

SBO SBML TEDDY

Controlled annotation of kinetics models

Nicolas Le Novère, EMBL-EBI

BioPAX MIRIAM SBGI

Storage and Annotation of Reaction Kinetics Data May 21-23, 2007, EML research, Heidelberg, Germany

http://www.ebi.ac.uk/biomodels/

FBI Home

About EBI

Groups

Services

Toolbox

Databases

Downloads

Submissions

BIOMODELS DATABASE

:.... Curated Models

:.... Non-curated Models

:.... Search

:.... Simulate in JWS

Submit Your Model

:.... Curation tips

..... Annotation tips

Sign-in

News

FAQ

Model of the month

Terms of Use

Related Software

Meetings

Contact

BIOMODELS.NET

BioModels

Database

A Database of Annotated Published Models

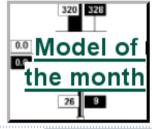
BioModels Database is a data resource that allows biologists to store, search and retrieve published mathematical models of biological interests. Models present in BioModels Database are annotated and linked to relevant data resources, such as publications, databases of compounds and pathways, controlled vocabularies, etc.

[Browse curated models]

[Browse non-curated models]

[Search]

[Simulate in JWS Online]


65 05th June 2007 - Eighth Release! [More] [Download All Models Under SBML L2 V1 Format]

<page-header>

🔼 4th December 2006 - BioModels Database and DOQCS join forces [More]

Acknowledgements

BioModels Database is developed in collaboration by the teams of Nicolas Le Novère (EMBL-EBI, United-Kingdom), Michael Hucka (SBML Team, Caltech, USA) in collaboration with Upinder Bhalla (DOQCS, National Center for Biological Sciences, India), Herbert Sauro (Keck Graduate Institute, USA), Hiroaki Kitano (Systems Biology Institute, Japan), Hans Westerhoff and Jacky Snoep (JWS Online, Stellenbosch (ZA) and Manchester (UK) Universities and Stellenbosh University, ZA), as part of the BioModels.net initiative. BioModels Database development has benefitted from funds of the European Molecular Biology Laboratory (Le Novère team) and the National Institute of General Medical Sciences (SBML team).

Developers: Mélanie Courtot, Arnaud Henry, Camille Laibe, Chen Li (main developer), Lu Li, Nicolas Rodriguez (Alumni: Marco Donizelli)

Model curators and annotators: Harish Dharuri, Enuo He, Nicolas Le Novère, Lu Li, Rainer Machne, Bruce Shapiro (Alumni: Maria Schilstra)

External contributors: BioModels Database would not exists without the continuous support of many peopler, whether by their contribution of models, of software, or by their constructive comments and criticisms. It is unfortunately impossible keep track and to to acknowledge all of them here, without risking to be unfair. Therefore, a big collective thank-you all.

BioModels Database is built thanks to many third-party free software such as libSBML, Jakarta Tomcat, Xindice, Xalan, Xerces, Jena and MySQL.

Main software used to curate models: CellDesigner, COPASI, Jarnac, MathSBML, XPP-Aut, SBMLodeSolver, SBMLeditor and SBMLmerge.

http://www.ebi.ac.uk/biomodels/

EBI Home

About EBI

Groups

Services

Toolbox

Databases

Downloads

Submissions

BIOMODELS DATABASE

:.... Curated Models

:.... Non-curated Models

.. Simulate in JWS

Submit Your Model

:.... Curation tips

:.... Annotation tips

Sian-in

News

FAQ

Model of the month

Terms of Use

Related Software

Meetings

Contact

Quote

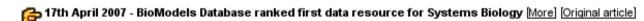
BIOMODELS.NET

BioModels

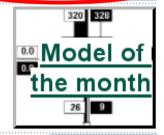
Database

A Database of Annotated Published Models

BioModels Database is a data resource that allows biologists to store, search and retrieve published mathematical models of biological interests. Models present in BioModels Database are annotated and linked to relevant data resources, such as publications, databases of compounds and pathways, controlled vocabularies, etc.


