

Standards and Resources in Systems Biology: collaborative scale-up toward virtual life

Nicolas Le Novère, EMBL-EBI, United-Kingdom BIOPAX MIRIAM SBGN

 « Je tiens impossible de connaître les parties sans connaître le tout, non plus que de connaître le tout sans connaître particulièrement les parties » Blaise Pascal, Pensées, 1660.

 « Je tiens impossible de connaître les parties sans connaître le tout, non plus que de connaître le tout sans connaître particulièrement les parties » Blaise Pascal, Pensées, 1660.

"[A system consists of] a dynamic order of parts and processes standing in mutual interaction. [...] The fundamental task of biology [is] the discovery of the laws of biological systems" Ludwig von Bertalanfy, Kritische Theorie der Formbildung, 1928

Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.

- Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.
- Mechanistic reconstruction of <u>dynamic</u> systems from the <u>quantitative</u> properties of their elementary building blocks. Made possible by large-scale data production & improvements of computing power and technics

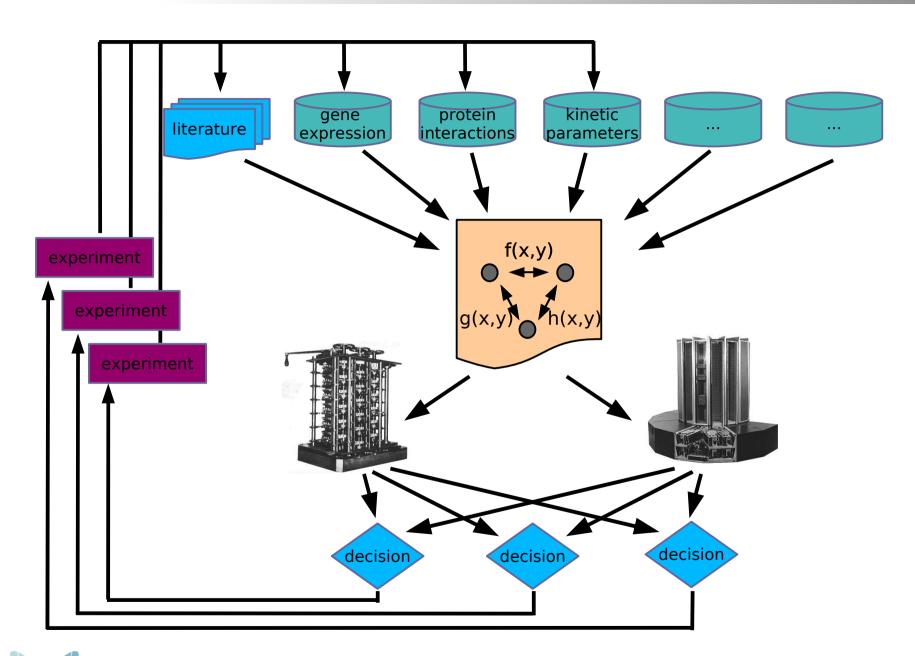
- Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.
- Mechanistic reconstruction of <u>dynamic</u> systems from the <u>quantitative</u> properties of their elementary building blocks. Made possible by large-scale data production & improvements of computing power and technics
- <u>Cybernetics</u> properties are conserved across systems (control theory: feedback, feedforward, robustness...). Systems Biology is scale-free!
 NB: the theoretical treatment is already available.

- Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.
- Mechanistic reconstruction of <u>dynamic</u> systems from the <u>quantitative</u> properties of their elementary building blocks. Made possible by large-scale data production & improvements of computing power and technics
- Cybernetics properties are conserved across systems (control theory: feedback, feedforward, robustness...). Systems Biology is scale-free! NB: the theoretical treatment is already available.
- Physiology was mainly descriptive
 Molecular Biology made Biology explicative
 Systems Biology makes Biology predictive

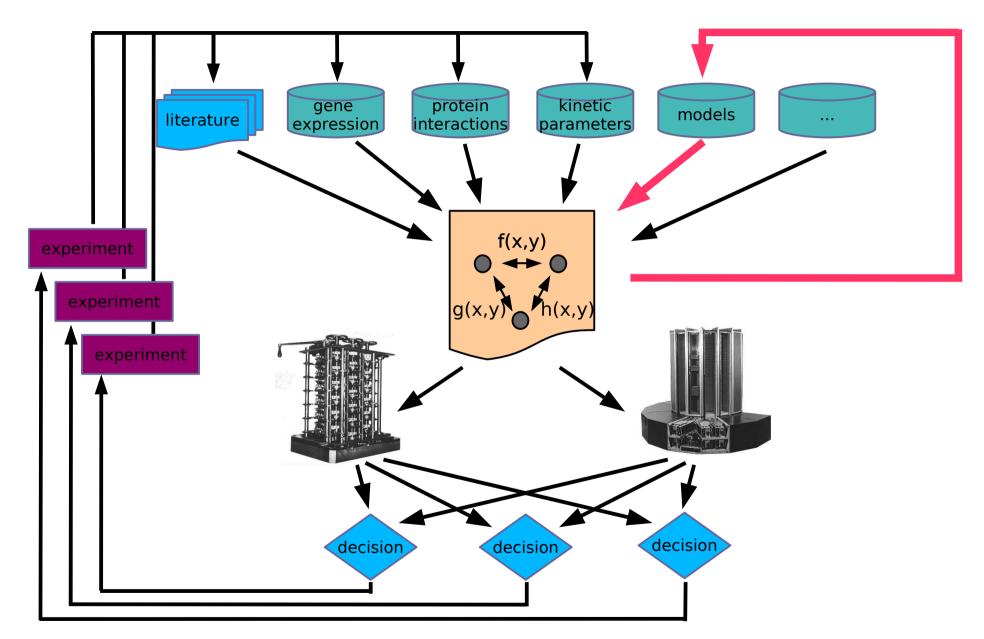
- Systems Biology is the study of a biological system, taking into account all its constituents and their relationships.
- Mechanistic reconstruction of <u>dynamic</u> systems from the <u>quantitative</u> properties of their elementary building blocks. Made possible by large-scale data production & improvements of computing power and technics
- Cybernetics properties are conserved across systems (control theory: feedback, feedforward, robustness...). Systems Biology is scale-free! NB: the theoretical treatment is already available.
- Physiology was mainly descriptive
 Molecular Biology made Biology explicative
 Systems Biology makes Biology predictive

⇒ The question we ask in Systems Biology is not:
"fit my data"

but:


"Surprise-me"

The model as an integrator of knowledge



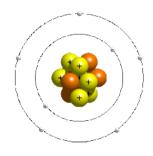
The model as an integrator of knowledge

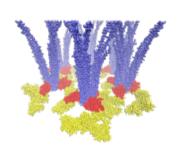
A multiscale problem

10-10

 10^{-8}

 10^{-7}

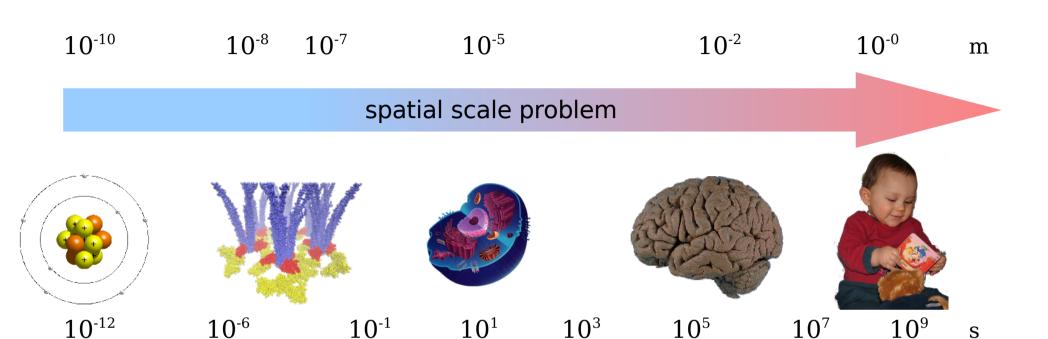

10⁻⁵


10-2

 10^{-0}

m

spatial scale problem



A multiscale problem

time scale problem

molecular conformational molecule signalling gene circadian reproduction life dynamics transition diffusion cascade regulation rhythm cycle nerve cell cycle signal

A simulation problem

• Molecular dynamics: to simulate $\propto 10^{-12}$ s requires $\propto 1$ s

· Particle diffusion: to simulate $\propto 10^{-6}$ s requires $\propto 1$ s

• Stochastic chemical kinetics: to simulate $\propto 1$ s requires $\propto 1$ s

• Continuous ODE: to simulate $\propto 10^3$ s requires $\propto 1$ s

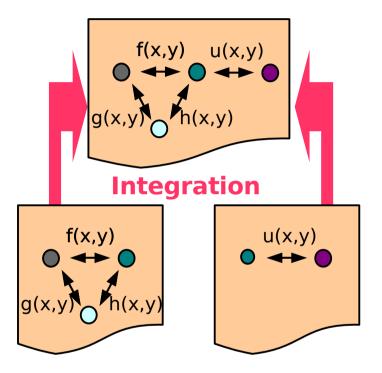
⇒ Humongous stiffness: the speed of the whole simulation is determined by the quickest event

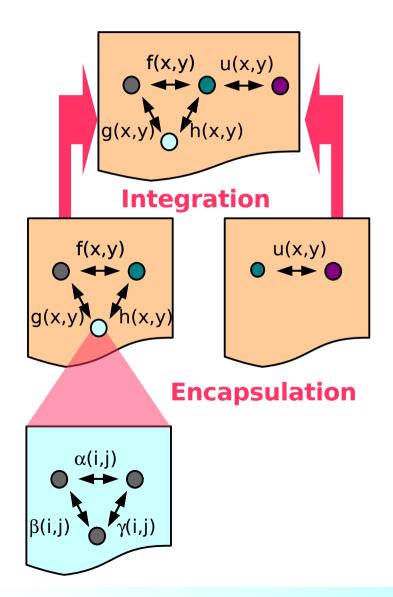
The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.

