

Systems Biology

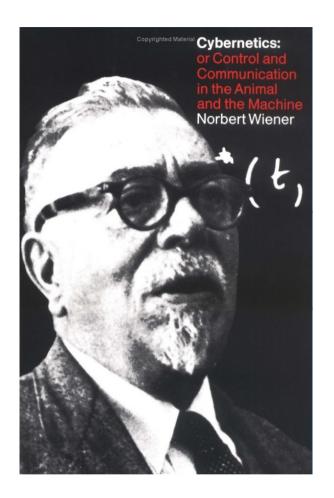
Nicolas Le Novère, EMBL-EBI

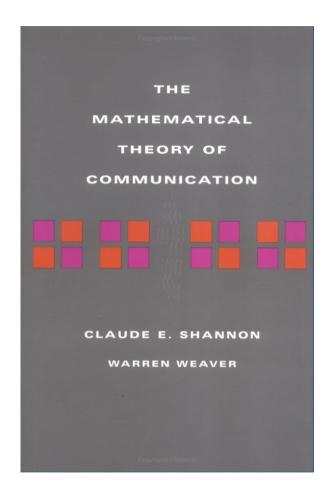
Emergence of the notion of system

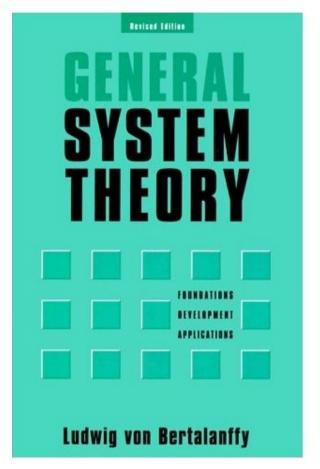
Global Description of the world

"classical" mechanic, anatomy, physiology

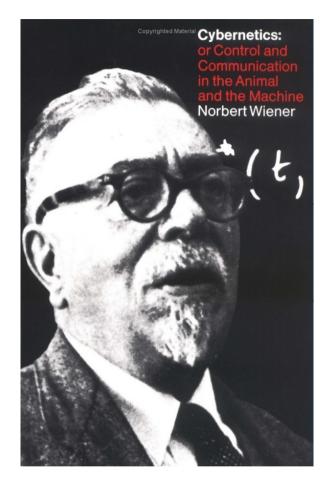
Description of the components of the world

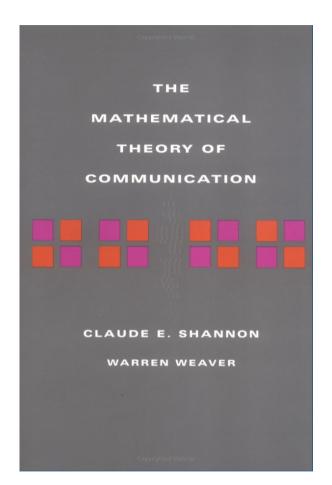

Statistical physics, thermodynamics, quantum mechanic, biochemistry, structural biology, molecular biology

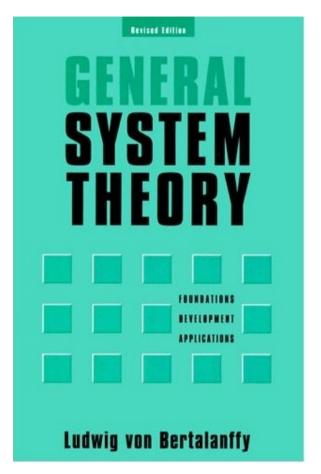

Description of interacting components


Cybernetics, Information theory, telecommunications, automata, multi-agents, Systems Biology

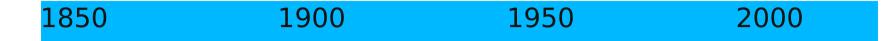
Systems have been formalised for a while

