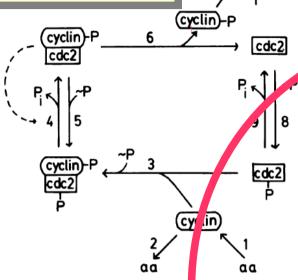
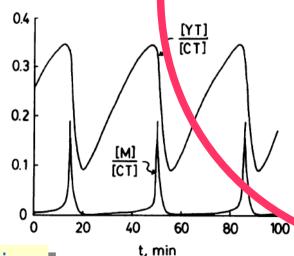
Modeling chemical kinetics

The Computational Systems Biology loop





mathematical model

$d[C2]/d! = k_6[M] - k_8[\sim P][C2] + k_9[CP]$	
$d[CP]/dt = -k_3[CP][Y] + k_8[\sim P][C2] - k_9[CP]$	
$d[pM]/dt = k_3[P][Y] - [pM]F([M]) + k_5[P][M]$	
$d[M]/dt = [pM]N([M]) - k_5[\sim P][M] - k_6[M]$	
$d[Y]/dt = k_1[aa] - k_2[Y] - k_3[CP][Y]$	
$d[YP]/dt = k_6[M] - \lambda [YP]$	

Parameter	Val	e	Notes
$k_1[aa]/[CT]$	0.015 min ⁻¹		*
k_2	0		†
k ₃ [CT]	200 min ⁻¹		*
k_4	10–1000 min	(adjustable)	
k ₄ '	0.018min^{-1}		
$k_5[\sim P]$	0		‡
k ₆	$0.1-10 \text{ m/n}^{-1}$ (adjustable)	
k ₇	0.6 mir ⁻¹		†
$k_8[\sim P]$	>>19		§
k ₉	>k6		§