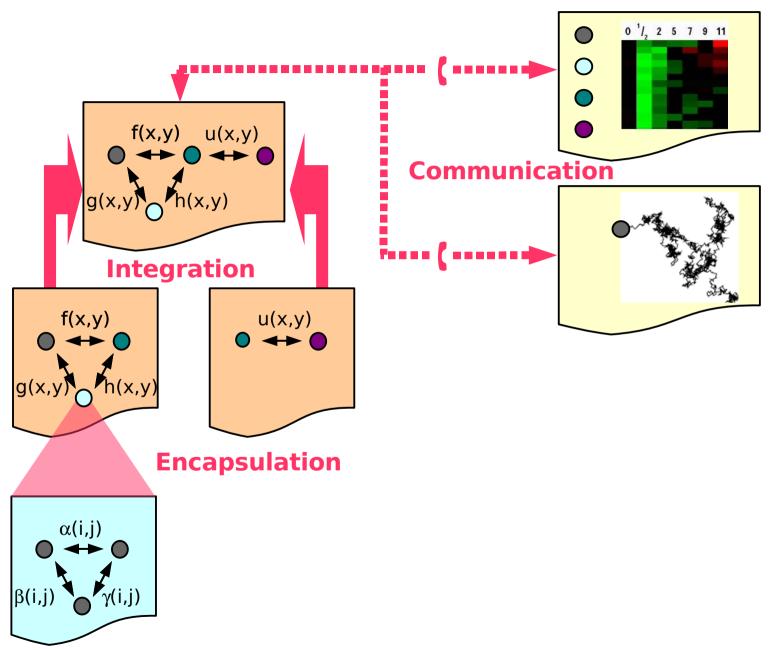
- The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.
- Many different approaches must be used: e.g. for biochemical networks, one can use time-series (continuous, discrete), steady-state analyses (MCA, FBA), logical descriptions etc.

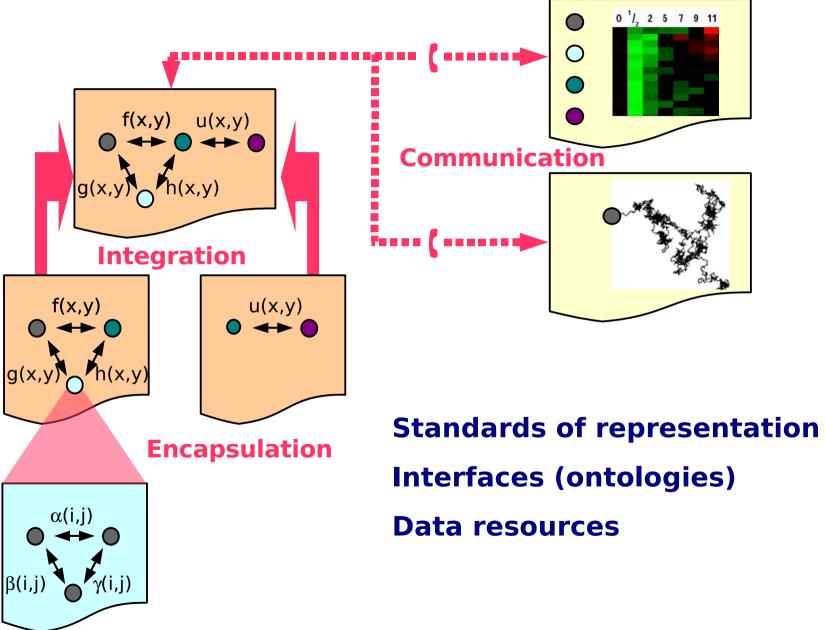
- The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.
- Many different approaches must be used: e.g. for biochemical networks, one can use time-series (continuous, discrete), steady-state analyses (MCA, FBA), logical descriptions etc.
- Very large pathways cannot be built in one shot. We are talking about hundreds of thousands of interactions ...

- The development of quantitative models of even simple living systems requires an extensive knowledge of biology, from biochemical reactions to physiology.
- Many different approaches must be used: e.g. for biochemical networks, one can use time-series (continuous, discrete), steady-state analyses (MCA, FBA), logical descriptions etc.
- Very large pathways cannot be built in one shot. We are talking about hundreds of thousands of interactions ...


⇒ Nobody possesses the required knowledge. Moreover the time, money and energy necessary are prohibitive







Standards of representation

"The nice thing about standards is that there are so many to choose from".

Attributed to Andrew S Tanenbaum

Standards of representation

http://www.neuroml.org/ Flexible (expendable set of classes/schemas);

BrainML.org

http://brainml.org/

Models are XML-schemas

http://www.biopax.org/ No kinetics; deep semantics; OWL

http://www.sbgn.org/

Graphical representation of interactions

Rich kinetics; weak semantics; XML

Google	
	Search this site

home • contacts • documents • downloads • FAQs • forums • Level 3 • models • news • online tools • wiki • workshops

The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks. SBML is applicable to metabolic networks, cell-signaling pathways, regulatory networks, and many others.

Internationally Supported and Widely Used

SBML has been evolving since mid-2000 through the efforts of an international group of software developers and users. Today, SBML is supported by over 100 software systems, including the following (where '* indicates SBML support in development):

BALSA	Dizzy	Moleculizer	SBMLR
BASIS	E-CELL	Monod	SBMLSim
BIOCHAM	ecellJ	Narrator	SBMLToolbox
BioCharon	ESS	NetBuilder	SBIID
ByoDyn	FluxAnalyzer	Oscill8	SBToolbox
BioCyc	Fluxor	PANTHER Pathway	SBW
BioGrid	Gepasi	PathArt	SCIpath
BioModels	Gillespie2	PathScout	Sigmoid*
BioNetGen	HSMB	Pathway Analyser	SigPath
BioPathwise	HybridSBML	PathwayLab	SigTran
Bio Sketch Pad	INSILICO discovery	Pathway Tools	SIMBA
BioSens	JACOBIAN	PathwayBuilder	SimBiology
BioSPICE Dashboard		PATIKAweb	Simpathica
BioSpreadsheet	JDesigner	PaVESy	SimPheny*
BioTapestry	JigCell	PET	SimWiz
BioUML	JSim	PNK	SloppyCell
BSTLab	JWS Online	PottersWheel	SmartCell
CADLIVE	Karyote*	Reactome	SRS Pathway Editor
CellDesigner	KEGG2SBML	ProcessDB	StochSim
Cellerater	Kineticon	PROTON	StochKit
CellML2SBML	Kinsolver*	pysbml	STOCKS
Cellware	libSBML	PySCeS	TERANODE Suite
CL-SBML	MathSBML	runSBML	Trelis
CLEML	MesoRD	SABIO-RK	Virtual Cell
COPASI	MetaboLogica	SBML ODE Solver	WebCell
Cyto-Sim	MetaFluxNet	SBML-PET	WinSCAMP
Cytoscape	MMT2	SBMLeditor	XPPAUT
DBsolve	Modesto	SBMLmerge	

BioNetGen@VCell Release

(October 6, 2006) BioNetGen@VCell is a new release of BioNetGen, a tool for automatically generating a reaction network from user-specified rules for biomolecular interactions on the level of protein domains.

read more

PottersWheel supports SBML

(October 4, 2006) PottersWheel 1.2 beta, a MATLAB systems biology toolbox, supports model creation, fitting data, and designing new experiments.

read more

SBML Level 2 Version 2 Released!

(September 25, 2006) The final version of the SBML Level 2 Version 2 specification is now available!

read more

SBML Wikipedia entry

(September 18, 2006) There is now an updated entry for SBML in Wikipedia. Let us know your suggestions for improvements.

read more

SBML Tutorial at ICSB 2006

(September 8, 2006) Mike Hucka will be leading a tutorial on SBML this year at ICSB 2006 in Japan. The focus will be on the about-to-be-released SBML Level 2 Version 2.

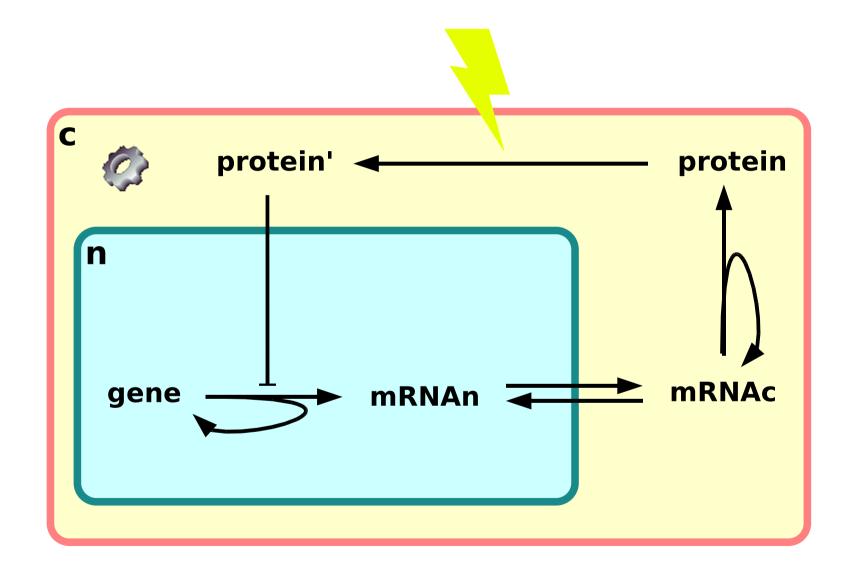
read more

See older news items.