[Browse curated models]

[Browse non-curated models]


[Search]

[Simulate in JWS Online]

Acknowledgements

BioModels Database is developed in collaboration by the teams of Nicolas Le Novère (EMBL-EBI, United-Kingdom), Michael Hucka (SBML Team, Caltech, USA) in collaboration with Upinder Bhalla (DOQCS, National Center for Biological Sciences, India), Herbert Sauro (Keck Graduate Institute, USA), Hiroaki Kitano (Systems Biology Institute, Japan), Hans Westerhoff and Jacky Snoep (JWS Online, Stellenbosch (ZA) and Manchester (UK) Universities and Stellenbosh University, ZA), as part of the BioModels.net initiative. BioModels Database development has benefitted from funds of the European Molecular Biology Laboratory (Le Novère team) and the National Institute of General Medical Sciences (SBML team).

Developers: Mélanie Courtot, Arnaud Henry, Camille Laibe, Chen Li (main developer), Lu Li, Nicolas Rodriguez (Alumni: Marco Donizelli)

Model curators and annotators: Harish Dharuri, Enuo He, Nicolas Le Novère, Lu Li, Rainer Machne, Bruce Shapiro (Alumni: Maria Schilstra)

External contributors: BioModels Database would not exists without the continuous support of many peopler, whether by their contribution of models, of software, or by their constructive comments and criticisms. It is unfortunately impossible keep track and to to acknowledge all of them here, without risking to be unfair. Therefore, a big collective thank-you all.

BioModels Database is built thanks to many third-party free software such as libSBML, Jakarta Tomcat, Xindice, Xalan, Xerces, Jena and MySQL.

Main software used to curate models: CellDesigner, COPASI, Jarnac, MathSBML, XPP-Aut, SBMLodeSolver, SBMLeditor and SBMLmerge.

Kinetics models are biological data

nature

5 May 2005 Volume 435 Issue no 7038

In pursuit of systems

The study of functioning groups of molecules is an important frontier of biology at reductionist and holistic levels. Central to the long-term goals of scientific research, it brings its own challenges of infrastructure and evaluation.

hat is the difference between a live cat and a dead one? One scientific answer is 'systems biology'. A dead cat is a collection of its component parts. A live cat is the emergent behaviour of the system incorporating those parts. There is certainly a vast distance to go before we can fully encompass such a system within scientific description. So how is systems biology already moving us towards the fullest possible description of a live cat?

By focusing on the behaviour of individual proteins and other biomolecules, much of what gives life its unique properties can be missed. To a systems biologist, the network of interactions formed by these components is more important than the molecules themselves. Properties such as robustness and evolvability, essential characteristics of life, then emerge from the topology of biological networks, independent of the constituents from which they are built.

Such a holistic view may sound dangerously soft-edged. Far from it. Systems biology couples the acquisition of comprehensive, high-definition data sets to the construction of quantitative models and computer simulations. Indeed, it is an explicit aim of both the Kyoto Encyclopedia of Genes and Genomes and the Alliance for Cellular Signaling to construct a fully functioning computer model of a cell.

The present state of experimental systems biology is both tantalizing and frustrating. To provide the level of detail required for us to know what is going on in a cell, microarray technologies will need to be faster and require smaller samples; ways to label and follow more biological molecules within a cell must be discovered; new spectroscopic tools to non-invasively measure multiple metabolite levels will need to be developed, and so on. Nature is committed to publishing studies that push back the technological frontier of what it is possible to know about important biological systems.

But technical wizardry and large data sets are only part of the systems-biology approach — a system is not fully understood until a quantitative model can be built. The role of modelling in biological research is controversial and can spark heated debates. What is clear, though, is that the wealth of experimental data emerging from systems biology would be uninterpretable without detailed models against which they can be compared. Advances in modelling and simulation are thus no less important than data collection.

Every discipline generates community infrastructures, and systems biology is no exception. In the past five years, systems-biology institutes, departments and initiatives have been springing up across the globe. New journals have been launched, including The Institution of Electrical Engineers' Systems Biology and Nature Publishing Group's Molecular Systems Biology. The latter, an author-pays, online-only journal, is a joint venture with the European Molecular Biology Organization and went livelast month.