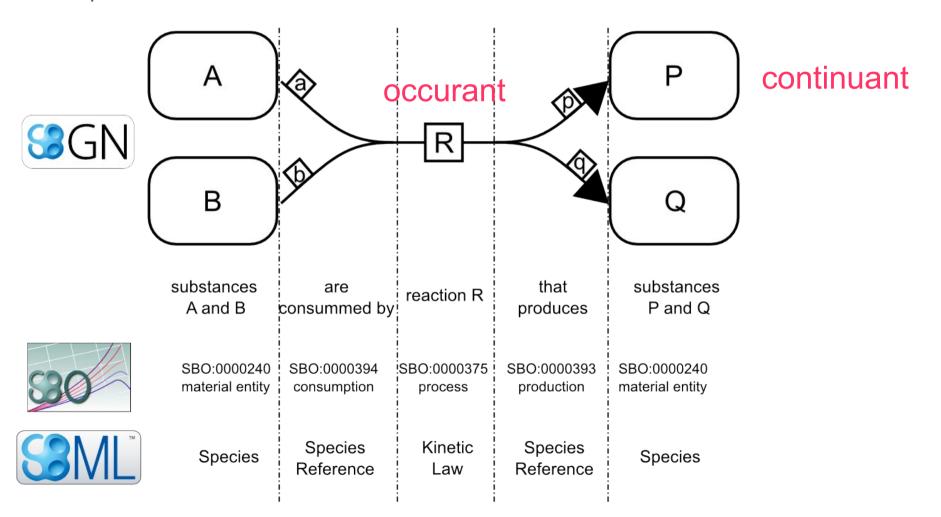
simulation

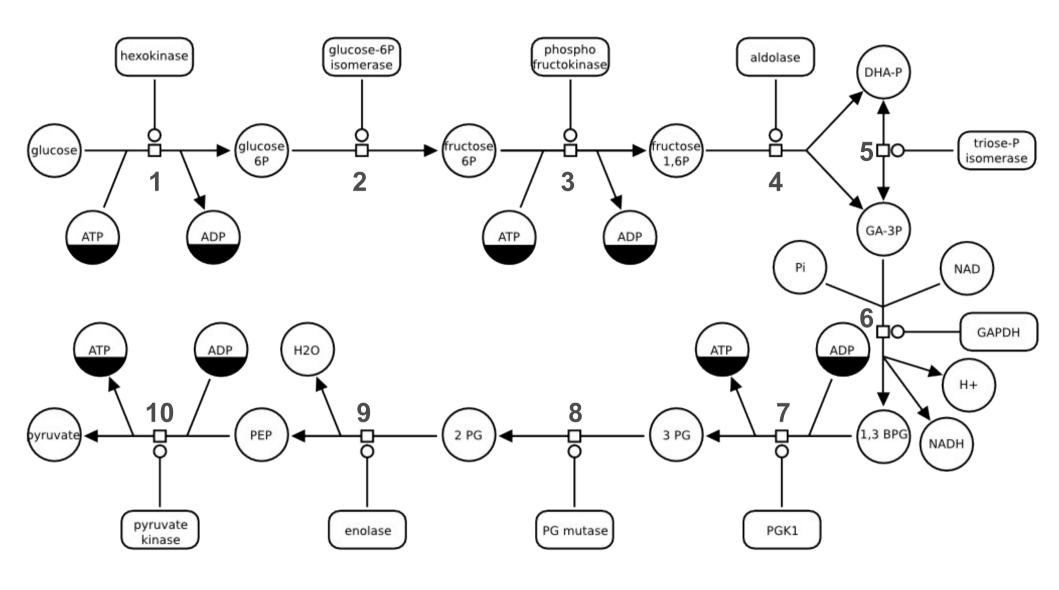
Tyson et al (1991) PNAS 88(1):7328-32

computational model

Systems Biology models ≠ ODE models

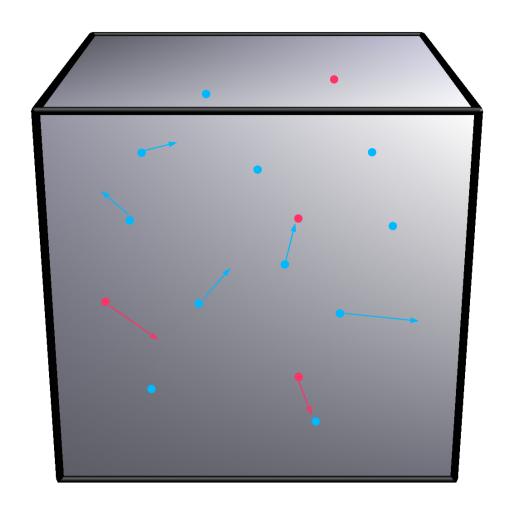
- Reconstruction of state variable evolution from process description:
 - Processes can be combined in ODEs (for deterministic simulations);
 transformed in propensities (for stochastic simulations)
 - Systems can be reconfigured quickly by adding or removing a process



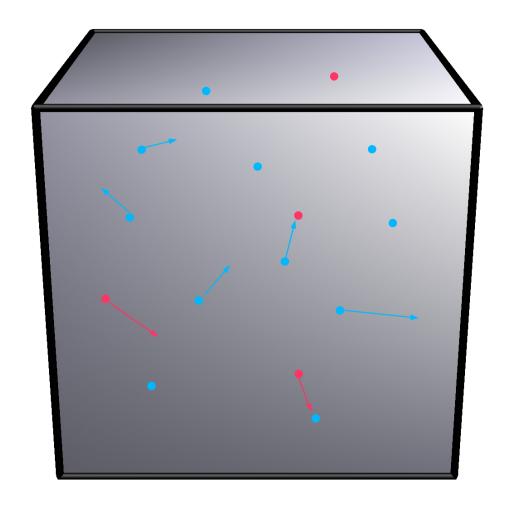


ATP is consumed by processes 1 and 3, and produced by processes 7 and 10

Statistical physics and chemical reaction

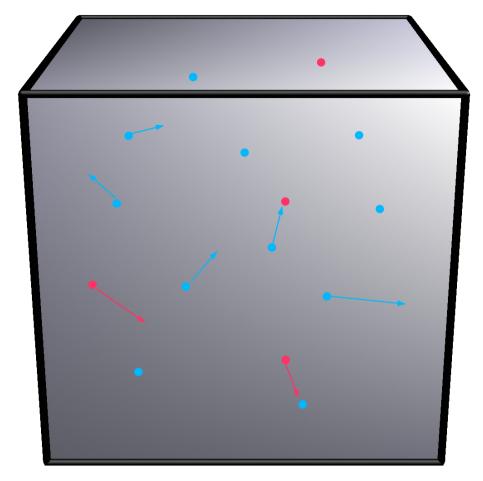


Statistical physics and chemical reaction



$$P(ullet) \propto rac{n(ullet)}{V} = [ullet]$$

Statistical physics and chemical reaction



$$P(ullet) \propto rac{n(ullet)}{V} = [ullet]$$

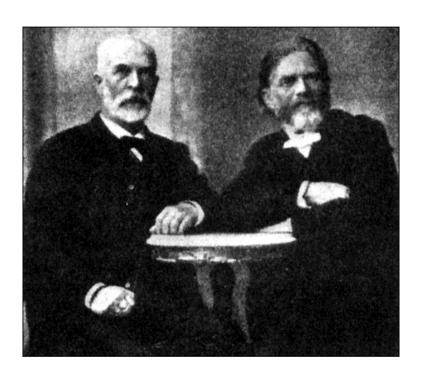
$$P(\text{reaction} \cdot + \cdot) = P(\cdot) \times P(\cdot) \times P(\cdot \text{ reacts with } \cdot)$$

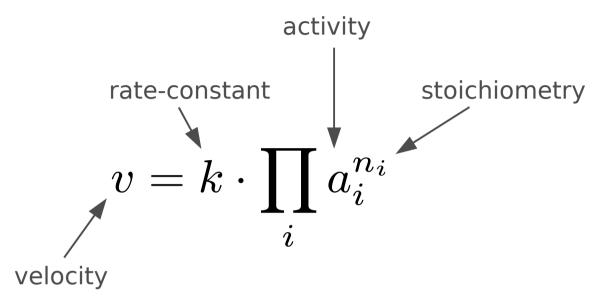
$$P(\text{reaction} \bullet) = P(\bullet) \times P(\bullet \text{ reacts})$$

$$P(\text{reaction} \cdot + \cdot) = P(\cdot) \times P(\cdot) \times P(\cdot \text{ reacts with } \cdot)$$