A Free and Open Language

Advances in hiotechnology are leading to larger more complex quantitative models. The systems hiology

What the heck is SBML


"The goal of SBML is to help people to disagree as precisely as possible". Ed Franck, Argonne National Laboratory

What can we encode in SBML?


```
<?xml version="1.0" encoding="UTF-8"?>
<sbml level="2" version="1" xmlns="http://www.sbml.org/sbml/level2">
  <model>
    <listOfCompartments>
      <compartment id="cell" />
    </listOfCompartments>
    <listOfSpecies>
      <species id="A" compartment="cell" initialConcentration="1"/>
      <species id="B" compartment="cell" initialConcentration="0"/>
    </listOfSpecies>
    <listOfParameters>
      <parameter id="kon" value="1"/>
    </listOfParameters>
    <listOfReactions>
      <reaction>
        <listOfReactants>
          <speciesReference species="A" />
        </listOfReactants>
        <listOfProducts>
          <speciesReference species="B" />
        </listOfProducts>
        <kineticLaw>
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <times />
              <ci>kon</ci>
              <ci>A</ci>
              <ci>ci>cell</ci>
            </apply>
          </kineticLaw>
      </reaction>
    </listOfReactions>
  </model>
</sbml>
```


SBML is not limited to biochemistry!

- Rate Rules can describe the temporal evolution of any quantitative <u>parameter</u>, e.g. transmembrane voltage;
- Events can describe any discontinuous change, e.g. neurotransmitter release:
- A species is an entity participating to a reaction, **not always** a **chemical** entity:
 - It can be a molecule
 - It can be a cell
 - It can be an organ
 - It can be an organism
- → Remember, Systems Biology is scale-free!

- Level 1 (March 2001)
 - Predefined kinetics functions
 - Only one type of reactive substance
 - ISO646 encoding
- Level 2 (June 2003)
 - User-defined functions
 - Modifier species
 - Events
 - All math in MathML
 - Unicode encoding
 - IETF MIME-Type, see RFC3823
- · Level 3 (?)

Hucka et al (2003)

Bioinformatics 19: 524-531

Hucka et al (2004) *IEE Systems Biology* 1: 41-53

New: SBML Level 2 Version 2

- · Released on September 25th 2006
- · Simpler and cleaner (units ...)
- Generic entities (compartmentType, speciesType)
 - → path to generalised reactions
- Constraints and initialAssignments
- Controlled annotations (+ links to SBO)
- Backward compatible with Level 2 Version 1
- More detailed and bug-free specification ... 145 pages, 10pt, small margin.

- Modular SBML, with core + optional packages
- Graph Layout
- Generalised reactions (probable)
- Model composition (probable)
- Complex species (probable)
- Arrays or sets (maybe)
- Geometry (maybe)
- Movements (maybe)
- Dynamic compartments (maybe)
- · ???

Is SBML enough? What's missing?

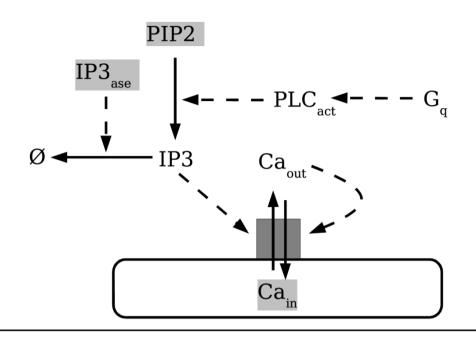
- An SBML model lists physical entities, but does not identify them properly.
- An SBML model contains mathematical expressions, but does not tell-us what they characterise and how.
- An SBML constructed for a certain modelling approach cannot be used straight-away within another modelling framework.
 - ⇒ SBML models cannot be easily searched SBML models cannot be easily converted SBML models cannot be easily merged

Minimum Information Requested In the Annotation of biochemical Models

Le Novère N., Finney A., Hucka M., Bhalla U., Campagne F., Collado-Vides J., Crampin E., Halstead M., Klipp E., Mendes P., Nielsen P., Sauro H., Shapiro B., Snoep J.L., Spence H.D., Wanner B.L.

Nature Biotechnology (2005), 23: 1509-1515

Reference correspondence


- The model must be encoded in a public, standardized, machine-readable format (SBML, CellML, GENESIS ...)
- The model must comply with the standard in which it is encoded!
- The model must be clearly related to a single reference description.
 If a model is composed from different parts, there should still be a description of the derived/combined model.
- The encoded model structure must reflect the biological processes listed in the reference description.
- The model must be instantiated in a simulation: All quantitative attributes have to be defined, including initial conditions.
- When instantiated, the model must be able to reproduce all results given in the reference description within an epsilon (algorithms, round-up errors)

Model example

$$k_1 = k_2 = k_3 = 1 \, s^{-1}$$

$$Km_1 = 10^{-7} M, Km_2 = 10^{-8}, Km_3 = 2.10^{-6} M$$

$$K_A = 10^{-11}, m = 4, n = 3, \alpha = 0.001$$

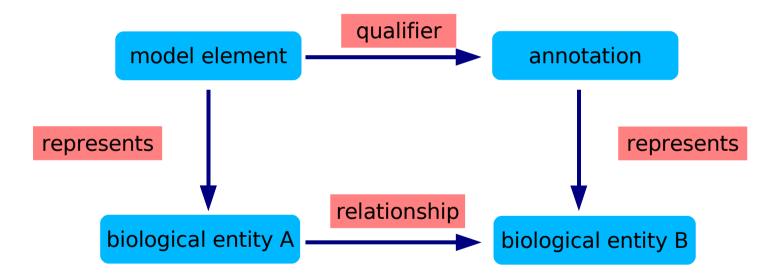
$$\frac{d[Ca_{out}]}{dt} = \frac{k_1[IP3R] * ([Ca_{in}] - [Ca_{out}])}{Km_1 + |[Ca_{in}] - [Ca_{out}]|} * \frac{[IP3]^m}{K_A + [IP3]^m}$$

$$\frac{d[IP3]}{dt} = \frac{k_2[PLC_{act}] * [PIP2]}{Km_2 + [PIP2]} - \frac{k_3[IP3_{ase}] * [IP3]}{Km_3 + [IP3]}$$
$$\frac{d[PLC_{act}]}{dt} = \frac{[G_q]^n}{\alpha + [G_q]^n} * [PLC_{tot}]$$

$$[Ca_{in}] = [IP3R] = [PLC_{tot}] = [PIP2] = [IP3_{ase}] = 0.001 M$$

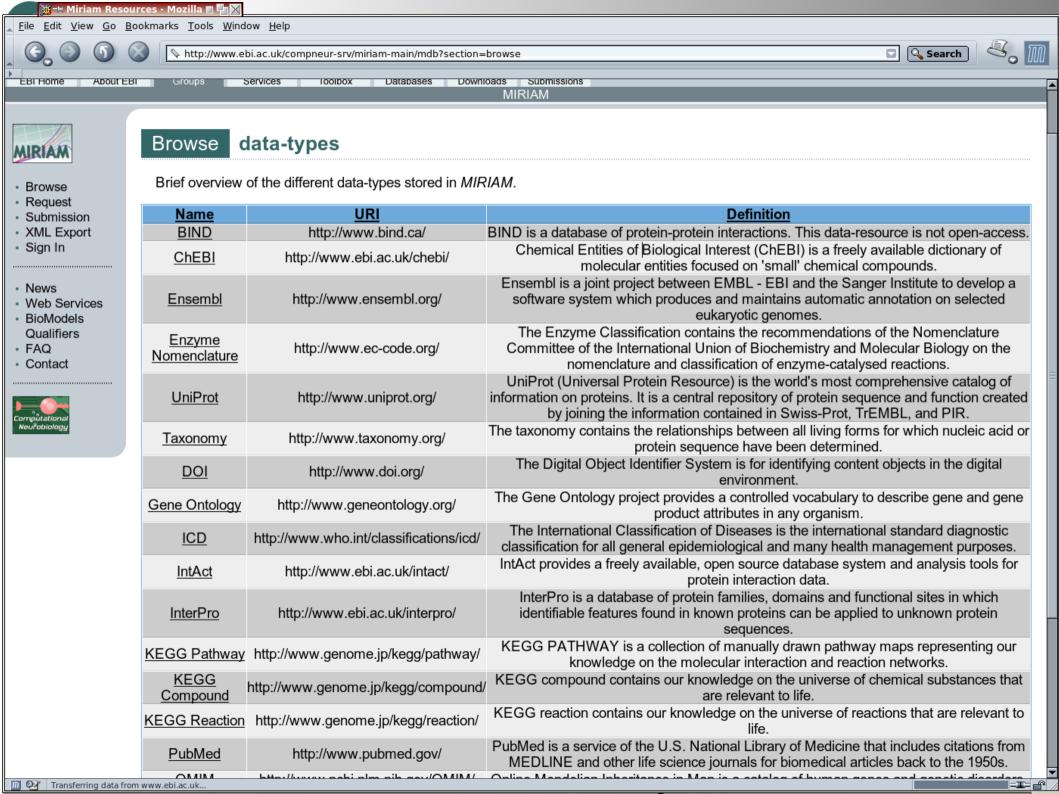
$$[G_q] = 0.01 M, [Ca_{out}] = [IP3] = [PLC_{act}] = 0 M$$

