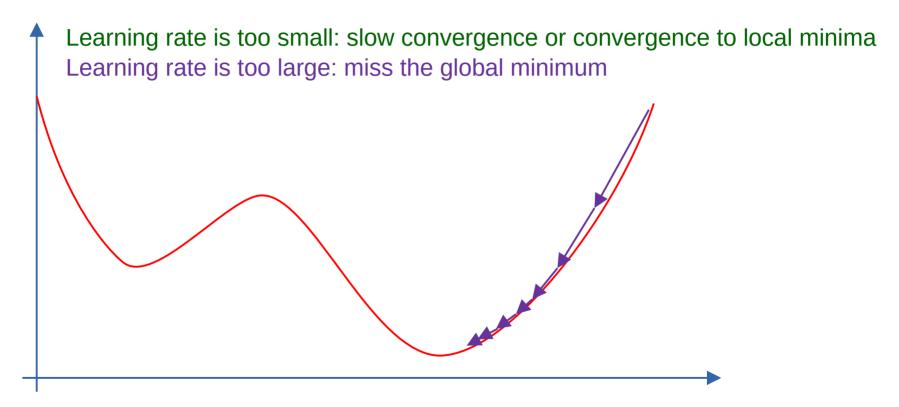
Learning



Impact of the learning rate

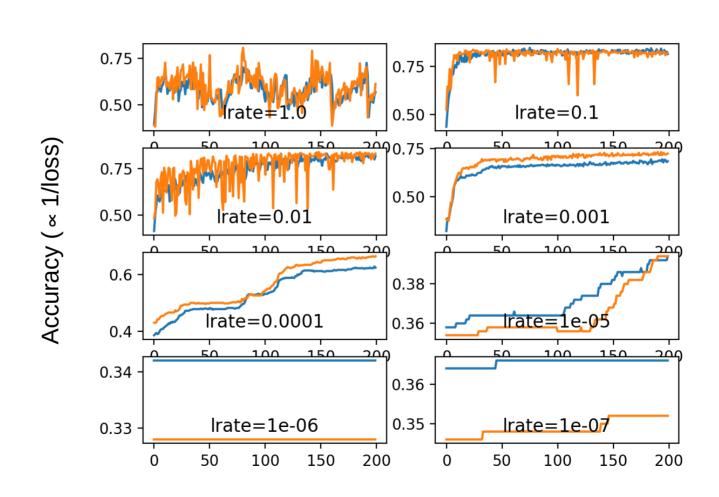


Impact of the learning rate



Adaptive algorithms adapt the learning steps according to the gradient of the cost function

Impact of the learning rate



Training, testing, and validation sets

"validation" (never seen)
Same for all model instances
Used to assess the model at the end

Training set: used to learn

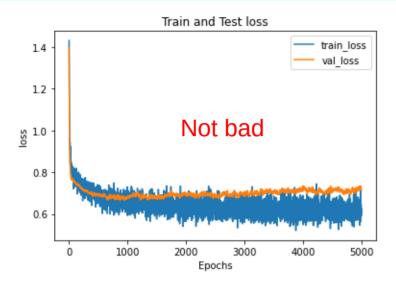
(perso: training + test set = learning set)

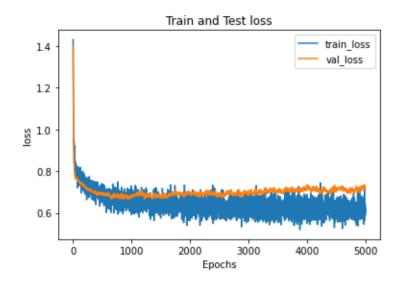
"test" set: used to assess the model during the learning phase Different for each model instance

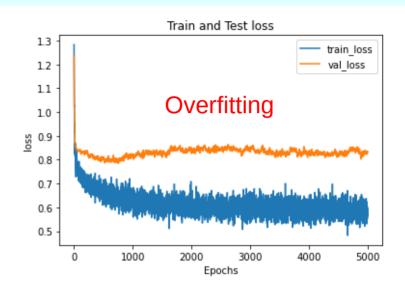
Beware: "validation" and "test" are used the other way around a lot in deep learning, at the opposite of all other fields of machine learning, or even life science in general