Law of Mass Action

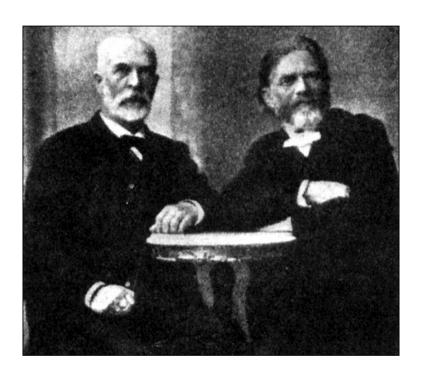
Waage and Guldberg (1864)

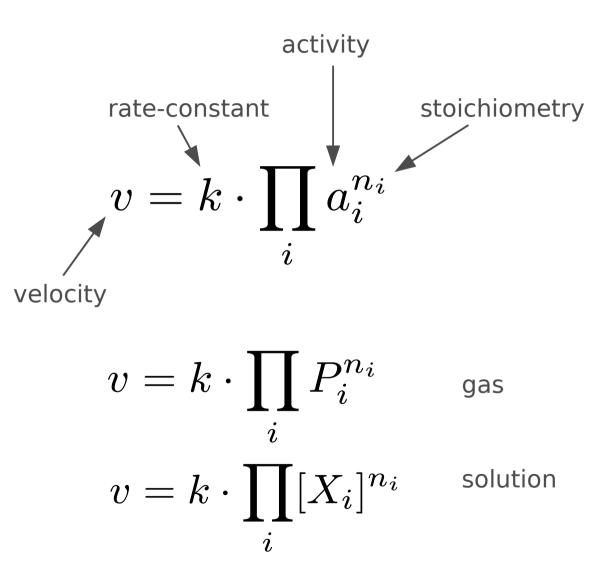




Law of Mass Action

Waage and Guldberg (1864)





Evolution of a reactant

- Velocity multiplied by stoichiometry
- negative if consumption, positive if production
- lacktriangleright Example of a unimolecular reaction $x \stackrel{k}{
 ightarrow} y$

Evolution of a reactant

- Velocity multiplied by stoichiometry
- negative if consumption, positive if production
- lacktriangle Example of a unimolecular reaction $x \stackrel{k}{
 ightharpoonup} y$

$$\frac{d[x]}{dt} = -1 \cdot v = -1 \cdot k \cdot [x]$$

$$\frac{d[y]}{dt} = +1 \cdot v = +1 \cdot k \cdot [x]$$

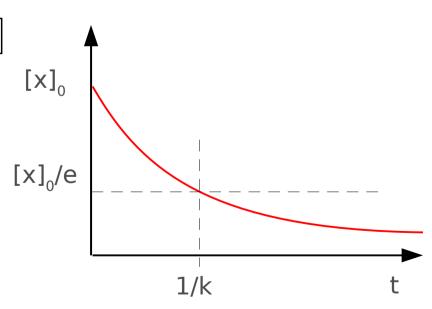
Evolution of a reactant

- Velocity multiplied by stoichiometry
- negative if consumption, positive if production
- lacktriangleright Example of a unimolecular reaction $x \stackrel{k}{
 ightarrow} y$

$$\frac{d[x]}{dt} = -1 \cdot v = -1 \cdot k \cdot [x]$$

$$\frac{d[y]}{dt} = +1 \cdot v = +1 \cdot k \cdot [x]$$

$$x(t) = [x]_0 \cdot e^{-kt}$$



Reversible reaction

$$2x \stackrel{k1}{\rightleftharpoons} y$$
 is equivalent to $y
ightarrow 2x; v1 = k1 \cdot [x]^2$ $y
ightarrow 2x; v2 = k2 \cdot [y]$

Reversible reaction

$$2x \stackrel{k1}{\rightleftharpoons} y$$
 is equivalent to $2x o y; v1 = k1 \cdot [x]^2$ $y o 2x; v2 = k2 \cdot [y]$

$$\frac{d[x]}{dt} = -2 \cdot v1 + 2 \cdot v2 = -2 \cdot k1 \cdot [x]^{2} + 2 \cdot k2 \cdot [y]$$

$$\frac{d[y]}{dt} = +1 \cdot v1 - 1 \cdot v2 = +1 \cdot k1 \cdot [x]^2 - 1 \cdot k2 \cdot [y]$$