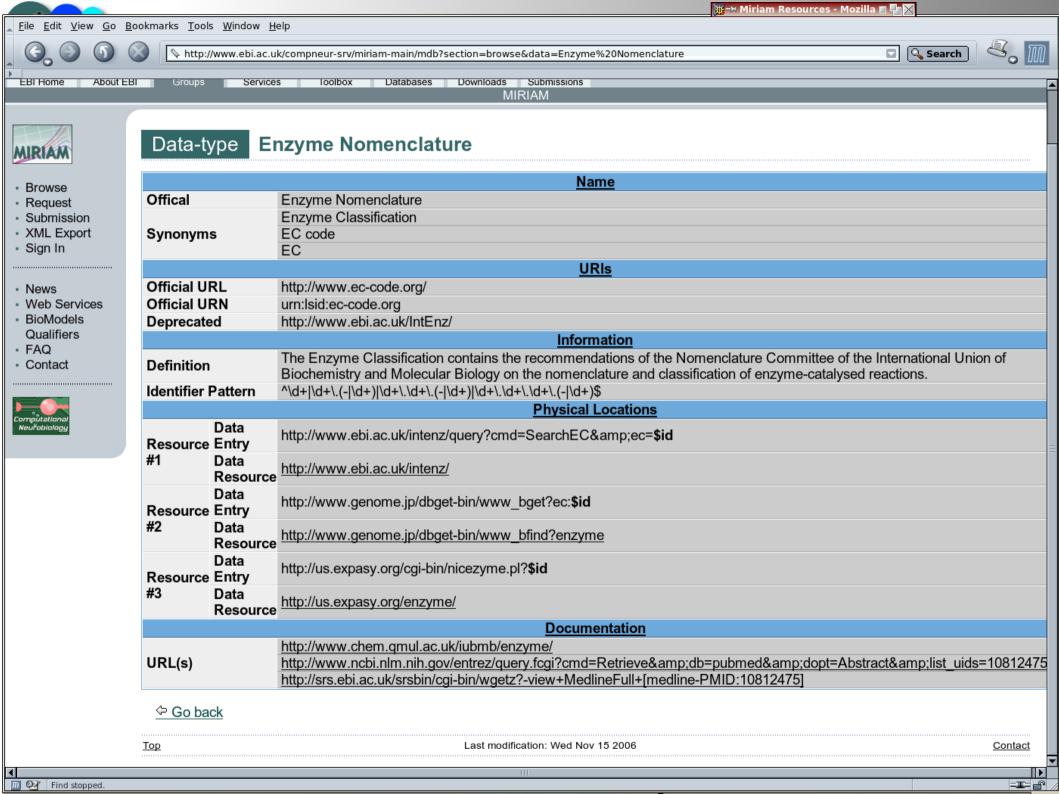
- The model has to be named.
- A citation of the reference description must be joined (complete citation, unique identifier, unambigous URL). The citation should permit to identify the *authors* of the model.
- The name and contact of model creators must be joined.
- The date and time of creation and last modification should be specified. An history is useful but not required.
- The model should be linked to a precise statement about the terms of distribution. MIRIAM does <u>not</u> require "freedom of use" or "no cost".



External resource annotation

- The annotation must permit to unambiguously relate a piece of knowledge to a model constituent.
- The referenced information should be described using a triplet {data-type, identifier, qualifier}




The community has to agree on a set of standard valid data-types. A database and the associated API (WebServices) have been developed at the EBI to provide the generation and interpretation of URIs.

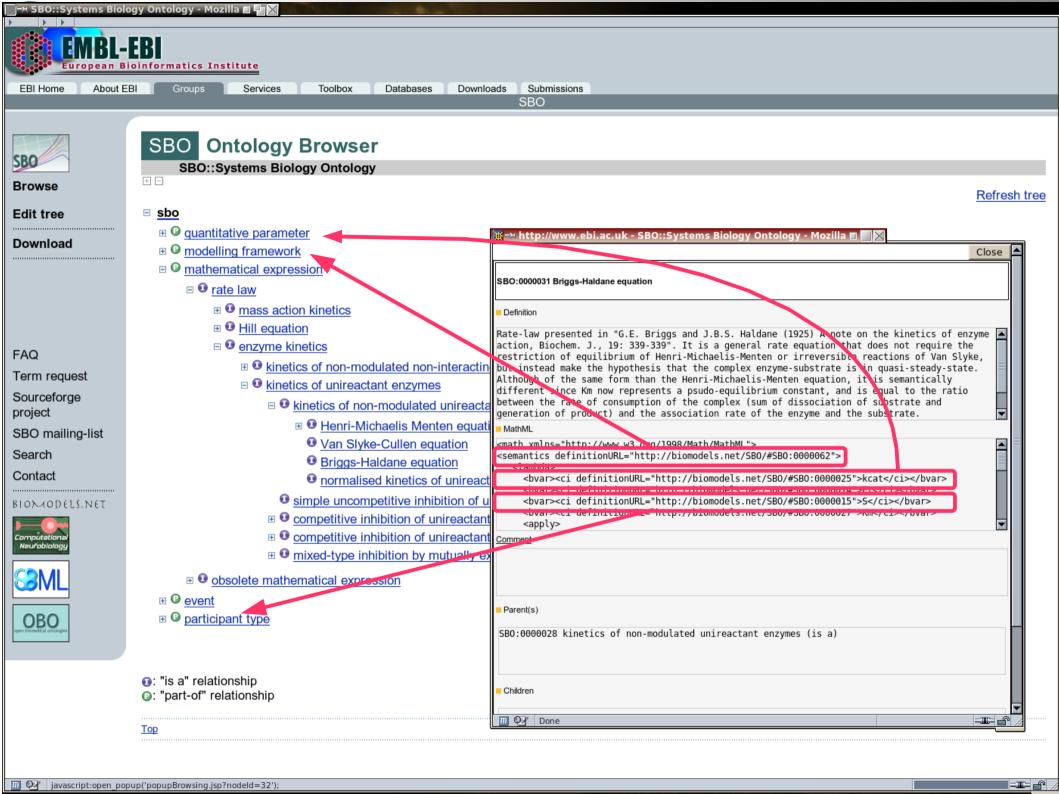
creators creation date last modification	Joe User (juser@eden.com), Anne Other 01 January 0000 31 May 2005	·		
Constituent	Data Type	Identifier	Qualifier	Meaning
model	http://www.pubmed.gov/ http://www.taxonomy.org/ http://www.geneontology.org/ http://www.geneontology.org/ http://www.genome.jp/kegg/pathway http://www.genome.jp/kegg/pathway	0000000 9606 GO:0007204 GO:0051279 hsa04020 hsa04070	IsVersionOf IsVersionOf IsPartOf IsPartOf	Homo sapiens positive regulation of cytosolic ca2+ concentration regulation of release of sequestered ca2+ into cytop Calcium signaling pathway—H sapiens Phosphatidylinositol signaling system—H sapiens
compartment ER	http://www.geneontology.org/	GO:0005790		smooth endoplasmic reticulum
reactant Ca_{in}	http://www.ebi.ac.uk/chebi/	CHEBI:29108		calcium(2+)
compartment cytoplasm	http://www.geneontology.org/	GO:0005737		cytoplasm
reactant Ca _{out}	http://www.ebi.ac.uk/chebi/	CHEBI:29108		calcium(2+)
reactant IP3	http://www.ebi.ac.uk/chebi/	CHEBI:16595		1D-myo-inositol 1,4,5-tris(dihydrogen phosphate)
reactant PIP2	http://www.ebi.ac.uk/chebi/	CHEBI:18348		1-phosphatidyl-1D-myo-inositol 4,5-bisphosphate
reactant IP3R	http://www.uniprot.org/ http://www.uniprot.org/ http://www.uniprot.org/	Q14643 Q14571 Q14573	Has Version Has Version Has Version	Inositol 1,4,5-trisphosphate receptor type 1 Inositol 1,4,5-trisphosphate receptor type 2 Inositol 1,4,5-trisphosphate receptor type 3
reactant PLC _{act}	http://www.uniprot.org/	Q9NQ66	IsVersionOf	PIP2 phosphodiesterase $\beta 1$
reactant PLC_{tot}	http://www.uniprot.org/	Q9NQ66		PIP2 phosphodiesterase β 1
reactant IP3 _{ase}	http://www.uniprot.org/	Q14642		Type I inositol-1,4,5-trisphosphate 5-phosphatase
reactant G_q	http://www.uniprot.org/	Q6NT27		Guanine nucleotide binding protein Gq
reaction Ca _{release}	http://www.geneontology.org/ http://www.geneontology.org/	GO:0005220 GO:0008095	IsVersionOf	IP3-sensitive calcium-release channel activity IP3 receptor activity
reaction IP3 _{production}	http://www.geneontology.org/ http://www.ec-code.org/	GO:0004435 3.1.4.11	IsVersionOf IsVersionOf	phosphoinositide phospholipase C activity phosphoinositide phospholipase C
reaction IP3 $_{degradation}$	http://www.ec-code.org/	3.1.3.56	IsVersionOf	inositol-polyphosphate 5-phosphatase
reaction PLC _{activation}	http://www.geneontology.org/	GO:0007200		G-protein signaling coupled to IP3 2nd messenger

The Systems Biology Ontology

http://www.ebi.ac.uk/sbo/

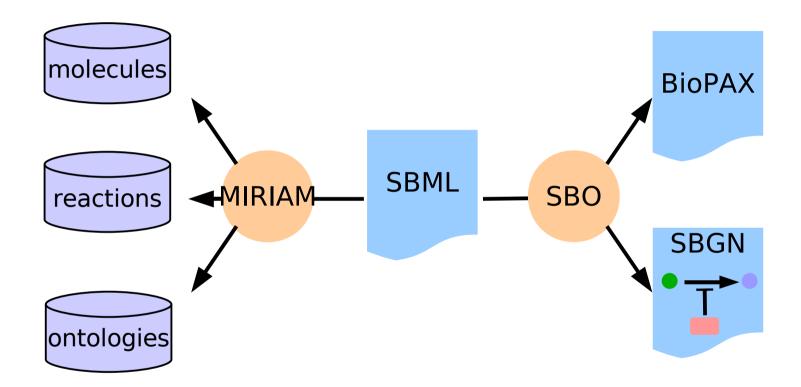
Classifications Vs. Ontologies

- Ontology: A set of elements of knowledge linked with sense-bearing relationships.
- Each term of an ontology is associated to a <u>perennial</u> identifier.
 Once created a term is never destroyed. It can be merged with another, or made obsolete, but it still exists.
- An ontology is an evolving structure: It can cope with an increase or refinement of knowledge. No need to reconstruct everything as with the taxonomies.
- An ontology is a Direct Acyclic Graph, and not a hierarchy. A term can possess more than one parent.
- Ontologies are stored in standard machine-readable formats. They can be subjected to automatic treatments.



Systems Biology Ontology vocabularies

- Types and roles of reaction participants, including terms like "substrate", "catalyst" etc., but also "macromolecule", or "channel".
- Parameter used in quantitative models. This vocabulary includes terms like "Michaelis constant", "forward unimolecular rate constant"etc.
- Mathematical expressions. Examples of terms are "mass action kinetics", "Henri-Michaelis-Menten equation" etc. Each term contains a precise mathematical expression stored as a MathML lambda function. The variables refer to the CVs described above.
- Modelling framework to precise how to interpret the rate-law. E.g. "continuous modelling", "discrete modelling" etc.
- Event type, such as "catalysis" or "addition of a chemical group".