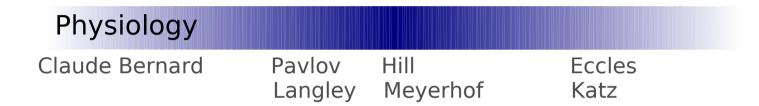






Systems have been formalised for a while

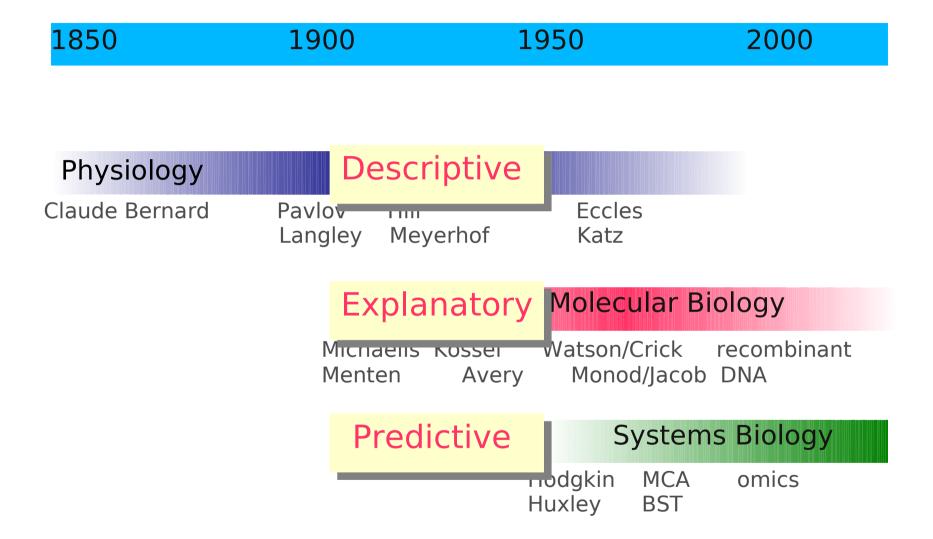




"[A system consists of] a dynamic order of parts and processes standing in mutual interaction. [...] The fundamental task of biology [is] the discovery of the laws of biological systems" Ludwig von Bertalanfy, Kritische Theorie der Formbildung, 1928

The three paradigms of Biology

Molecular Biology


Michaelis Kossel Watson/Crick recombinant Menten Avery Monod/Jacob DNA

Systems Biology

Hodgkin MCA omics Huxley BST

The three paradigms of Biology

Towards Systems Biology

Events around

1950	1960	1970	1980	1990	2000	

Hodgkin-Huxley

models

Computer simulations Vs. mathematical models

[37]

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system. The investigation is chiefly concerned with the onset of instability. It is found that there are six essentially different forms which this may take. In the most interesting form stationary waves appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns on *Hydra* and for whorled leaves. A system of reactions and diffusion on a sphere is also considered. Such a system appears to account for gastrulation. Another reaction system in two

Computer simulations Vs. mathematical models

[37]

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

One would like to be able to follow this more general process mathematically also. The difficulties are, however, such that one cannot hope to have any very embracing theory of such processes, beyond the statement of the equations. It might be possible, however, to treat a few particular cases in detail with the aid of a digital computer. This method has the advantage that it is not so necessary to make simplifying assumptions as it is when doing a more theoretical type of analysis.

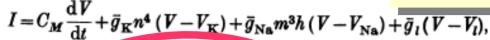
Birth of Computational Systems Biology

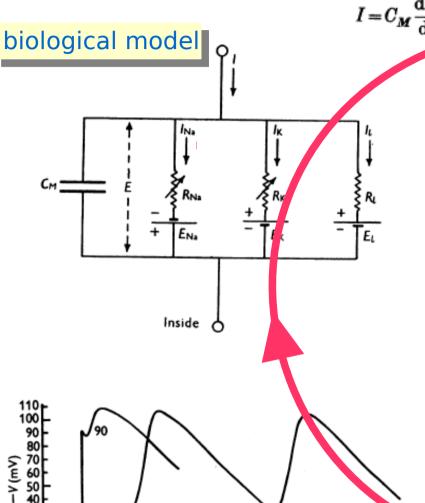
J. Physiol. (1952) 117, 500-544

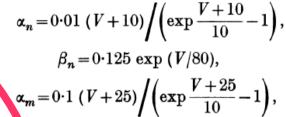
A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE

By A. L. HODGKIN AND A. F. HUXLEY

From the Physiological Laboratory, University of Cambridge


(Received 10 March 1952)


This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkin, Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a-c). Its general object is to discuss the results of the preceding papers (Part I), to put them into mathematical form (Part II) and to show that they will account for conduction and excitation in quantitative terms (Part III).