Example of an enzymatic reaction

$$E+S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\Rightarrow} E+P$$

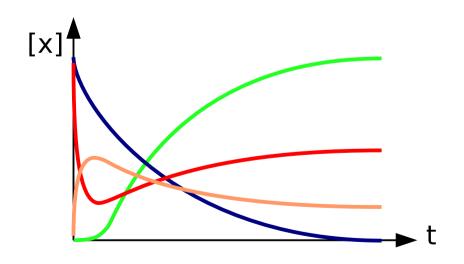
Example of an enzymatic reaction

$$E+S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\Rightarrow} E+P$$
 $d[S]/dt = -k_1[E][S] +k_2[ES]$
 $d[P]/dt = +k_3[ES]$
 $d[E]/dt = -k_1[E][S] +k_2[ES] +k_3[ES]$
 $d[ES]/dt = +k_1[E][S] -k_2[ES] -k_3[ES]$

Example of an enzymatic reaction

$$E+S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\Rightarrow} E+P$$

$$d[S]/dt = -k_1[E][S] + k_2[ES]$$
 $d[P]/dt = +k_3[ES]$
 $d[E]/dt = -k_1[E][S] + k_2[ES] + k_3[ES]$
 $d[ES]/dt = +k_1[E][S] - k_2[ES] - k_3[ES]$



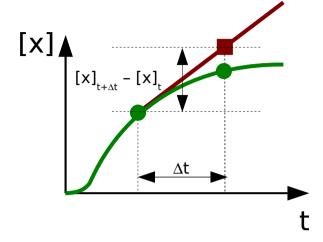
Not feasible in general

Numerical integration

Numerical integration

Euler method:

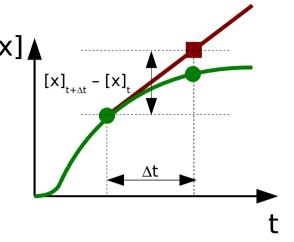
$$d[x]/dt \approx ([x]_{t+\Delta t} - [x]_{t}) / \Delta t$$
$$[x]_{t+\Delta t} \approx [x]_{t} + d[x]/dt . \Delta t$$



Numerical integration

Euler method:

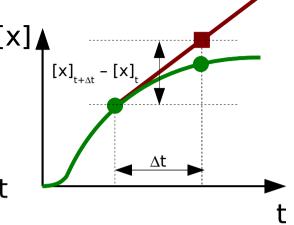
$$\begin{split} d[x]/dt &\approx ([x]_{t+\Delta t} - [x]_{t}) / \Delta t \\ [x]_{t+\Delta t} &\approx [x]_{t} + d[x]/dt . \Delta t \\ [P]_{t+\Delta t} &= [P]_{t} + k_{3}[ES]_{t} . \Delta t \\ [E]_{t+\Delta t} &= [E]_{t} + ((k_{2} + k_{3})[ES]_{t} - k_{1}[E]_{t}[S]_{t}) . \Delta t \\ [S]_{t+\Delta t} &= [S]_{t} + (k_{2}[ES]_{t} - k_{1}[E]_{t}[S]_{t}) . \Delta t \\ [ES]_{t+\Delta t} &= [S]_{t} + (k_{1}[E]_{t}[S]_{t} - (k_{2} + k_{3})[ES]_{t}) . \Delta t \end{split}$$



Numerical integration

Euler method:

$$\begin{split} d[x]/dt &\approx ([x]_{t+\Delta t} - [x]_{t}) / \Delta t \\ [x]_{t+\Delta t} &\approx [x]_{t} + d[x]/dt . \Delta t \\ [P]_{t+\Delta t} &= [P]_{t} + k_{3}[ES]_{t} . \Delta t \\ [E]_{t+\Delta t} &= [E]_{t} + ((k_{2} + k_{3})[ES]_{t} - k_{1}[E]_{t}[S]_{t}) . \Delta t \\ [S]_{t+\Delta t} &= [S]_{t} + (k_{2}[ES]_{t} - k_{1}[E]_{t}[S]_{t}) . \Delta t \\ [ES]_{t+\Delta t} &= [S]_{t} + (k_{1}[E]_{t}[S]_{t} - (k_{2} + k_{3})[ES]_{t}) . \Delta t \end{split}$$

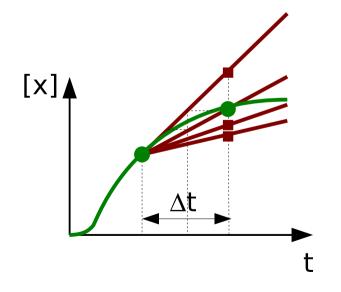


4th order Runge-Kutta:

$$[x]_{t+\Delta t} = [x]_t + (F_1 + 2F_2 + 2F_3 + F_4)/6 . \Delta t$$

with
$$F_1 = d[x]/dt = f([x], t)$$

 $F_2 = f([x]_t + \Delta t/2 \cdot F_1, t + \Delta t/2)$
 $F_3 = f([x]_t + \Delta t/2 \cdot F_2, t + \Delta t/2)$
 $F_4 = f([x]_t + \Delta t \cdot F_3, t + \Delta t)$



E+S
$$\stackrel{\text{kds}}{\longleftarrow}$$
 ES $\stackrel{\text{kcat}}{\longleftarrow}$ EP $\stackrel{\text{kap}}{\longleftarrow}$ E+P $\stackrel{\text{d[P]}}{\longrightarrow}$ = kdp[EP] - kap[E][P]