Requirements for a unified model resource

- Neither focussed on a particular biological substrate or process, nor specialised on a given modelling approach
- · Real "searchable" database rather than mere repository
- Models thoroughly verified, structure and results, and annotated
- · International collaboration rather than a one-group effort
- · Freely available and reusable
- Long-term commitment and secure funding

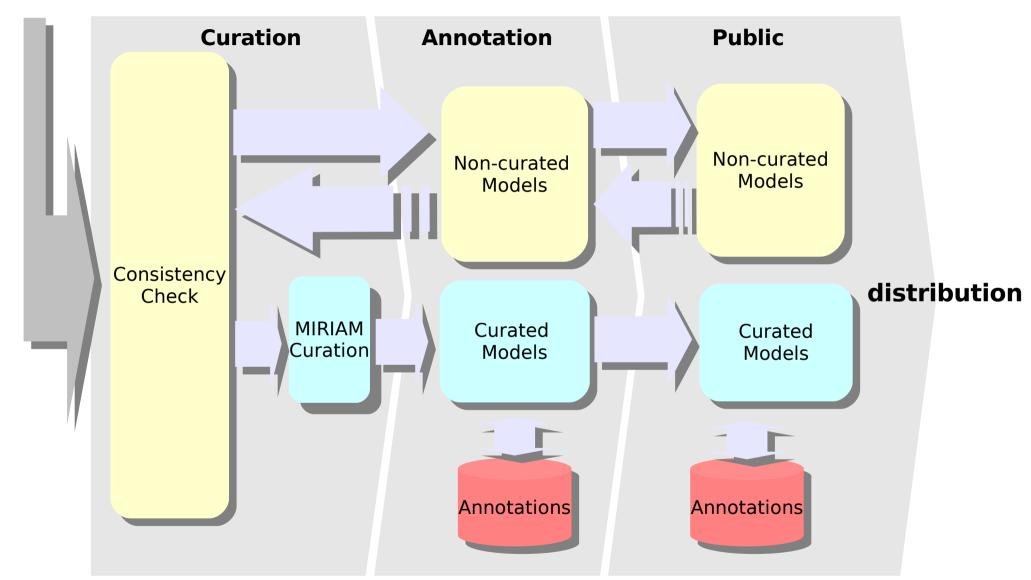
BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems

Le Novère N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. Nucleic Acids Research, (2006), 34: D689-D691

http://www.ebi.ac.uk/biomodels/

What is BioModels Database?

- Store and serve <u>quantitative</u> models of biomedical interest
- · Only models described in the <u>peer-reviewed</u> scientific literature.
- Models are <u>curated</u>: computer software check the syntax, while human curators check the semantics.
- · Models are <u>simulated</u> to check the reference correspondence
- Model components are <u>annotated</u>, to improve identification and retrieval.
- Models are accepted in several formats, and served in several others.
- · Aims to be the "UniProt" of quantitative modelling.



Structure of BioModels Database

Submission

···· Curated Models

···· Non-curated Models

····· Search

Submit Your Model

:... Curation tips

.... Annotation tips

Sign-in

News

FAG

Model of the month

Terms of Use

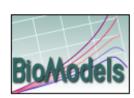
Related Software

Meetings

Contact

Quote

BIOMODELS.NET



BioModels **Database**

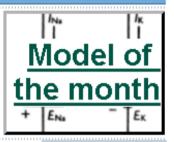
A Database of Annotated Published Models

BioModels Database is a data resource that allows biologists to store, search and retrieve published mathematical models of biological interests. Models present in BioModels Database are annotated and linked to relevant data resources, such as publications, databases of compounds and pathways, controlled vocabularies, etc.

[Browse curated models]

[Browse non-curated models]

[Search]


Gard October 2006 - Sixth Release! [More] [Download All Models Under SBML L2 V1 Format]

July 2006 - PLoS Computational Biology supports BioModels Database [more]

6 06th January 2006 - publication of a paper describing BioModels Database [Nucleic Acids Res.]

Acknowledgements

BioModels Database is developed in collaboration by the teams of Nicolas Le Novère (EMBL-EBI, United-Kingdom), Michael Hucka (SBML Team, Caltech, USA), Herbert Sauro (Keck Graduate Institute, USA), Hiroaki Kitano (Systems Biology Institute, Japan), Hans Westerhoff and Jacky Snoep (JWS Online, Stellenbosch (ZA) and Manchester (UK) Universities and ZA), as part of the BioModels.net initiative. BioModels Database development has benefitted from funds of the European Molecular Biology Laboratory (Le Novère team) and the National Institute of General Medical Sciences (SBML team).

Developers: Mélanie Courtot, Arnaud Henry, Camille Laibe, Chen Li (main developer), Lu Li, Nicolas Rodriguez (Alumni: Marco Donizelli)

Model curators and annotators: Harish Dharuri, Henuo He, Nicolas Le Novère, Lu Li, Rainer Machne, Bruce Shapiro.

🚰 Summer Internships

We are looking for intern students to work on the curation of our BioModels Database. These internships are not part of a university training. Nevertheless, this is an opportunity for the postholders to gain experience in an international environment. A limited funding is provided to cover for living expenses.

Successful candidates have experience in working with GNU/Linux operating system, and have a good knowledge of the main data resources used in biology. Curation of BioModel Database requires solid bases of mathematics and a good knowledge of

