Ligand depletion in vivo modulates
the dynamic range and cooperativity
of signal transduction
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Dose-response is the most general measurement
in biomedical sciences
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How general is a dose-response?
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Calmodulin, the memory switch
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State transitions of calmodulin




State transitions of calmodulin




Bound Ca?* per CaM

Calmodulin is ultra-sensitive
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Origins of cooperativity: Bohr
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Bohr C (1903) Theoretische behandlung der quantitativen verhaltnisse
bei der sauerstoff aufnahme des hamoglobins Zentralbl Physiol 17: 682



iv PROCEEDINGS OF THE PHYSIOLOGICAL

‘The possible effects of the aggregation of the molecules
of heemoglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant resulta.

Our work led me to believe that the divergence between the results
of different observers was due to an aggregation of the h@moglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hamoglobin in solutions of
various salts, and with hamoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb + 0, === HbO,,
Hb, + n0, == Hb,0,,,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

Kz Kz
y—lm+(lm—ﬁ.)m ............... (A-),

where A ¢/, is as Hb,, (100 — 1)"/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20, 2= Hb,0, and K that of Hb + 0, === HbO,:
K has the value 125 (Barcroft and Roberts).

Origins of cooperativity: Hill

Hill (1910) J Physiol 40: iv-vii.




iv PROCEEDINGS OF THE PHYSIOLOGICAL Origins Of cooperatiVity: HiII
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Hill Plot

1+ K[ X]n

Hill equation

Y =

Y
log v = nlog K + nlog|x] Hil plot A

<+ nlogK

Effect increases in function of

the signal to the power of n: Slope =n —
n>1, ultra-sensitive

n<1, infra-sensitive o

BUT cooperativity of ligand,
not of binding sites: unique affinity




Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM,

VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN.*
By G, 8. ADAIR.

Wite TaE CoLLaporaTion oF A. V. Bocg anp H. Fieun, Jr.

(From the Medical Laboratories of the Massachuseits General Hospital,
Boston.)

{Reeceived for publieation, January 7, 1925.)

This work gives the oxygen dissociation eurves of solutions
previously investigated in regard to their acid-binding and base-

Adair (1925) J Biol Chem 63: 529
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Fia. 2. Test of formula (6). Curve drawn from 6 experimental points
from Table IV,




Origins of cooperativity: Adair-Klotz
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Adair-Klotz model applied to Calmodulin

Klotz (1946) The Application of the Law of Mass
Action to Binding by Proteins. Interactions with
Calcium. Arch Biochem, 9:109-117.
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Allostery and state selection

=) Monod, Wyman, Changeux (1965). On the nature
of allosteric transitions: a plausible model.
J Mol Biol, 12: 88-118




Modulation of thermal equilibria # induced-fit
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Monod-Wyman-Changeux model
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Monod-Wyman-Changeux model
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“Hill” Plot for MWC model
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constants from microscopic MWC parameters. BMC Syst Biol, 3: 68

Stefan M.l., Edelstein S.J., Le Novere N (2009) Computing phenomenologic Adair-Klotz J




Allosteric model of Calmodulin function
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Calcium dose-response on 25 uM Calmodulin
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Calcium dose-response on 0.1 uM Calmodulin
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Calcium dose-response on 0.1 uM Calmodulin
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What is ligand depletion?




What is ligand depletion?

Chemistry (mass-action law)
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What is ligand depletion?

Chemistry (mass-action law)

This is generally not the case in signalling:
Concentrations of sensors are in micromolar ‘ — v \

range, as are the dissociation constants.
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Dose-response depends on Calmodulin concentration
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Dose-response depends on Calmodulin concentration
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Ligand-depletion modifies sensitivity
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But we cannot build a large [Ca**] in neurons ...
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Evaluating cooperativity: Hill Plot?
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Hill number not suitable for state function
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Hill number not suitable for state function
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Hill number not suitable for state function
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Hill number not suitable for state function
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Equivalent monomer
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Equivalent monomer for calmodulin
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New index of cooperativity
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New index of cooperativity
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vV is insensitive too ligand depletion!



New index of cooperativity
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Ligand-depletion decreases effective cooperativity
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Highly cooperative: bacterial flagellar motor




Concerted behaviour of bacterial flagellar
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Effect of ligand depletion on dynamic range
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Ligand-depletion increases dynamic range
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Fil occupancy (o)
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Ligand depletion explains different reports
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How general is a dose-response?
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A “dose-response” cannot be reused directly!
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Conclusions

Dose-responses are the basic characterisations of
“systems”, but also at the core of pharmacological
treatments. Here we show that:

A “dose-response”cannot be reused directly in
models of signalling systems. Instead one needs to
build “mechanistic” models and run parameter-
fitting approaches.

Ligand depletion decreases the effective
cooperativity of transducers in situ

Ligand depletion increases the dynamic range

Modifying the concentration of the sensor may be a
powerful way to quickly adapt to a new environment,

and switch from a measurement mode to a detection
mode.
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