E+S
$$kds$$
 ES $kcat$ EP kdp E+P $d[P]$ = $kdp[EP] - kap[E][P]$

E+S kds ES $kcat$ EP kdp E+P kdp E+P catalysis irreversible

E+S
$$\frac{kds}{kas}$$
 ES $\frac{kcat}{kcat'}$ EP $\frac{kap}{kdp}$ E+P $\frac{d[P]}{dt} = kdp[EP] - kap[E][P]$

$$E+S \xrightarrow{kds} ES \xrightarrow{kcat} EP \xrightarrow{kap} E+P$$
 catalysis irreversible

$$E+S \xrightarrow{ksa} ES \xrightarrow{kcat} E+P$$
 product in before re-

product is consumed before rebinding

E+S
$$\stackrel{\text{kds}}{\longleftarrow}$$
 ES $\stackrel{\text{kcat}}{\longleftarrow}$ EP $\stackrel{\text{kap}}{\longleftarrow}$ E+P $\stackrel{\text{d[P]}}{\longrightarrow}$ = kdp[EP] - kap[E][P]

$$E+S \xrightarrow{kds} ES \xrightarrow{kcat} EP \xrightarrow{kap} E+P$$
 catalysis irreversible

product is consumed before rebinding

$$S \xrightarrow{\mathsf{E}_{\mathsf{A}}} \mathsf{P}$$
 steady-state

$$\frac{d[P]}{dt} = \frac{[E] \text{ kcat}}{Km}$$

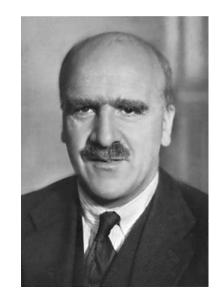
$$1 + \frac{[S]}{[S]}$$

Enzyme kinetics

Victor Henri (1903) Lois Générales de l'Action des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die Kinetik der Invertinwirkung, Biochem. Z. 49:333-369

George Edward Briggs and John Burdon Sanderson Haldane (1925) A note on the kinetics of enzyme action, Biochem. J., 19: 338-339



Briggs-Haldane on Henri-Michaelis-Menten

$$E + S \underset{k_{-1}}{\overset{k^1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

$$[ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

$$[ES] = \frac{[E][S]}{K_m}$$

$$\frac{d[P]}{dt} = k_2[ES]$$

$$[E] = [E_0] - [ES]$$

$$[ES]\frac{K_m}{[S]} = [E_0] - [ES]$$

$$[ES](1 + \frac{K_m}{[S]}) = [E_0]$$

$$[ES] = [E_0] \frac{1}{1 + \frac{K_m}{[S]}}$$

$$\frac{d[P]}{dt} = k_2[E_0] \frac{[S]}{K_m + [S]} = V_{max} \frac{[S]}{K_m + [S]}$$

Briggs-Haldane on Henri-Michaelis-Menten

$$E + S \underset{k_{-1}}{\overset{k^1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

$$\frac{d[P]}{dt} = k_2[ES]$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

$$[E] = [E_0] - [ES]$$

steady-state!!! $[ES]\frac{K_m}{|S|} = [E_0] - [ES]$

$$[ES]\frac{K_m}{[S]} = [E_0] - [ES]$$

$$[ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

$$[ES](1 + \frac{K_m}{[S]}) = [E_0]$$

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

$$[ES] = [E_0] \frac{1}{1 + \frac{K_m}{[S]}}$$

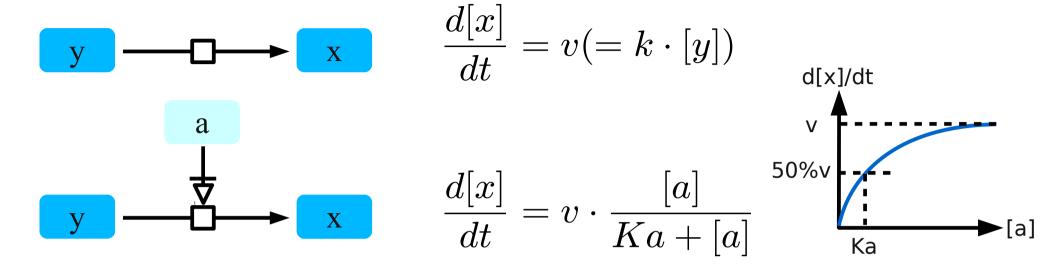
$$[ES] = \frac{[E][S]}{K_m}$$

$$\frac{d[P]}{dt} = k_2[E_0] \frac{[S]}{K_m + [S]} = V_{max} \frac{[S]}{K_m + [S]}$$