BIOMODELS DATABASE

BloModels

···· Curated Models

:-- Non-curated Models

:--- Search

Submit Your Model

 $\vdots \cdots \ \mathsf{Curation} \ \mathsf{tips}$

:--- Annotation tips

Sign-in

News

FAQ

Model of the month

Terms of Use

Related Software

Meetings

Contact Quote

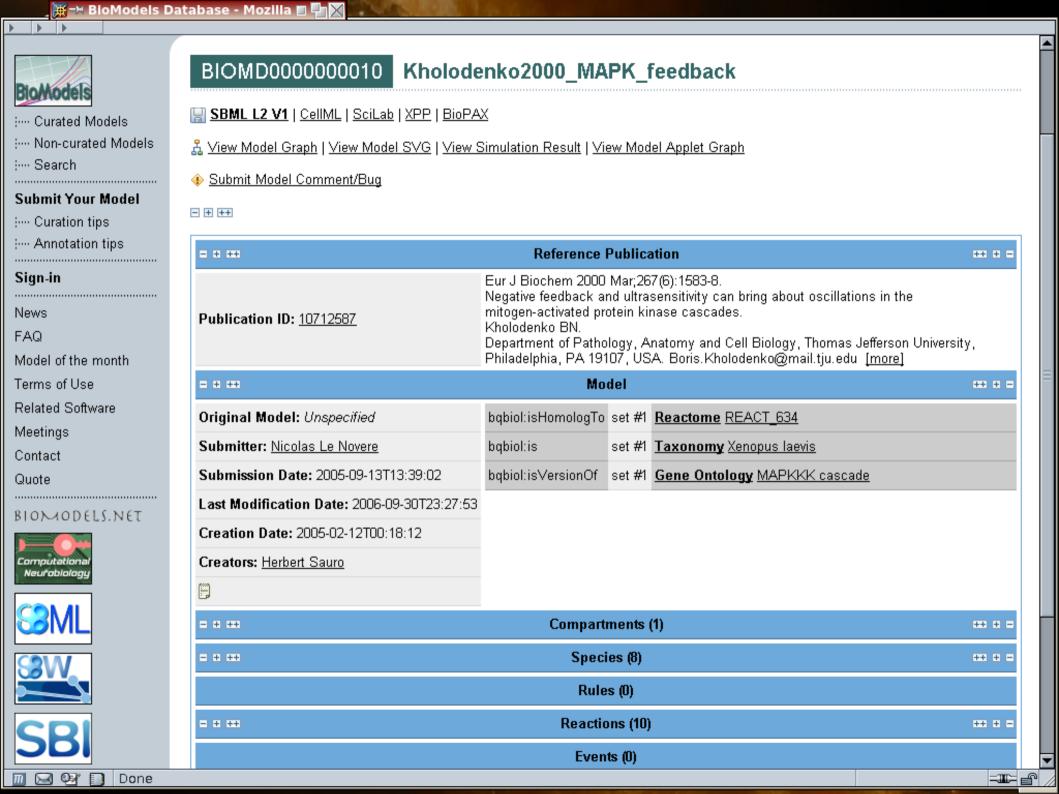
BIOMODELS.NET

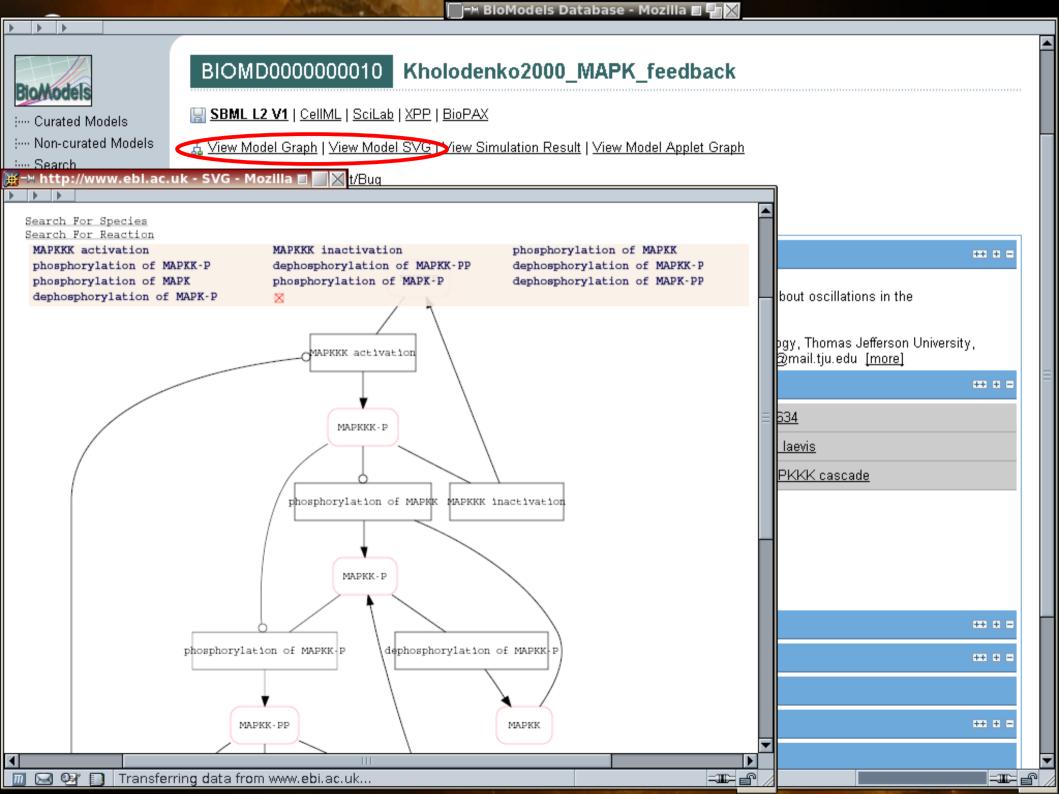
Search Models

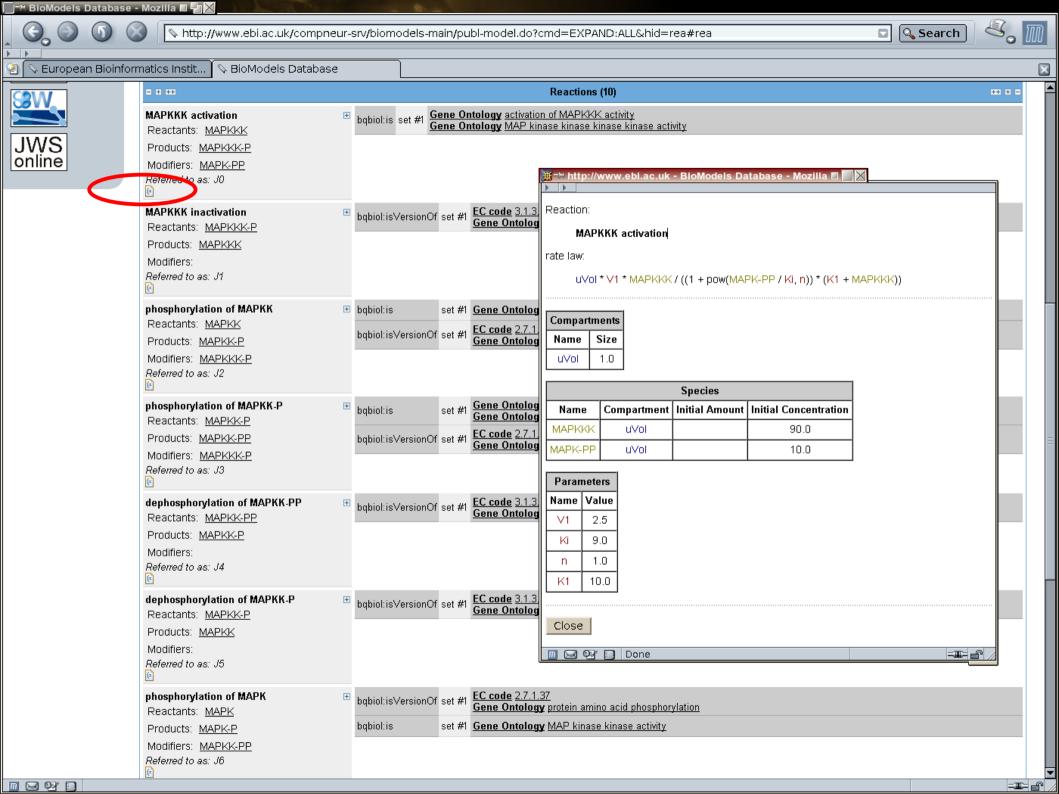
The search totally returned 13 models.