The exchange of models between researchers is imperative, so a welcome development last month was the launch of BioModels (www.ebi.ac.uk/biomodels), a curated database for the deposition of biological models. BioModels has built on the success of Systems Biology Markup Language (SBML) in providing a format for the presentation of models, allowing them to be implemented on different software platforms. Nature journals and Molecular Systems Biology support submissions involving SBML.

It is hoped that BioModels will form the basis of a universally accepted repository that can do for systems biology what GenBank and the Protein Data Bank have done for genetics and structural biology. Nature applauds such efforts and will encourage authors of papers containing suitable models to contribute them to BioModels.

Systems biology presents an intellectual challenge to scientists and journal editors alike. Papers in this field document a highly multidisciplinary endeavour. Reviewers of such papers are very good at dissecting the aspects that fall within their sphere of expertise, but are less insightful beyond. So it falls to editors to weigh their frequently conflicting opinions in taking balanced and clear-sighted decisions. As a multidisciplinary journal, Nature welcomes the particular challenges that systems biology presents.

Kinetics models are biological data

nature

5 May 2005 Volume 435 Issue no 7038

In pursuit of systems

The study of functioning groups of molecules is an important frontier of biology at reductionist and holistic levels. Central to the long-term goals of scientific research, it brings its own challenges of infrastructure and evaluation.

hat is the difference between a live cat and a dead one? One scientific answer is 'systems biology'. A dead cat is a collection of its component parts. A live cat is the emergent behaviour of the system incorporating those parts. There is certainly a vast distance to go before we can fully encompass such a system within scientific description. So how is systems biology already moving us towards the fullest possible description of a live cat?

By focusing on the behaviour of individual proteins and other biomolecules, much of what gives life its unique properties can be missed. To a systems biologist, the network of interactions formed by these components is more important than the molecules themselves. Properties such as robustness and evolvability, essential characteristics of life, then emerge from the topology of biological networks, independent of the constituents from which they are built.

Such a holistic view may sound dangerously soft-edged. Far from it. Systems biology couples the acquisition of comprehensive, high-definition data sets to the construction of quantitative models and computer simulations. Indeed, it is an explicit aim of both the Kyoto Encyclopedia of Genes and Genomes and the Alliance for Cellular Signaling to construct a fully functioning computer model of a cell.

The present state of experimental systems biology is both tantalizing and frustrating. To provide the level of detail required for us to know what is going on in a cell, microarray technologies will need to be faster and require smaller samples; ways to label and follow more biological molecules within a cell must be discovered; new spectroscopic tools to non-invasively measure multiple metabolitelevels will need to be developed, and so on. Nature is committed to publishing studies that push back the technological frontier of what it is possible to know about important biological systems.

But technical wizardry and large data sets are only part of the systems-biology approach — a system is not fully understood until a quantitative model can be built. The role of modelling in biological research is controversial and can spark heated debates. What is clear, though, is that the wealth of experimental data emerging from systems biology would be uninterpretable without detailed models against which they can be compared. Advances in modelling and simulation are thus no less important than data collection.

Every discipline generates community infrastructures, and systems biology is no exception. In the past five years, systems-biology institutes, departments and initiatives have been springing up across the globe. New journals have been launched, including The Institution of Electrical Engineers' Systems Biology and Nature Publishing Group's Molecular Systems Biology. The latter, an author-pays, online-only journal, is a joint venture with the European Molecular Biology Organization and went livelast month.

The exchange of models between researchers is imperative, so welcome development last month was the launch of BioModels www.ebi.ac.uk/biomodels), a curated database for the deposition of bological models. BioModels has built on the success of Systems Biology Markup Language (SBML) in providing a format for the presentation of models, allowing them to be implemented on different

The exchange of models between researchers is imperative, so a welcome development last month was the launch of BioModels (www.ebi.ac.uk/biomodels), a curated database for the deposition of biological models. BioModels has built on the success of Systems Biology Markup Language (SBML) in providing a format for the presentation of models, allowing them to be implemented on different software platforms. *Nature* journals and *Molecular Systems Biology* support submissions involving SBML.