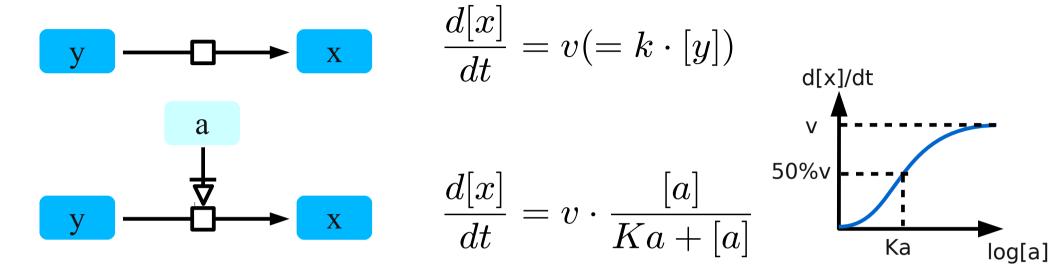
Generalisation of modulation

y
$$\xrightarrow{\mathbf{x}}$$
 $\frac{d[x]}{dt} = v (= k \cdot [y])$

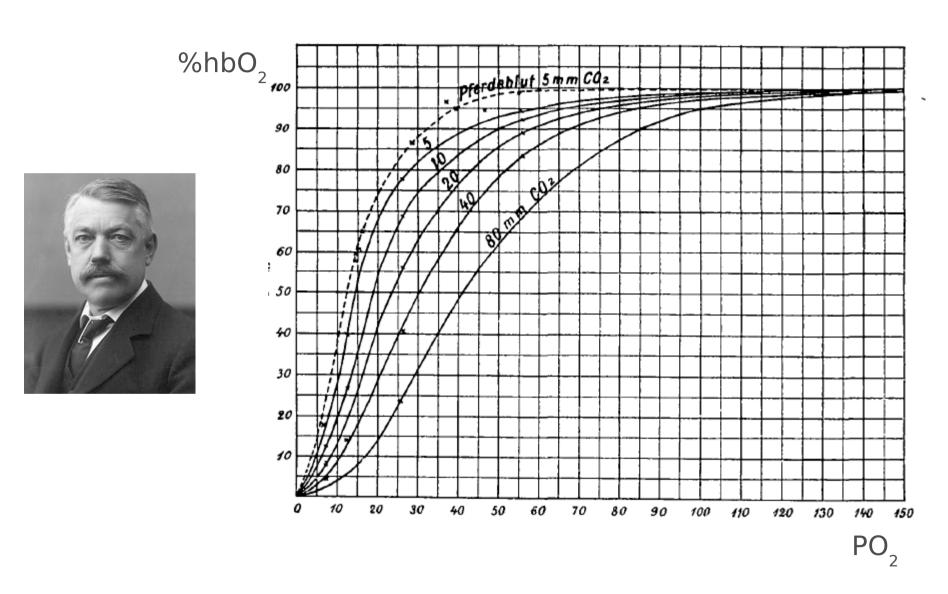
Generalisation: activators



Generalisation: activators



Origins of cooperativity: Bohr



Bohr C (1903) Theoretische behandlung der quantitativen verhältnisse bei der sauerstoff aufnahme des hämoglobins *Zentralbl Physiol* 17: 682

The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. By A. V. Hill.

In a previous communication Barcroft and I gave evidence which seemed to us to prove conclusively that dialysed hæmoglobin consists simply of molecules containing each one atom of iron. The molecular weight is therefore Hb = 16,660. These experiments have not been published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hüfner and Gansser) working on different solutions have obtained divergent results. The method used by all of them was the direct estimation of the osmotic pressure, by means of a membrane permeable to salts, but not to hæmoglobin. The method involves a relatively large error, because the quantity measured is small. It is doubtful however whether this can explain the discordant results.

Our work led me to believe that the divergence between the results of different observers was due to an aggregation of the hæmoglobin molecules by the salts present in the solution, a consequent lowering of the number of molecules, and an increase in the average molecular weight as observed by the osmotic pressure method. To test this hypothesis I have applied it to several of the dissociation curves obtained by Barcroft and Camis with hæmoglobin in solutions of various salts, and with hæmoglobin prepared by Bohr's method.

The equation for the reaction would be

$$Hb + O_2 \rightleftharpoons HbO_2$$
,
 $Hb_n + nO_2 \rightleftharpoons Hb_nO_{2n}$,

where Hb_n represents the aggregate of n molecules of Hb. I have supposed that in every solution there are many different sized aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb₂ the dissociation curve would be

$$y = \lambda \frac{K'x^2}{1 + K'x^2} + (100 - \lambda) \frac{Kx}{1 + Kx}$$
(A),

where $\lambda^{0}/_{0}$ is as Hb₂, $(100 - \lambda)^{0}/_{0}$ as Hb, K' is the equilibrium constant of the reaction Hb₂ + 2O₂ \Longrightarrow Hb₂O₄ and K that of Hb + O₂ \Longrightarrow HbO₂: K has the value 125 (Barcroft and Roberts).

Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. *J Physiol* 40: iv-vii.

The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. By A. V. Hill.

In a previous communication Barcroft and I gave ev seemed to us to prove conclusively that dialysed hæmogl simply of molecules containing each one atom of iron. I published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hüfner and Gansser different solutions have obtained divergent results. The by all of them was the direct estimation of the osmotic means of a membrane permeable to salts, but not to hæmo method involves a relatively large error, because the quant would satisfy the observations. is small. It is doubtful however whether this can expian cordant results.