The Computational Systems Biology loop

mathematical model

$\mathrm{d}n/\mathrm{d}t = \alpha_n(1-n) - \beta_n n,$
$\mathrm{d}m/\mathrm{d}t = \alpha_m(1-m) - \beta_m, m,$
$\mathrm{d}h/\mathrm{d}t = \alpha_h(1-h) - \beta_h h,$

$$\beta_{m} = 4 \exp(V/18),$$
 $\alpha_{h} = 0.07 \exp(V/20),$
 $\beta_{h} = 1 / \left(\exp \frac{V + 30}{10} + 1 \right).$

Experimental values

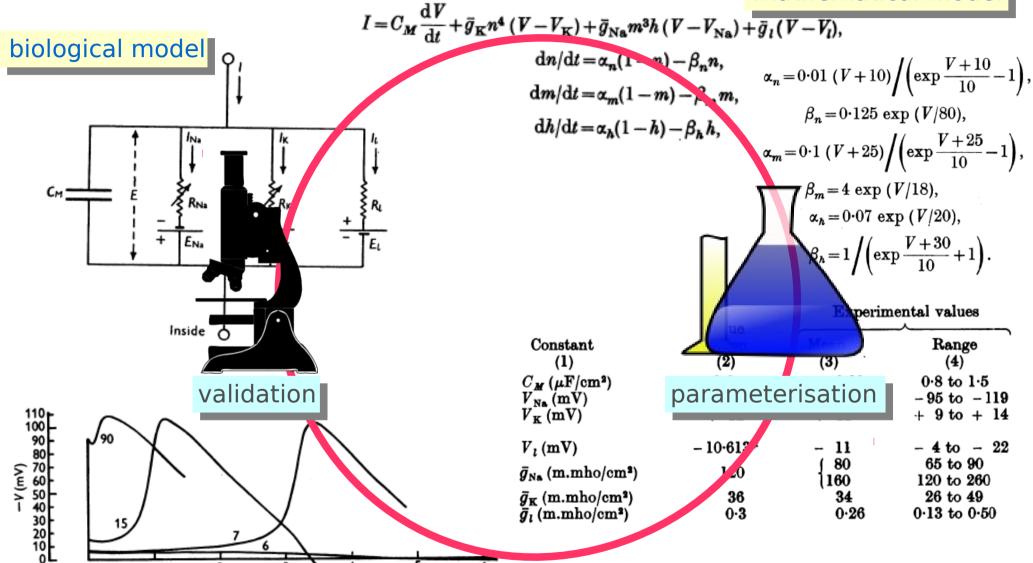
	\mathbf{Value}
Constant	chosen
(1)	(2)
$C_{M} (\mu F/cm^{2})$	1.0
$V_{Na}(mV)$	115
$V_{\mathbf{K}}(\mathbf{m}\mathbf{V})$	+ 12
V_l (mV)	- 10.613
\bar{g}_{Na} (m.mho/cm ²)	1.0

36

 \bar{g}_{K} (m.mho/cm²)

 \bar{q}_{i} (m.mho/cm²)

msec


Mean (3)	Range (4)
0.91	0.8 to 1.5
- 109 + 11	-95 to -119 + 9 to + 14
- 11	- 4 to - 22
∫ 80	65 to 90
\160 34	120 to 260 26 to 49
0.26	0·13 to 0·50

simulation |

The Computational Systems Biology loop

mathematical model

msec

simulation |

computational model

Towards Systems Biology

Εv	Events around									
	First computers		PDB	EMBLbank PC	K G	enomes Interactomes				
	1950	1960	1970	1980	1990	2000				
Hodgk		n-Huxley Dennis Noble heart pacemaker		Goldbeter Koshland covalent cascades	sign metabolic	ycle models nalling models models els of gene reg whole heart				
		Rall's cable approximation neurobiology	complex n neurons	simple Purkinje circuits Neuron		Blue Brain Project				
			MCA/BST stochas algorith thods	•	nt user-friei biochem simulato					
		IIIC				Barabasi Repressilator				

Towards Systems Biology

Ev	ents a	round						
First computers 1950 1960		PDB 1970		EMBLbank PC		Genomes Interactomes		
				1980	1990	2000		
Hodgkin-Huxley Dennis No heart pace models Rall's cable approximation				Goldbeter Koshland covalent cascades	si metabo	Cell Cycle models signalling models metabolic models models of gene reg whole heart		
			compl n neuroi	•		Purkinje Neuron	Blue Brain Project	
	neurobiology		MCA/BST		multi-ager			logy
		me		Net	tic systems work Biolo	bioche ogy ula	emical ators Barabasi Repressilator	