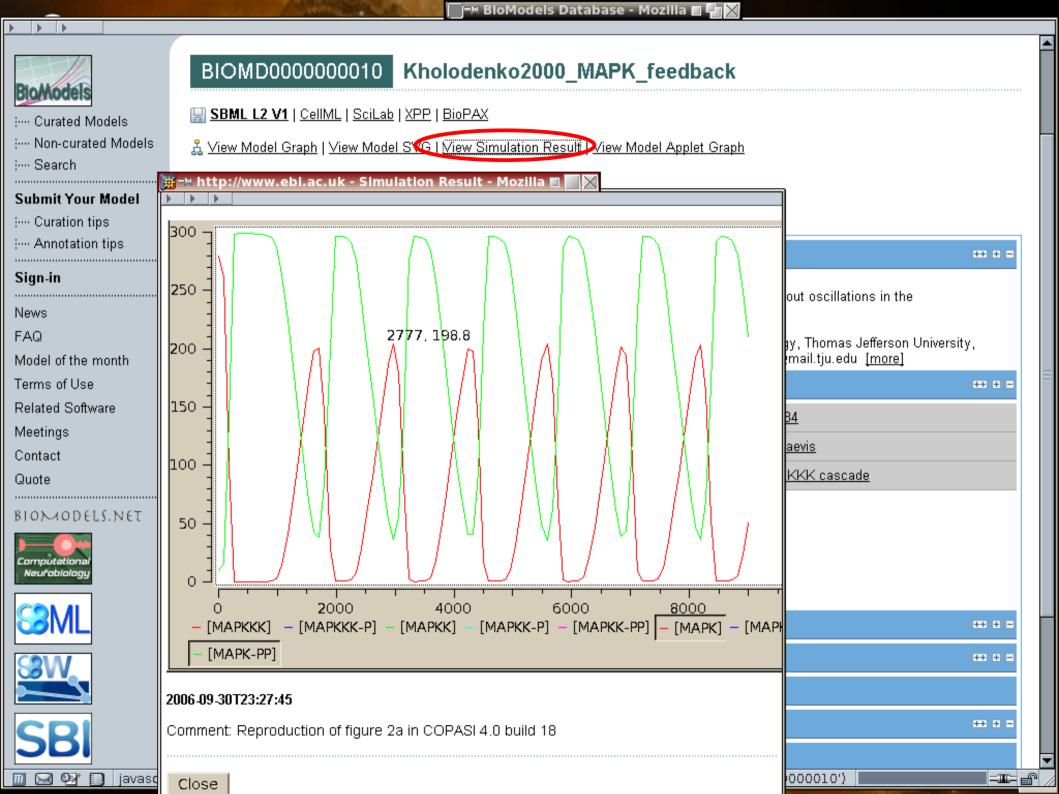
<⇒ <u>New Search</u>

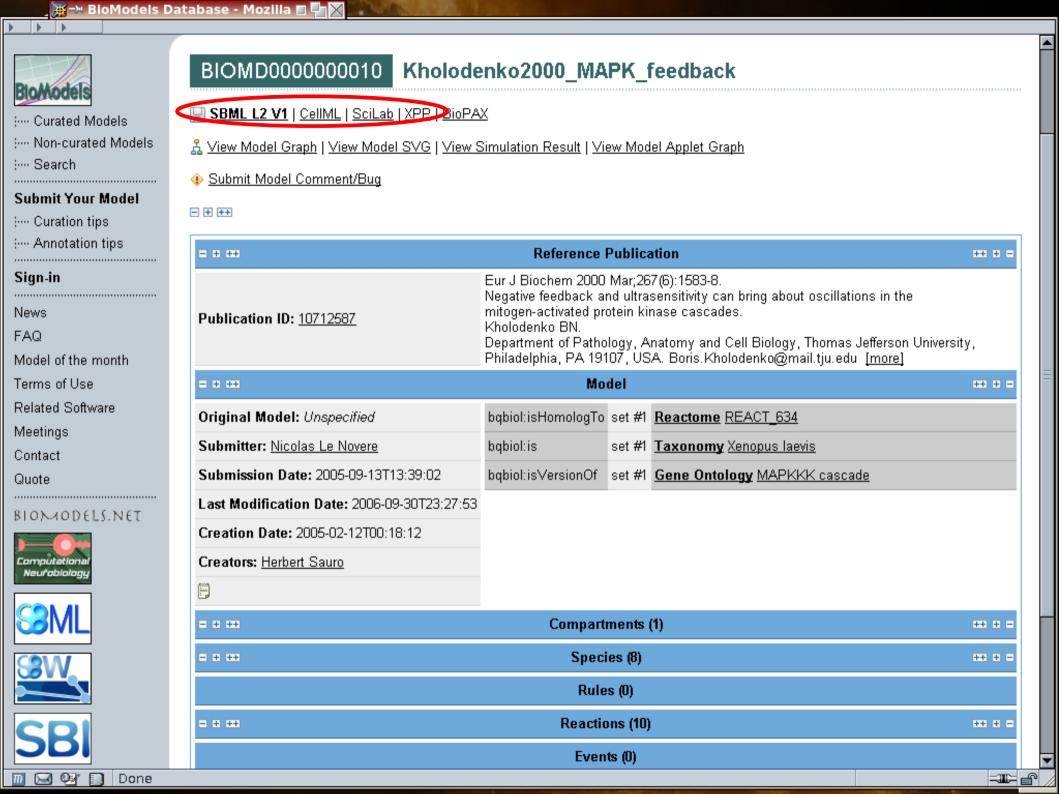
Show 10 Only

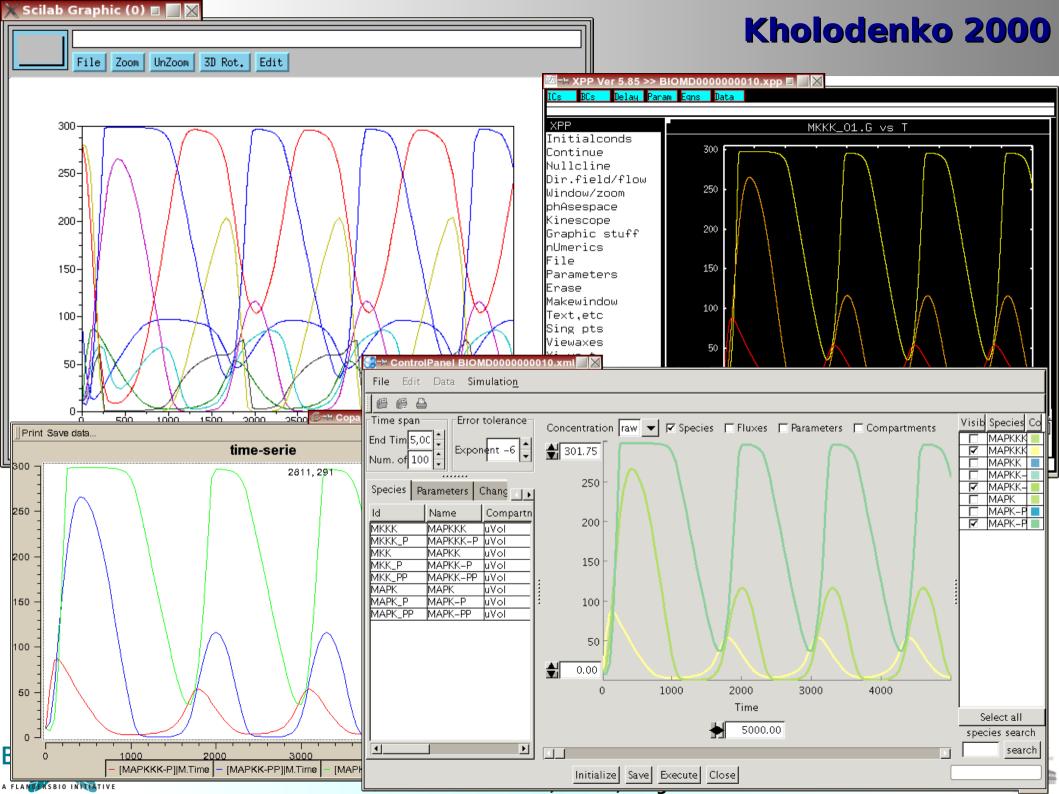

13 Curated Models returned.


<u>BioModels ID</u> ▼	<u>Name</u>	Publication ID	<u>Last Modified</u>
BIOMD0000000009	Huang1996_MAPK_ultrasens	<u>8816754</u>	2006-09-30T23:18:39
BIOMD0000000010	Kholodenko2000_MAPK_feedback	<u>10712587</u>	2006-09-30T23:27:53
BIOMD0000000011	Levchenko2000_MAPK_noScaffold	<u>10823939</u>	2006-09-15T23:41:42
BIOMD000000014	Levchenko2000_MAPK_Scaffold	<u>10823939</u>	2006-09-18T00:04:02
BIOMD0000000026	Markevich2004_MAPK_orderedElementary	<u>14744999</u>	2006-04-02T18:50:28
BIOMD0000000027	Markevich2004_MAPK_orderedMM	<u>14744999</u>	2006-08-14T13:52:32
BIOMD0000000028	Markevich2004_MAPK_phosphoRandomElementary	<u>14744999</u>	2006-04-02T18:53:13
BIOMD0000000029	Markevich2004_MAPK_phosphoRandomMM	<u>14744999</u>	2006-08-14T13:53:16
BIOMD0000000030	Markevich2005_MAPK_AllRandomElementary	<u>14744999</u>	2006-04-02T18:57:56
BIOMD0000000031	Markevich2004_MAPK_orderedMM2kinases	<u>14744999</u>	2006-04-02T18:58:15
BIOMD000000032	Kofahl2004_pheromone	<u>15300679</u>	2006-08-20T01:25:41
BIOMD000000033	Brown2004_NGF_EGF_signaling	<u>14525003</u>	2006-08-14T13:59:12
BIOMD0000000049	Sasagawa2005_MAPK	<u>15793571</u>	2006-08-24T23:29:11