Kinetics models are biological data

nature

5 May 2005 Volume 435 Issue no 7038

In pursuit of systems

The study of functioning groups of molecules is an important frontier of biology at reductionist and holistic levels. Central to the long-term goals of scientific research, it brings its own challenges of infrastructure and evaluation.

hat is the difference between a live cat and a dead one? One scientific answer is 'systems biology'. A dead cat is a collection of its component parts. A live cat is the emergent behaviour of the system incorporating those parts. There is certainly a vast distance to go before we can fully encompass such a system within scientific description. So how is systems biology already moving us towards the fullest possible description of a live cat?

By focusing on the behaviour of individual proteins and other biomolecules, much of what gives life its unique properties can be missed. To a systems biologist, the network of interactions formed by these components is more important than the molecules themselves. Properties such as robustness and evolvability, essential characteristics of life, then emerge from the topology of biological networks, independent of the constituents from which they are built.

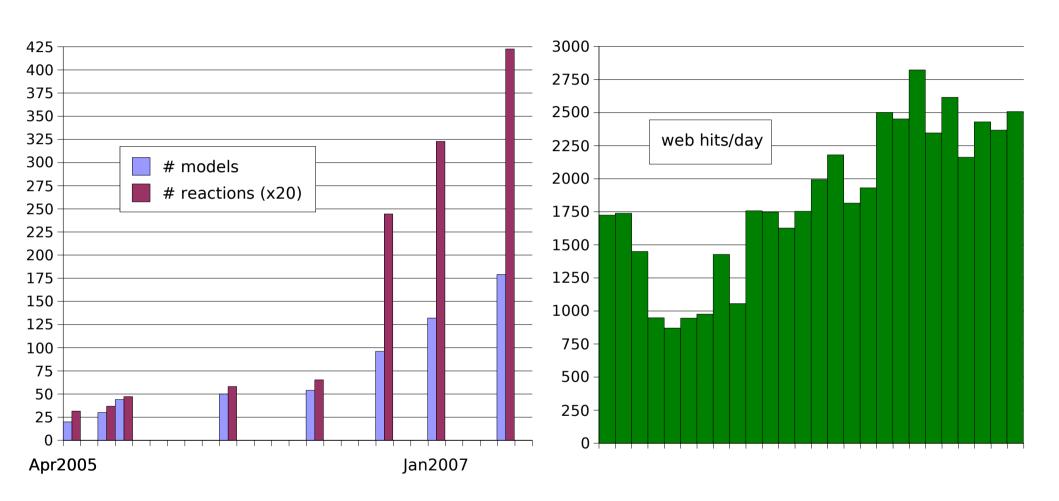
Such a holistic view may sound dangerously soft-edged. Far from it. Systems biology couples the acquisition of comprehensive, high-definition data sets to the construction of quantitative models and computer simulations. Indeed, it is an explicit aim of both the Kyoto Encyclopedia of Genes and Genomes and the Alliance for Cellular Signaling to construct a fully functioning computer model of a cell.

The present state of experimental systems biology is both tantalizing and frustrating. To provide the level of detail required for us to know what is going on in a cell, microarray technologies will need to be faster and require smaller samples; ways to label and follow more biological molecules within a cell must be discovered; new spectroscopic tools to non-invasively measure multiple metabolitelevels will need to be developed, and so on. Nature is committed to publishing studies that push back the technological frontier of what it is possible to know about important biological systems.