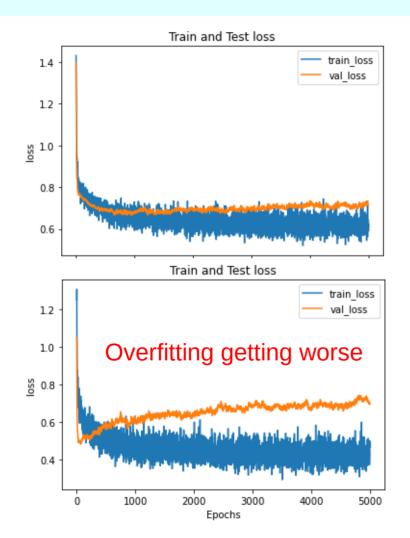
Random Test samples

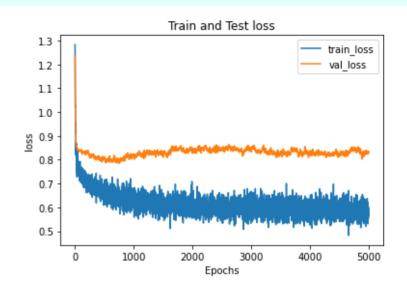
K-fold validation

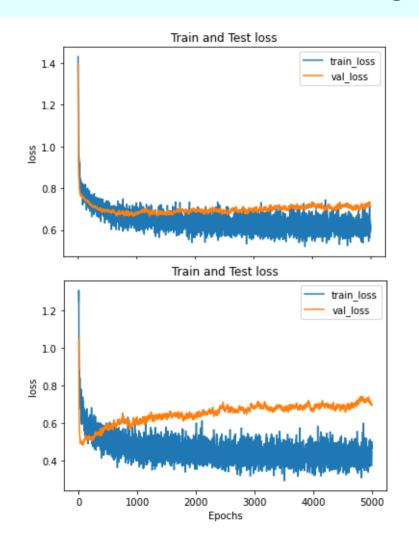


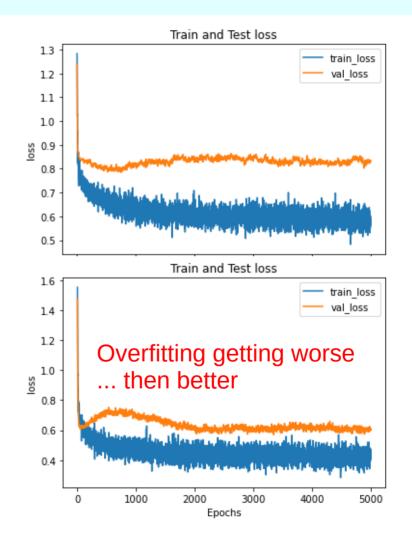












Why a test AND a validation set?

Underperforming on the test set means the model overfitted the <u>training set</u>, the parameters are too specific of the samples in the training set

Underperforming on the validation set means the hyperparameters are too specific of the test set as well! When you modify the structure of the model to avoid overfitting, you actually make the model overfit the entire learning set

Let's predict the diabetes status

Dataset: Pima Indians Diabetes Database. Smith *et al* (1988) Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. *Proceedings of the Symposium on Computer Applications and Medical Care* (pp. 261--265). IEEE Computer Society Press

Variables:

- 1) Number of times pregnant
- 2) Plasma [glucose] at 2 h in an OGTT
- 3) Diastolic blood pressure (mm Hg)
- 4) Triceps skin fold thickness (mm)
- 5) 2-Hour serum insulin (mu U/ml)
- 6) Body mass index (weight in kg/(height in m)^2)
- 7) Diabetes pedigree function
- 8) Age (years)

+

9) Diabetes status: 500 healthy (0), 268 diabetic (1)

	Α	В	С	D	Е	F	G	Н	1
1	6	148	72	35	0	33.6	0.627	50	1
2	1	85	66	29	0	26.6	0.351	31	0
3	8	183	64	0	0	23.3	0.672	32	1
4	1	89	66	23	94	28.1	0.167	21	0
5	0	137	40	35	168	43.1	2.288	33	1
6	5	116	74	0	0	25.6	0.201	30	0
7	3	78	50	32	88	31	0.248	26	1
8	10	115	0	0	0	35.3	0.134	29	0
9	2	197	70	45	543	30.5	0.158	53	1
10	8	125	96	0	0	0	0.232	54	1
11	4	110	92	0	0	37.6	0.191	30	0
12	10	168	74	0	0	38	0.537	34	1
13	10	139	80	0	0	27.1	1.441	57	0
14	1	189	60	23	846	30.1	0.398	59	1
	_								-