Our work led me to believe that the divergence between the results of different observers was due to an aggregation of the hæmoglobin molecules by the salts present in the solution, a consequent lowering of the number of molecules, and an increase in the average molecular weight as observed by the osmotic pressure method. To test this hypothesis I have applied it to several of the dissociation curves obtained by Barcroft and Camis with hæmoglobin in solutions of various salts, and with hæmoglobin prepared by Bohr's method.

The equation for the reaction would be

$$Hb + O_2 \rightleftharpoons HbO_2$$
,
 $Hb_n + nO_2 \rightleftharpoons Hb_nO_{2n}$,

where Hb_n represents the aggregate of n molecules of Hb. I have supposed that in every solution there are many different sized aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb₂ the dissociation curve would be

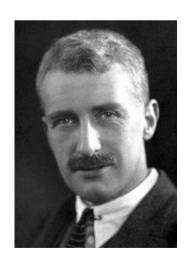
$$y = \lambda \frac{K'x^2}{1 + K'x^2} + (100 - \lambda) \frac{Kx}{1 + Kx}$$
(A),

where $\lambda^{0}/_{0}$ is as Hb₂, $(100 - \lambda)^{0}/_{0}$ as Hb, K' is the equilibrium constant of the reaction $Hb_2 + 2O_2 \rightleftharpoons Hb_2O_4$ and K that of $Hb + O_2 \rightleftharpoons HbO_2$: K has the value 125 (Barcroft and Roberts).

Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. I Physiol 40: iv-vii.

Now it is unlikely that in either of these cases there is only Hb and Hb2: and as the calculation of the constants in these weight is therefore Hb = 16,660. These experiments h equations is very tedious I decided to try whether the equation

$$y = 100 \frac{Kx^n}{1 + Kx^n}$$
(B)



iv

The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. By A. V. Hill.

In a previous communication Barcroft and I gave ev seemed to us to prove conclusively that dialysed hæmogl simply of molecules containing each one atom of iron. I published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hüfner and Gansser different solutions have obtained divergent results. The by all of them was the direct estimation of the osmotic means of a membrane permeable to salts, but not to hæmo method involves a relatively large error, because the quant would satisfy the observations. is small. It is doubtful however whether this can explan cordant results.

Our work led me to believe that the divergence between the results of different observers was due to an aggregation of the hæmoglobin molecules by the salts present in the solution, a consequent lowering of the number of molecules, and an increase in the average molecular weight as observed by the osmotic pressure method. To test this hypothesis I have applied it to several of the dissociation curves obtained by Barcroft and Camis with hæmoglobin in solutions of various salts, and with hæmoglobin prepared by Bohr's method.

The equation for the reaction would be

$$Hb + O_2 \rightleftharpoons HbO_2$$
,
 $Hb_n + nO_2 \rightleftharpoons Hb_nO_{2n}$,

where Hb_n represents the aggregate of n molecules of Hb. I have supposed that in every solution there are many different sized aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb₂ the dissociation curve would be

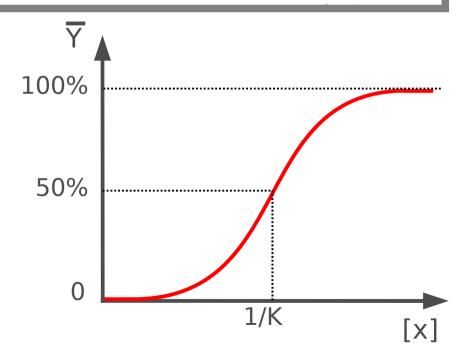
$$y = \lambda \frac{K'x^2}{1 + K'x^2} + (100 - \lambda) \frac{Kx}{1 + Kx}$$
(A),

where $\lambda^{0}/_{0}$ is as Hb₂, $(100 - \lambda)^{0}/_{0}$ as Hb, K' is the equilibrium constant of the reaction $Hb_2 + 2O_2 \rightleftharpoons Hb_2O_4$ and K that of $Hb + O_2 \rightleftharpoons HbO_2$: K has the value 125 (Barcroft and Roberts).

Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. I Physiol 40: iv-vii.

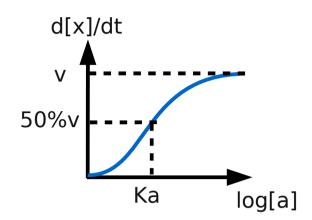
Now it is unlikely that in either of these cases there is only Hb and Hb₂: and as the calculation of the constants in these weight is therefore Hb = 16,660. These experiments h equations is very tedious I decided to try whether the equation

$$y = 100 \frac{Kx^n}{1 + Kx^n}$$
(B)



Ultrasensitivity

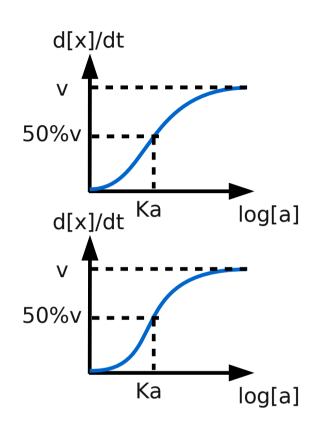
$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$