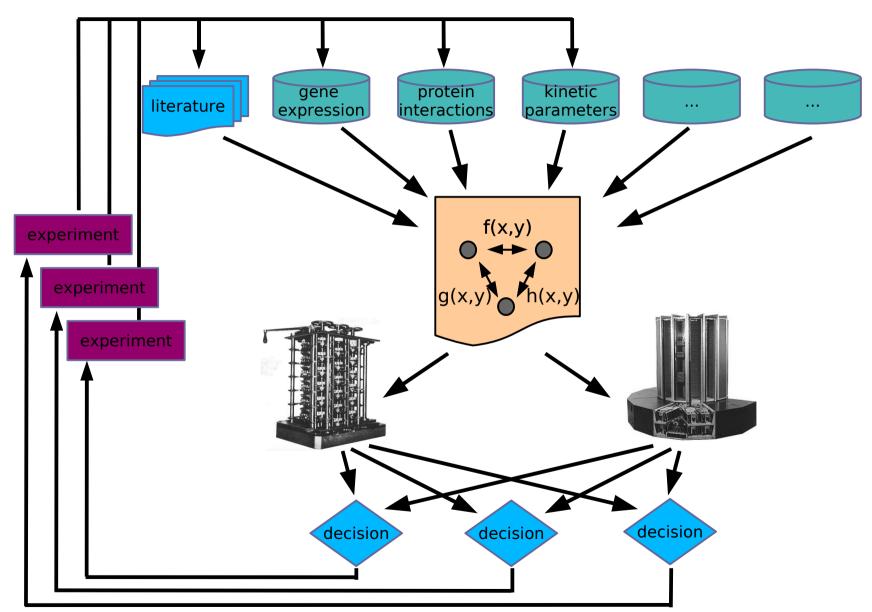
But technical wizardry and large data sets are only part of the systems-biology approach — a system is not fully understood until a quantitative model can be built. The role of modelling in biological research is controversial and can spark heated debates. What is clear, though, is that the wealth of experimental data emerging from systems biology would be uninterpretable without detailed models against which they can be compared. Advances in modelling and simulation are thus no less important than data collection.

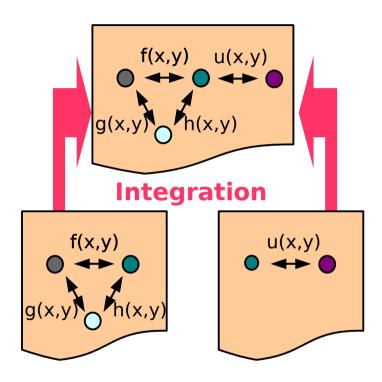
Every discipline generates community infrastructures, and systems biology is no exception. In the past five years, systems-biology institutes, departments and initiatives have been springing up across the globe. New journals have been launched, including The Institution of Electrical Engineers' Systems Biology and Nature Publishing Group's Molecular Systems Biology. The latter, an author-pays, online-only journal, is a joint venture with the European Molecular Biology Organization and went livelast month.

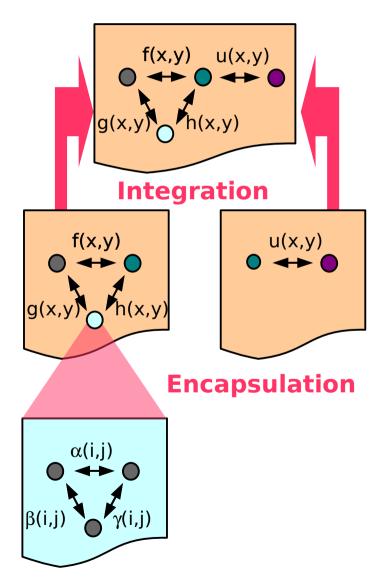
The exchange of models between researchers is imperative, so welcome development last month was the launch of BioModels www.ebi.ac.uk/biomodels), a curated database for the deposition of bological models. BioModels has built on the success of Systems Bology Markup Language (SBML) in providing a format for the presentation of models, allowing them to be implemented on different