90s: maturation of the community

- Publication of modelling work in high visibility journals, e.g.:
 - Tyson. modeling the cell-division cycle cdc2 and cyclin interactions. *PNAS* 1991; McAdams and Shapiro. Circuit simulation of genetic networks. *Science* 1995; Perelson et al. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. *Science* 1996; Barkai and Leibler. Robustness in simple biochemical networks. *Nature* 1997; Neuman et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. *Science* 1998; Yue et al. Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene . *Science* 1998; Bray et al. Receptor clustering as a cellular mechanism to control sensitivity. *Nature* 1998
- Structuration of the community modelling metabolism
- Large-scale simulation projects
 - E-Cell project 1996; The Virtual Cell 1998
- Availability of high-throughput data on parts and interactions
 - Two-hybrids (1989); microarrays (1995) etc.
- Large-scale funding for wet+dry studies of biological systems
 - Alliance For Cellular Signalling (http://www.afcs.org/). First of the NIH "glue grants". 1998

Formal creation of Systems Biology

- "Modelling" Systems Biology
 - 1998 Hiroaki Kitano founds the Systems Biology Institute in Tokyo
 - First appearance: Kyoda, Kitano. Virtual Drosophila project: Simulation of drosophila leg formation. Genome Informatics Series (1998)
 - Kitano, H. Perspectives on systems biology. New Generation Computing Volume 18, Issue 3, 2000, Pages 199-216
- "Network" Systems Biology
 - First appearance: L Hood. Systems biology: new opportunities arising from genomics, proteomics and beyond. Experimental Hematology. Volume 26, Issue 8, 1998, Page 681
 - Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol. 2000 Dec;18(12):1257-61.
 - 2000 Leroy Hood founds the Systems Biology Institute in Seattle

The "two" Systems Biology

What

Reconstructions of systems kinetic modelling, simulation, numerical analysis. Mainly metabolic networks and signalling pathways

Who

Originates from Biochemistry,
 Physics and Engineering
 Arkin, Bhalla, Bray, Fell, Ferrell,
 Hunter, Kell, Kholodenko,
 Kitano, Leibler, Noble, Palsson,
 Tyson, Westerhoff ...
 International Society for
 Systems Biology

When

International Conference on Systems Biology

Where

Biochemical journals, BMC
 Systems Biology, IET Systems
 Biology, Molecular Systems
 Biology

Systems-wide analysis Genome-wide analysis, interactomes, regulatory networks, boolean models. Mainly gene regulatory

networks

- Originates from Functional Genomics, Bioinformatics and Mathematics Bork, Brunak, Kirschner, Hood, Ideker, Snyder, Vidal ... International Society of Computational Biology
- Intelligent Systems in Molecular Biology, International Conference on Pathways, Networks, and Systems Medicine
- Bioinformatics, PloS Computational Biology

Institutes

Rise of Systems Biology as a paradigm

1998 2006 2007 1999 2000 2001 2002 2003 2004 2005 FRATO-Kitano SystemsX Alliance for Cellular Signaling HepatoSys SysBio enters FP6 projects **YSBN ERASysBio ECell** Von Dassow SBMI Klipp Alon Choi Annual Review Kriete Palsson Science Ideker/Hood special issue Boogerd "Foundations of Systems Biology" Kaneko Szallasi publications Grierson **BMC Sys Bio** Computational Cell Biology" IEE Sys Bio MSB Tokyo Systems Biology Institute Seattle Institute for Systems Biology 6 BBSRC centres

BioQuant

Rise of Systems Biology as a paradigm

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	
	ERATO-Kitano SystemsX Alliance for Cellular Signaling									
projects HepatoS Sy Systems Biology Calls										
ECell Von Dassow SBML Klipp Alon Choi Annual Review Science Kriete Palsson Ideker/Hood special issue Boogerd "Foundations of Systems Biology" Kaneko Szallasi publications al Cell Biology" IEE Sys Bio MSB BMC Sys Bio							n Boogerd i Grierson			
Tokyo Systems Biology Institute Seattle Institute for Systems Biology Institutes BioQuant 6 BBSRC centres										