Ultrasensitivity

$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

$$\frac{d[x]}{dt} = v \cdot \frac{[a]^2}{Ka^2 + [a]^2}$$

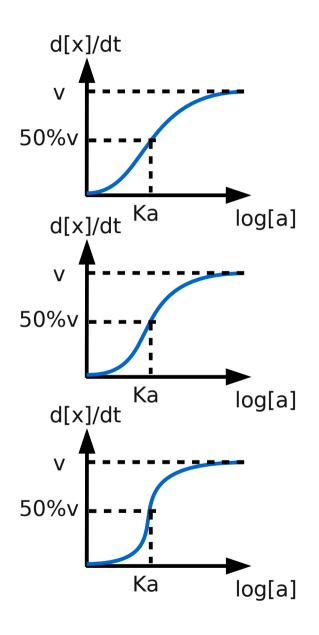


Ultrasensitivity

$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

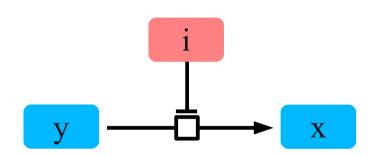
$$\frac{d[x]}{dt} = v \cdot \frac{[a]^2}{Ka^2 + [a]^2}$$

$$\frac{d[x]}{dt} = v \cdot \frac{[a]^n}{Ka^n + [a]^n}$$



Generalisation: inhibitors

$$\frac{d[x]}{dt} = v(=k \cdot [y])$$



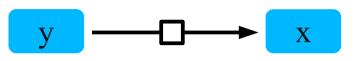
$$\frac{d[x]}{dt} = v \cdot \frac{Ki^m}{Ki^m + [i]^m} \text{ 50\%v}$$

d[x]/dt

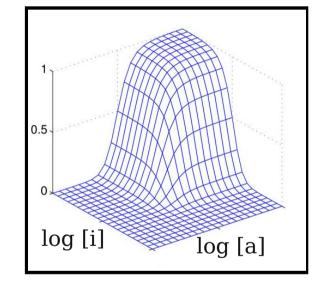
Ki

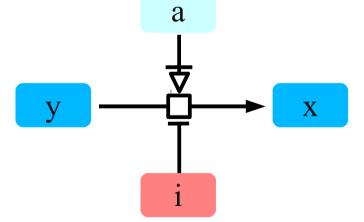
log[i]

Generalisation: activators and inhibitors



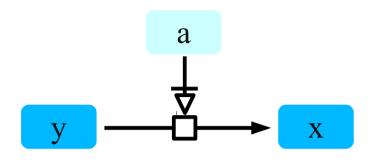
$$\frac{d[x]}{dt} = v(=k \cdot [y])$$



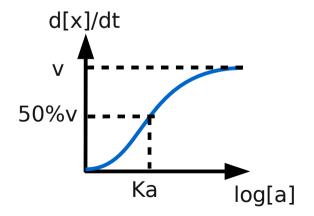


$$\frac{d[x]}{dt} = v \cdot \frac{[a]^n}{Ka^n + [a]^n} \cdot \frac{Ki^m}{Ki^m + [i]^m}$$

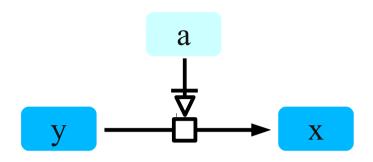
absolute Vs relative activators

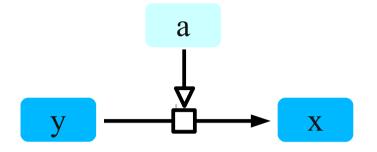


$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

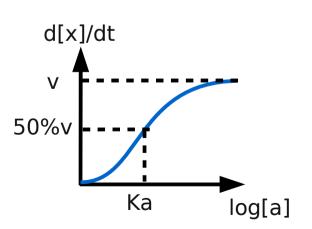


absolute Vs relative activators

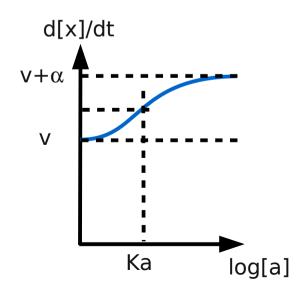




$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$



$$\frac{d[x]}{dt} = v \cdot (1 + \alpha \cdot \frac{[a]}{Ka + [a]})$$

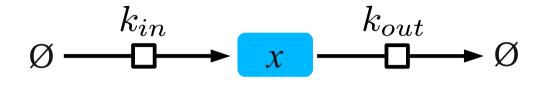


Homeostasis

How can-we maintain a stable level with a dynamic system?

Homeostasis

How can-we maintain a stable level with a dynamic system?



$$\frac{d[x]}{dt} = k_{in} - k_{out} \cdot [x]$$

Homeostasis

How can-we maintain a stable level with a dynamic system?

