Modeling chemical kinetics
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Systems Biology models # ODE models

m  Reconstruction of state variable evolution from process
description:

Processes can be combined in ODEs (for deterministic simulations);
transformed in propensities (for stochastic simulations)

Systems can be reconfigured quickly by adding or removing a
process
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ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
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Statistical physics and chemical reaction

P(reaction-++) = P(+) X P(s) X P( reacts with )
P(reaction ) = P(-) x P(-reacts)
P(reaction-+-) = P(s) X P(s) x P(-reacts with )



Law of Mass Action

Waage and Guldberg (1864)
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Waage and Guldberg (1864)

activity

rate-constant l stoichiometry

v :\‘kz : Ha?i/
Va ;

velocity

v==%k- H P,an gas
v =k . H[Xz]nz solution




Evolution of a reactant

= Velocity multiplied by stoichiometry
®m negative if consumption, positive if production
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Evolution of a reactant

m Velocity multiplied by stoichiometry
®m negative if consumption, positive if production
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= Example of a unimolecular reaction r — y

d|x]
d[y]

[x],

z(t) = [x]g - e [x],/e




Reversible reaction

11 20 — y;vl = k1 - [z]°
2 = Y is equivalent to
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Reversible reaction

11 20 — y;vl = k1 - [z]°
2 = Y is equivalent to
k2 y — 2x;v2 = k2 - |y]

d
%:_2,vl+2.U2:—2ok1-[:1:]2+2'k2'[y]

d
%:+1.U1—1-v2=+1-k1-[w]2—1°k2'[y]



Example of an enzymatic reaction
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Example of an enzymatic reaction

k1
E+ 8§ = B Epiyp

d[S|/dt = —ki[E][S] +ka]F5]

d Pl/dt = +ks|
diE|/dt = —ki[E]|S]  +ka[F5] +ks]
dlS)/dt = R [E|[S] —ko[5] ksl




Example of an enzymatic reaction

k1
E+ 8§ = B E4+p

d[S]/dt = —ki[E|[S] +ka[F5]
d[P]/dt = +ks|
diE]/dt = —ki|E]|S] +ka[L5]  +ks]
dl25]/dt = +ki[E][S] —keo[E5] —ks]
[X]
Not feasible in general
‘ = Numerical integration




Numerical integration

Euler method:
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Numerical integration

Euler method:
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Numerical integration

Euler method:
dix]/dt = ([x] , - [x]) /At [X]A

[x],.,. = [x] + d[x]/dt . At

[P].., = [P] + k,[ES] . At
[E],, = [E] + ((k,+ K,)[ES]- k,[E][S],) . At
[S1,., = [S], + (K,[ES] - k,[E1[S]) . At

[ES],.,. = [S] + (k,[EL[S] - (k,+k,)[ES]) . At

t+At

t+At

t+At

4" order Runge-Kutta:
[x],,, = [x] + (F,+2F +2F +F )/6 . At

t+At

[X]A
with F, = d[x]/dt = f([x], t)
Fo= f([x], + At/2 . F, t+ At/2)
F,= f(Ix] + At/2 . F, t+ At/2)
F, = f(Ix] + At. F, t+ At)

~ Y



Choose the right formalism

kds kcat kap d[P]
E+S=*—» ES™*——» EP *———» E+P = kdp[EP] - kap[E][P]
kas kcat kdp dt
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Choose the right formalism

kds kcat kap d[P]
E+S=*—» ES™*———» EP *=——» E+P = kdp[EP] - kap[E][P]

kas kcat kdp dt

kds kcat ka
E+S<*—» ES ———— » EP *=——— E+P catalysisirreversible

as o

E+S <|<SL ES kcat E4p product is consumed

ksd before rebinding

@ d[P] [E] kcat
S > P steady-state dt = n
1+——

[S]




Enzyme kinetics

Victor Henri (1903) Lois Générales de I'Action
des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die
Kinetik der Invertinwirkung, Biochem. Z. 49:333-
369

George Edward Briggs and John Burdon
Sanderson Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19: 338-
339




Briggs-Haldane on Henri-Michaelis-Menten

E+S:¢1ES’3E+P i — FelES]
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[S]
[ES] = [?]Lf] diP] o S s, [S]




Briggs-Haldane on Henri-Michaelis-Menten
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Generalisation of modulation

N A’




Generalisation: activators

d[z]

- 50 o =v(=k-[y])

d[x]/dt

- =



Generalisation: activators

- LD =v=k)

d[x]/dt

- x W:U.Ka—l—[a]

Ka log[a]



Origins of cooperativity: Bohr
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Bohr C (1903) Theoretische behandlung der quantitativen verhaltnisse
bei der sauerstoff aufnahme des hamoglobins Zentralbl Physiol 17: 682



Origins of cooperativity: Hill

iv PROCEEDINGS OF THE PHYSIOLOGICAL

The possible effects of the aggregation of the molecules
of hemoglobin on its dissociation curves. By A. V. HiLt.

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can exzplain the dis-
cordant results.

Our work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hamoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hemoglobin in solutions of
various salts, and with hamoglobin prepared by Bohr's method,

The equation for the reaction would be

Hb +0, == HbLO,,
Hb, + n0,== Hb,0,,,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

K'a? K
yﬂlm+{lw—l)m ............... (A),

where 1%/, is as Hb,, (100 — 1)/, as Hb, K" is the equilibrium constant
of the reaction Hh, + 20, = Hb,0, and K that of Hb + 0, === HbO,:
K has the value ‘125 (Barcroft and Roberts).

Hill AV (1910) The possible effects
of the aggregation of the molecules
of haamoglobin on its dissociation
curves. J Physiol 40: iv-vii.
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Generalisation: inhibitors

N A’

? d[x]/dt
d|z] '
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Generalisation: activators and inhibitors

o ==k D)
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dlz] _ al dlz] _
dt " Ka+ld] Uit

d[x]/dt

Ka log[a]

Ka log[al
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