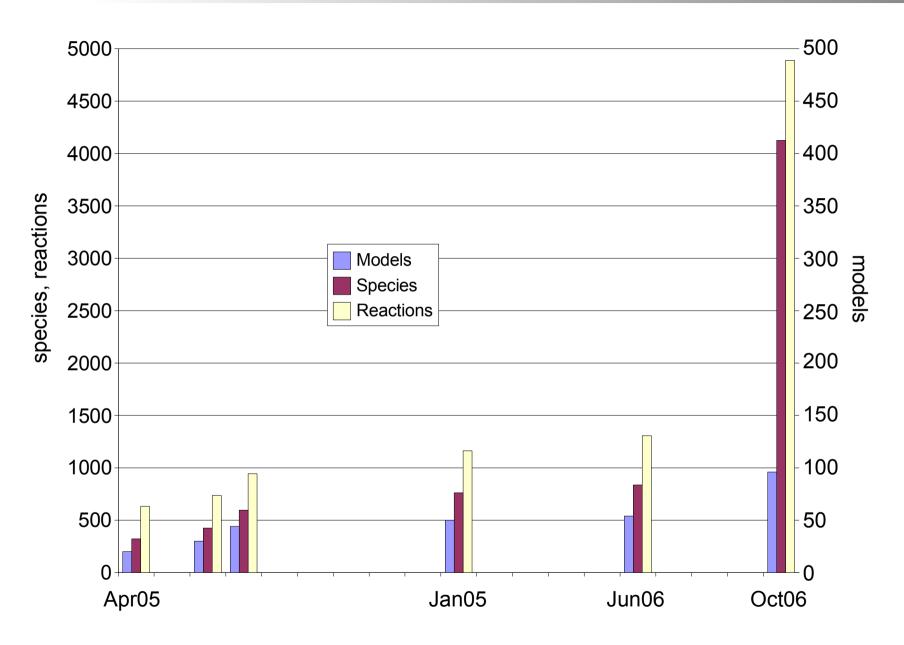

New Search

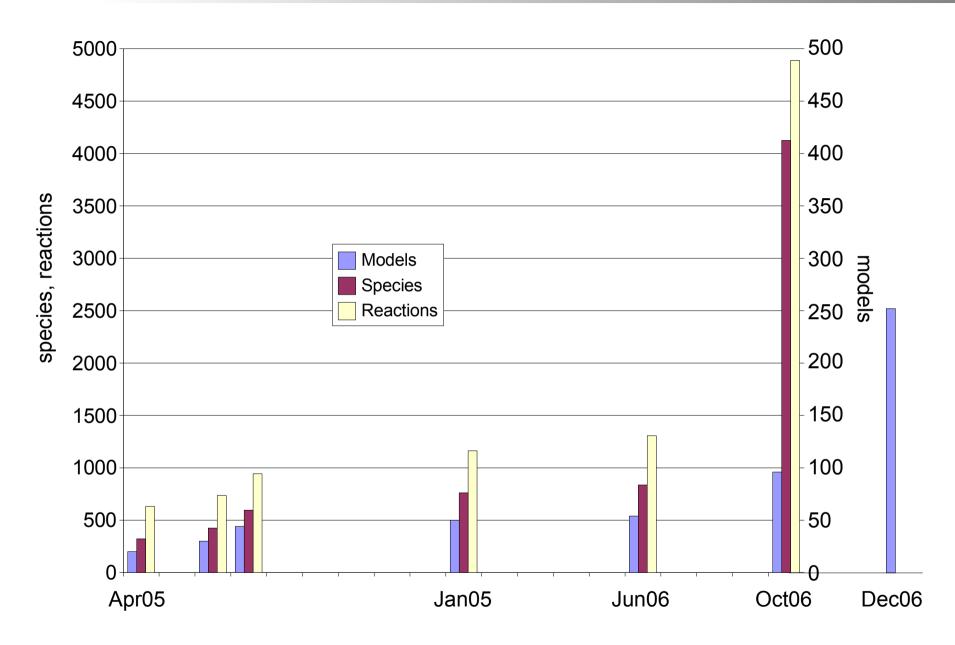


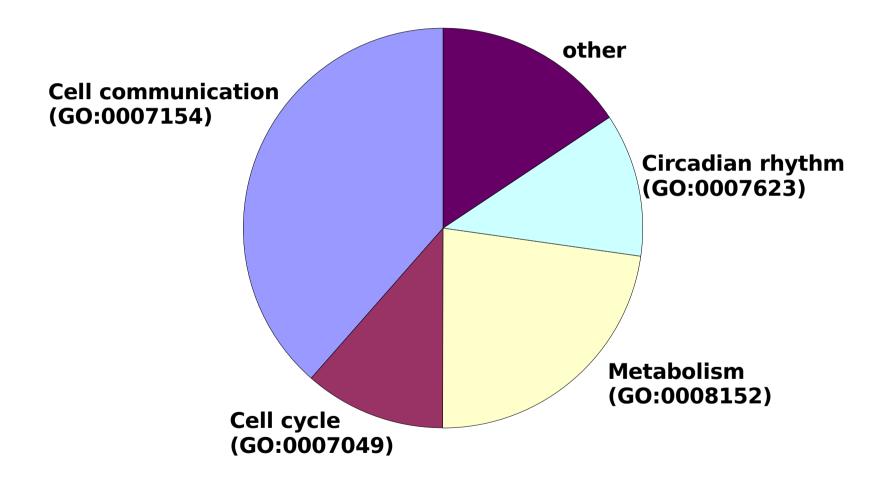


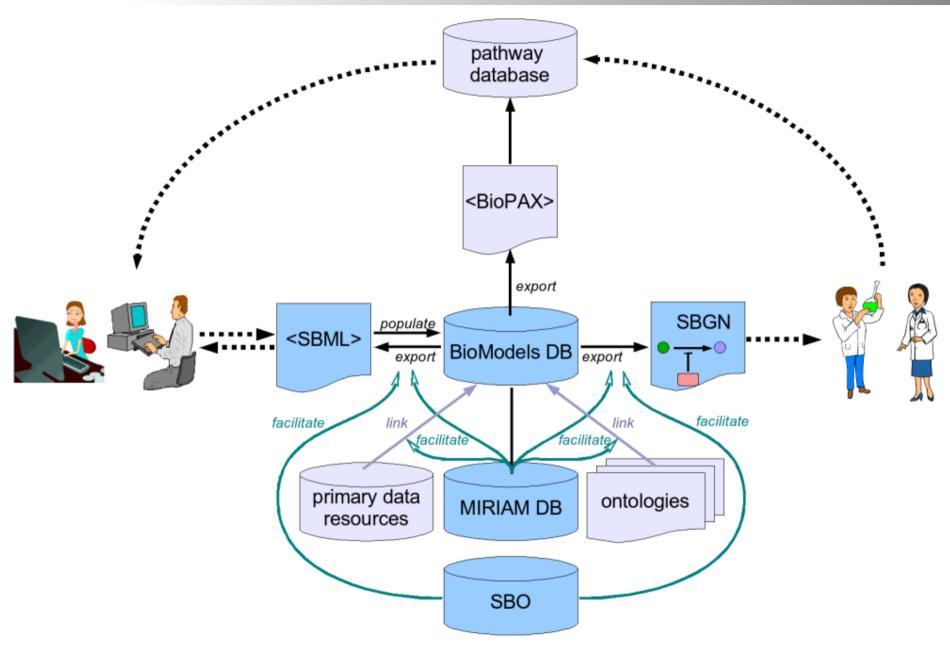


Where are the models coming from


- I) Existing model repositories
- old SBML repository
- · JWS Online
- Database Of Quantitative Cell Signalling (Release on December 4th)
- CellML repository
- II) Individuals
- Members of the SBML community (developers+modellers)
- Authors (prior to grant application, before publication etc.)
- III) Journals (Molecular Systems Biology and PloS Computational Biology advise deposition)
- IV) BioModels DB curators encode new models from literature







Is the mosaic complete?

The BioModels.net team

Nicolas

Enuo He

Melanie Courtot

Chen Li

Camille Laibe

Marco Donizelli

Harish Dharuri

Michael Hucka

An international collaboration

<u>EBI</u>

- Nicolas Le Novère
- Marco Donizelli
- Chen Li
- Mélanie Courtot
- Lu Li
- Camille Laibe
- Arnaud Henry
- Enuo He
- Nicolas Rodriguez
- Alexander Broicher

SBML team

- Michael Hucka
- Andrew Finney
- Bruce Shapiro
- Benjamin Borstein
- Maria Schilstra
- Sarah Keating
- Harish Dharuri

NCBS

- Upinder Bhalla
- Harsha Rani

Keck Graduate Institute

Herbert Sauro

<u>Vienna TBI</u>

- Rainer Machne

Systems Biology Institute

- Hiroaki Kitano
- Akira Funahashi

· <u>JWS Online</u>

- Jacky Snoep
- Hans Westerhoff

<u>Journals supporting BioModels Database</u>

- Molecular Systems Biology
- PLoS Computational Biology
- Programs used for curation
 - CellDesigner/SBMLodeSolver
 - COPASI
 - Jarnac/JDesigner
 - MathSBML
 - SBMLeditor
 - XPP-Aut

The community of Systems Biology for their contributions of models and comments.

European Bioinformatics Institute

British outstation of the European Molecular Biology Laboratory

- Databases
 - Sequences, structures
 - Transcriptomics, Proteomics pathways, models
 - Controlled vocabularies and dictionaries

- Research groups
 - Structural Genomics (Thornton)
 - Molecular Evolution (Goldman)
 - Text-Mining (Rebholz-Schumman)
 - Computational Systems Biology (Le Novère)
 - Statistical array analysis (Huber)
 - Genomic analysis of regulatory systems (Luscombe)
 - Systems Biology of ES cells (Bertone)

Marie Curie Training site Fellowships: PhD 3-6 months. Fully funded. Undergraduate trainees: 5-6 months.

10000450

-**II**

:--- Search Submit Your Model :... Curation tips :--- Annotation tips Sign-in News FAG Model of the month Terms of Use Related Software Meetings Contact Quote BIOMODELS.NET online

···· Non-curated Models

Show 10 Only

BioModels ID ▽

MODEL0995500644

MODEL5662324959

MODEL5662377562

MODEL5662398146

MODEL5662425708

MODEL5974712823

MODEL6623597435

MODEL6623610941

MODEL6623617994

MODEL6623628741

MODEL6624091635

MODEL6624139162

MODEL6624199343

MODEL6762427183

MODEL7944007619

MODEL8293171637

MODEL8568434338

MODEL8583955822

MODEL8584137422

MODEL8584292730

MODEL8584468482

MODEL OBSODBASAE

d Albantara 2002 - Supantia Diagticitu

<u> </u>	<u> </u>
	Non-curated Models
	Search
	bmit Your Model
	Curation tips
	Annotation tips
Sig	gn-in
Ne	ws
FΑ	.Q
	del of the month
	rms of Use
	lated Software
	etings
	ntact
	ote
Bl	OMODELS.NET
Co. N	mputational eurobiology
8	3ML
S	3W
3	SBI
J	IWS Inline
Tree!	
Ш	

Show 10 Only

BioModels ID ▽

MODEL0995500644

MODEL5662324959

MODEL5662377562

MODEL5662398146

MODEL5662425708

MODEL5974712823

MODEL6623597435

MODEL6623610941

MODEL6623617994

MODEL6623628741

MODEL6624091635

MODEL6624139162

MODEL6624199343

MODEL6762427183

MODEL7944007619

MODEL8293171637

MODEL8568434338

MODEL8583955822

MODEL8584137422

MODEL8584292730

MODEL8584468482

MADELOGGOOGAGAG

<u> </u>	<u> </u>
	Non-curated Models
	Search
	bmit Your Model
	Curation tips
	Annotation tips
Sig	gn-in
Ne	ws
FΑ	.Q
	del of the month
	rms of Use
	lated Software
	etings
	ntact
	ote
Bl	OMODELS.NET
Co. N	mputational eurobiology
8	3ML
S	3W
3	SBI
J	IWS Inline
Tree!	
Ш	

Show 10 Only

BioModels ID ▽

MODEL0995500644

MODEL5662324959

MODEL5662377562

MODEL5662398146

MODEL5662425708

MODEL5974712823

MODEL6623597435

MODEL6623610941

MODEL6623617994

MODEL6623628741

MODEL6624091635

MODEL6624139162

MODEL6624199343

MODEL6762427183

MODEL7944007619

MODEL8293171637

MODEL8568434338

MODEL8583955822

MODEL8584137422

MODEL8584292730

MODEL8584468482

MADELOGGOOGAGAG

∭-™ BioModels Database - Mozilla		
Name Name	Publication ID	Last Modified
Rodriguez2005_denovo_pyrimidine_biosynthesis	1578426 <u>6</u>	2006-09-30T21:48:57
Feist2006_methanogenesis_OptiMethanol	10.1038/msb4100046	2006-10-02T16:52:30
Feist2006_methanogenesis_OptiAcetate	10.1038/msb4100046	2006-10-02T16:46:28
Feist2006_methanogenesis_OptiH2-CO2	10.1038/msb4100046	2006-10-02T16:47:09
Feist2006_methanogenesis_OptiPyruvate	10.1038/msb4100046	2006-10-02T16:50:56
FangeElf2006 MinSystem MesoRD	16846247	2006-09-29T22:28:23
Fuentes2005_ZymogenActivation	15634334	2006-09-29T22:39:28
Hornberg2005_ERKcascade	<u>15634347</u>	2006-09-29T22:50:28
Lambeth2002_Glycogenolysis	12220081	2006-09-30T21:46:54
Kolomeisky2003_myosin	<u>12609867</u>	2006-09-29T23:36:52
Hoefnagel2002_Glycolysis	<u>12241048</u>	2006-09-29T22:45:45
Cronwright2003_GlycerolSynthesis	<u>12200299</u>	2006-09-29T22:34:13
Martins2001_glyoxalase	<u>11453985</u>	2006-10-02T10:53:31
plant_1981_version01	<u>7252375</u>	2006-09-30T18:30:12
Maeda2006_MyosinPhosphorylation	<u>16923126</u>	2006-09-30T18:25:23
Yeast_glycolysis_model_of_Pritchard_and_Kell	<u>12180966</u>	2006-09-30T21:49:59
Raman2006_MycolicAcid	<u>16261191</u>	2006-09-29T23:24:10
Singh_Ghosh2006_TCA_eco_glucose	10.1186/1742-4682-3	2006-09-29T23:47:42
Singh_Ghosh2006_TCA_eco_acetate	10.1186/1742-4682-3	2006-09-29T23:47:20
Singh_Ghosh2006_TCA_mtu_model1	10.1186/1742-4682-3	2006-09-29T23:48:15
Singh_Ghosh2006_TCA_mtu_model2	10.1186/1742-4682-3	2006-09-29T23:49:52
dAlaantara3002 SunantiaDlaatiaitu	17072450	2006 00 20722-42-24

:-- Non-curated Models :--- Search **Submit Your Model** :--- Curation tips :--- Annotation tips Sign-in News FAQ Model of the month Terms of Use Related Software Meetings Contact Quote BIOMODELS.NET Computational Neurobiology JWS online **□** □ □ □

Show 10 Only

BioModels ID ▽

MODEL0995500644

MODEL5662324959

MODEL5662377562

MODEL5662398146

MODEL5662425708

MODEL5974712823

MODEL6623597435

MODEL6623610941

MODEL6623617994

MODEL6623628741

MODEL6624091635

MODEL6624139162

MODEL6624199343

MODEL6762427183

MODEL7944007619

MODEL8293171637

MODEL8568434338

MODEL8583955822

MODEL8584137422

MODEL8584292730

MODEL8584468482

MODELOGGOGGAGAG