Software stack

High-level library

Low-level library

Language

IDE

Software stack

High-level library

Low-level library

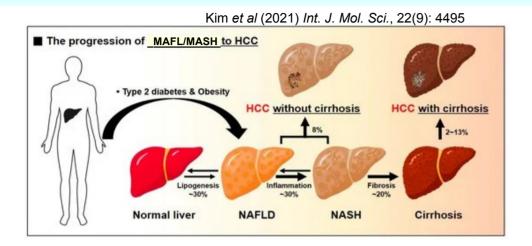
Language

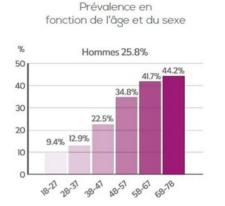
IDE

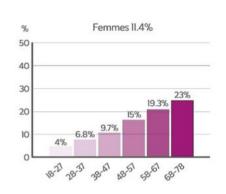
But instead you c/should use

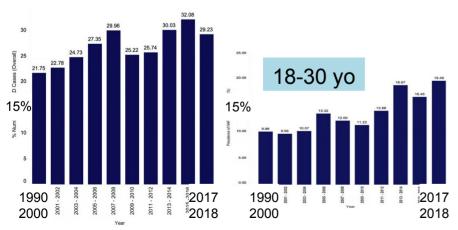
Demo in Google Colab

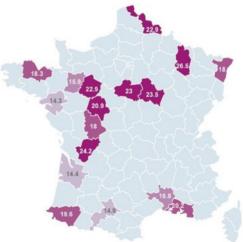
Let's try to recognise a disease severity











NASH (now MASH)

Répartition par régions

Paris MASH Meeting (11-12 juillet 2019)

Kim et al (2022) Met. Target Organ Damage, 2: 19

NALFD (now MASLD)

Subject grouping

Scoring on liver biopsy with the method from Kleiner and Brunt 2005

Steatosis

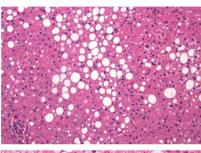
Categorical [0-3] from quantitative measurement

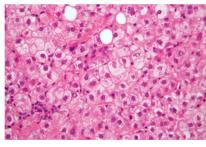
Ballooning

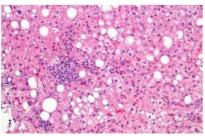
Categorical [0-2] = {none, some, much}

Inflammation

Categorical [0-3] from number of foci







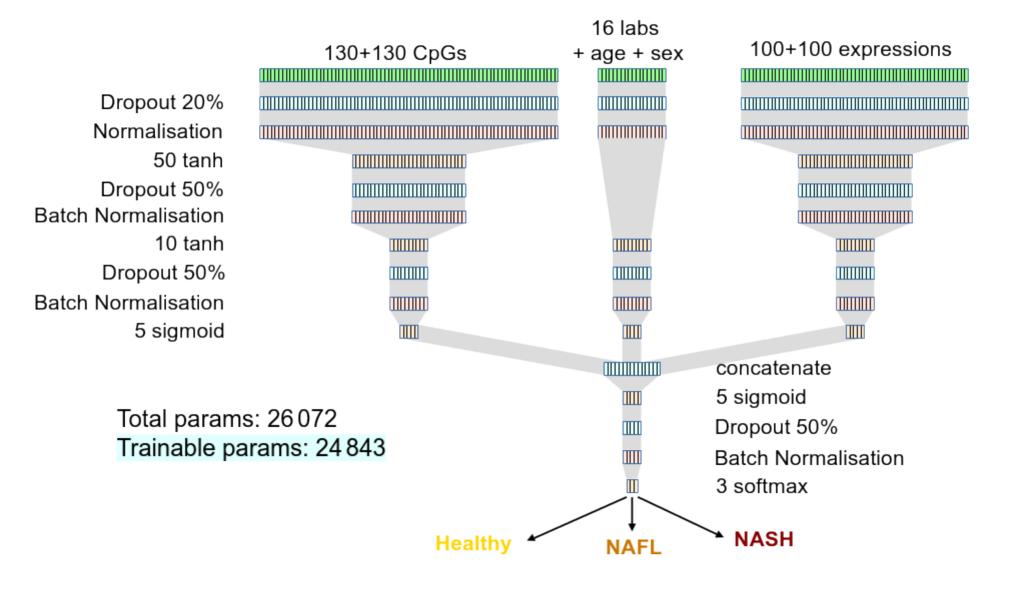
Final score:

Healthy: S = 0, B = 0, I = 0 n = 80

NAFL: S > 1, B = 0, $l \ge 1$ n = 137

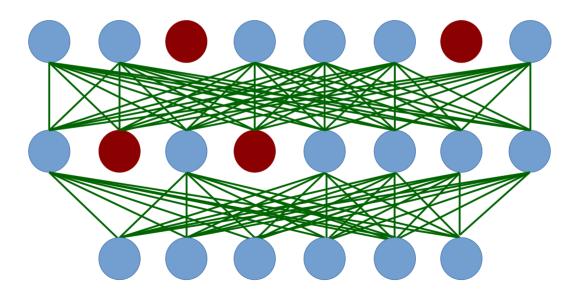
S > 1, B > 1, I = 0

NASH: S > 0, B > 0, I > 0 n = 83



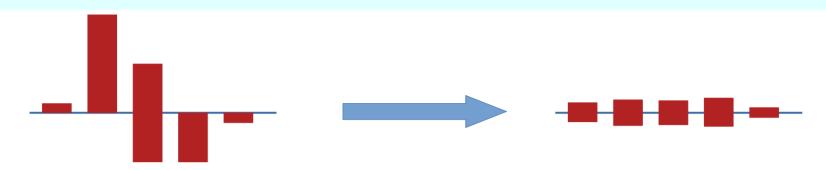
Dropout

- Purpose: avoiding overfitting
- Disable some connections at random (set the weights at 0)



Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 15(56):1929–1958

Normalisation



- Normalisation during data processing
- Normalisation before training: on the whole dataset
- Normalisation during training: after dropout
- Batch normalisation: normalisation on the current batch (not on the entire dataset)
- Layer normalisation: normalisation of the input of a layer

Ba, Kiros, Hinton (2016) Layer Normalization. arXiv:1607.06450v1 loffe and Czegedy (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proc 32nd Intl Conf Machine Learning, Lille, France volume 37

Balance the datasets!

If your learning dataset is made up of 90% of class A and 10% of class B, you reach 90% accuracy by predicting all cases as A...

Selective sampling:

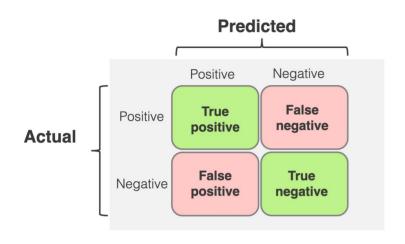
Randomly select the same number of class A as in class B

Data augmentation:

Sample repeatedly in class B Synthesise class B samples

Demo in Spyder

Evaluating a model's performance



Accuracy = (TP+TN)/(TP+FN+TN+FP)

Precision = TP/(TP+FP)

Sensitivity (true positive rate) = TP/(TP+FN)

Specificity (true negative rate) = TN/(TN+FP)

Evaluating a model's performance



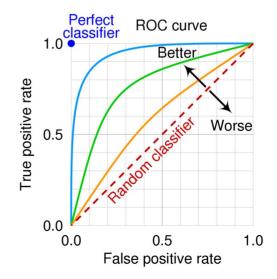
Accuracy = (TP+TN)/(TP+FN+TN+FP)

Precision = TP/(TP+FP)

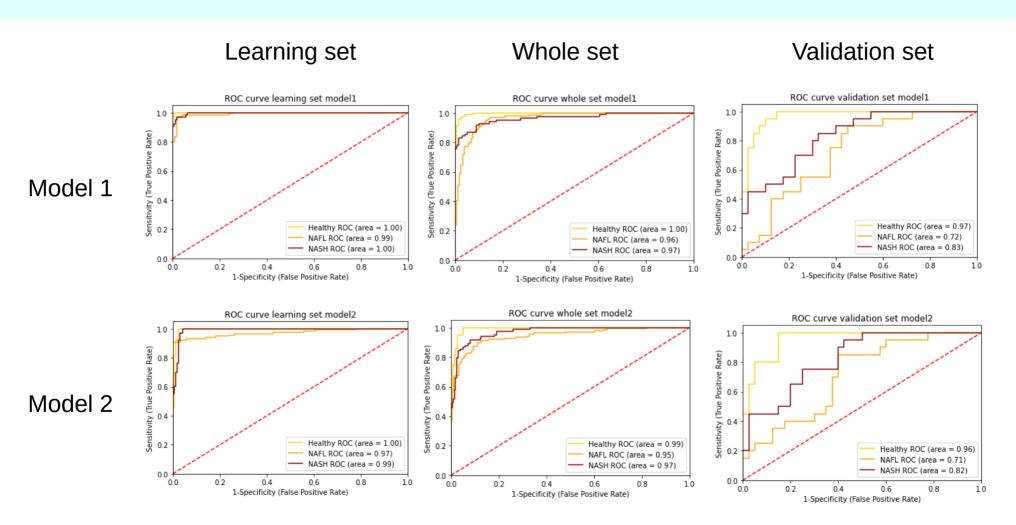
Sensitivity (true positive rate) = TP/(TP+FN)