Merging communities

Nobel Symposium on Systems Biology (June 2009)

Johan Elf

networks

Leroy Hood

Marc Vidal

Mike Snyder

Marc Kirschner

Charlie Boone

Ruedi Aebersold

Terence Hwa

Erin O'Shea

jussi taipale

models

Eric Davidson

Stanislas Leibler Michel Savageau

Lucy Shapiro Hans Westerhoff Roger Brent

Luis Serrano

Uwe Sauer

Francois Nedelec

Jim Ferrell

Naama Barkai Jorg Stelling

Jens Nielsen Edda Klipp

Edda Klipp Boris Kholodenko

Bela Novak

Hiroaki Kitano

Stefan Hohmann

Bernard Palsson
Harley McAdams

Nicolas Le Novère William Bialek

Mans Ehrenberg

Merging communities

Nobel Symposium on Systems Biology (June 2009)

cell reprogramming

networks

Leroy Hood

Marc Vidal

Mike Snyder

Marc Kirschner

Charlie Boone

Ruedi Aebersold

Terence Hwa

Erin O'Shea

jussi taipale

Avid Regev

Jeff Hasty

Michael Elowitz

Yoshihide Hayashizaki thetic biology

Richard Young

models

Eric Davidson

Stanislas Leibler Michel Savageau

Roger Brent Lucy Shapiro Hans Westerho

François Nedelec Luis Serrano **Uwe Sauer**

Naama Barkai

Boris Kholodenko Jens Nielsen Edda Klipp

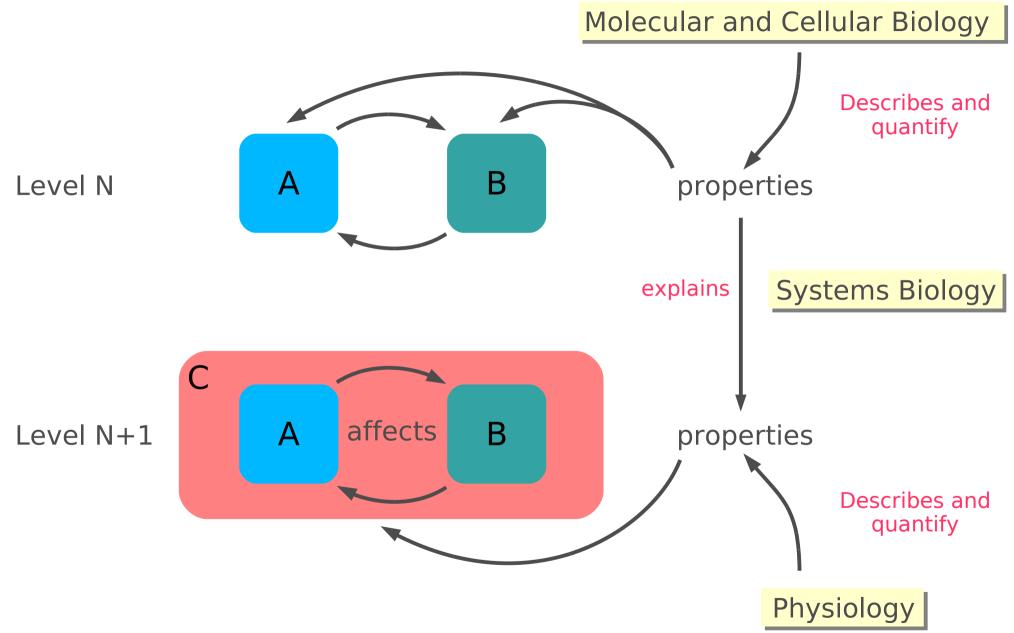
Bela Novak

Johan Elf Hiroaki Kitano

Stefan Hohmann Bernard Palsson

Nicolas Le Novère William Bialek

Mans Ehrenberg


Jim Ferrell

Jorg Stelling

Harley McAdams

What is Systems Biology?

Systems Biology is the study of a biological system, taking into account all its constituents, their relationships and their evolution

Au travail!

Programme of the course

- Day 1: Current achievements: Scientific presentations by some of the trainers
- Day 2 4: Training. Technical presentation and handson
 - Day 2: Reconstructing Networks How to use largescale OMICS data to generate relationships.
 - Day 3: Analysing Networks What to do with those relationships graphs
 - Day 4: Modelling Networks The next step, linking observation and mechanisms