Specificity (true negative rate) = TN/(TN+FP)

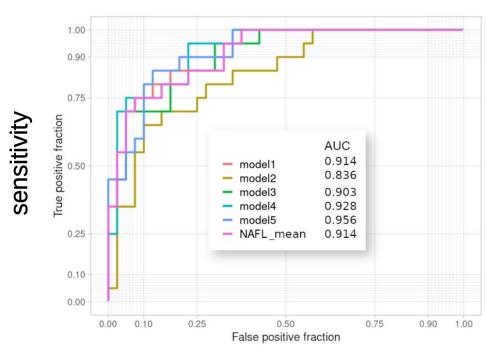
Receiver operating characteristic (ROC) curve



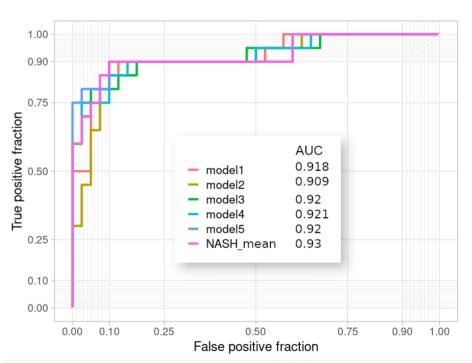
Different accuracies on different datasets



How good is the model to distinguish NAFL and NASH?



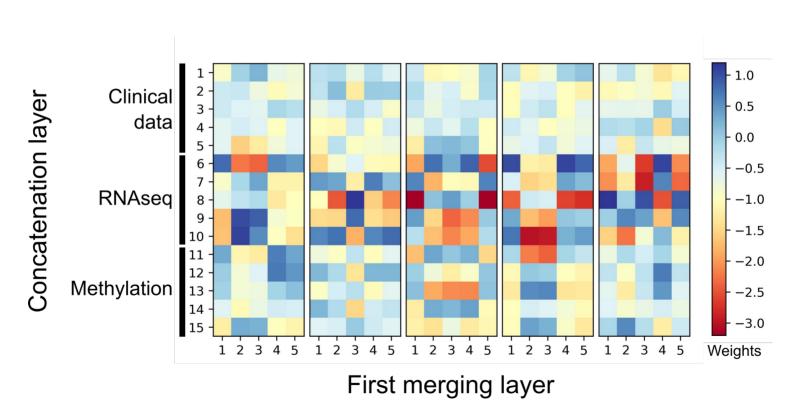
1 - specificity



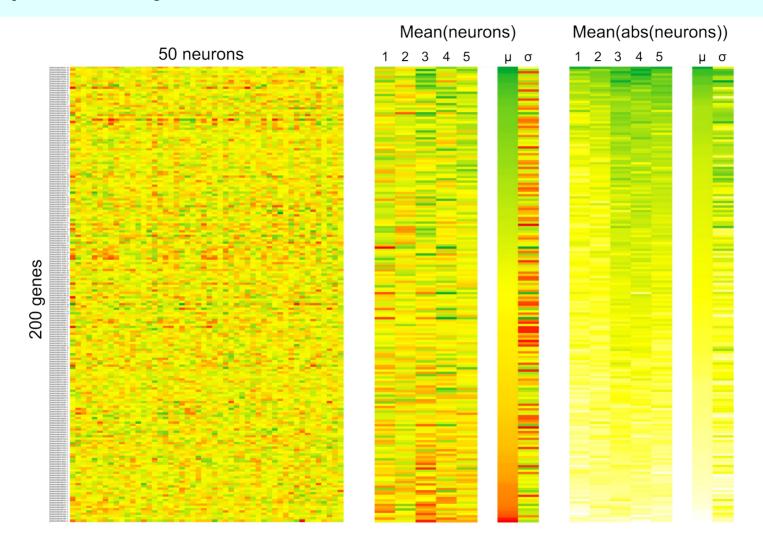
1 - specificity

Peeping into the black box

The RNAseq module has the most impact on output



Independently trained models learn from the same genes



Want to go further?

Fidle:

https://fidle.cnrs.fr/w3/

https://www.youtube.com/@CNRS-FIDLE

StatQuest: Start by

https://www.youtube.com/watch?v=GKZoOHXGcLo

And move backward to get to the start you need.

3 blue 1 brown:

https://www.youtube.com/@3blue1brow Search for deep learning, chapter 1 to 4

Also, a large number of tutorial with code at:

https://machinelearningmastery.com/category/deep-learning/