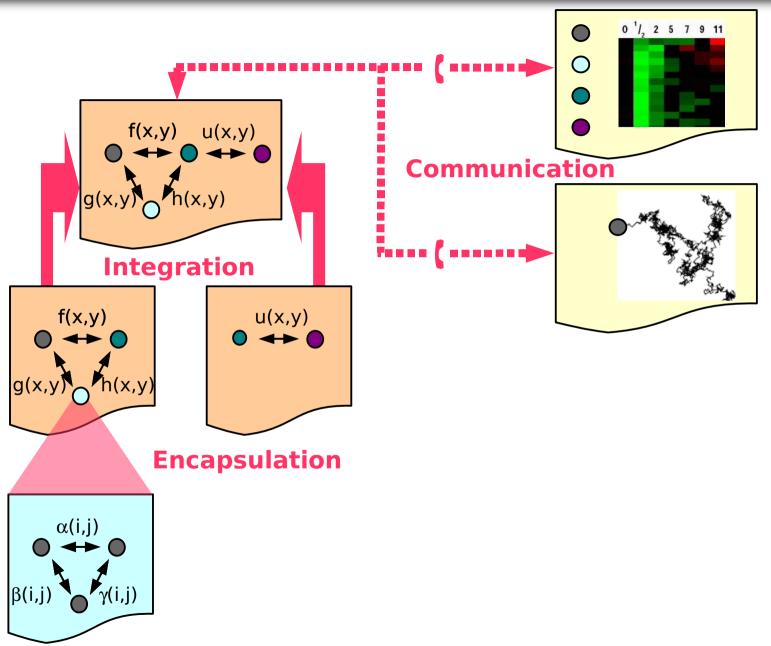

- Deposition advised by
 - Molecular Systems Biology
 - all PLoS journals
 - all BMC Journals

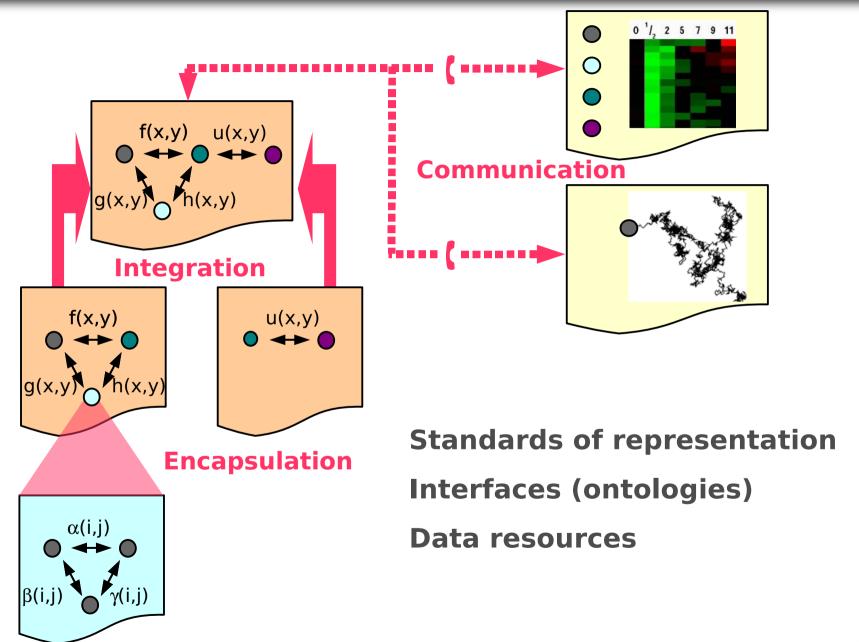
The exchange of models between researchers is imperative, so a welcome development last month was the launch of BioModels (www.ebi.ac.uk/biomodels), a curated database for the deposition of biological models. BioModels has built on the success of Systems Biology Markup Language (SBML) in providing a format for the presentation of models, allowing them to be implemented on different software platforms. *Nature* journals and *Molecular Systems Biology* support submissions involving SBML.


Steady-increase of BioModels DB


The model as an integrator of knowledge







Technical bottlenecks

Systems Biology Markup Language

Google	
	Search this site

home • contacts • documents • downloads • FAQs • forums • Level 3 • models • news • online tools • wiki • workshops

The Systems Biology Markup Language (SBML) is a computer-readable format for representing **models of biochemical reaction networks**. SBML is applicable to metabolic networks, cell-signaling pathways, regulatory networks, and many others.

Internationally Supported and Widely Used

SBML has been evolving since mid-2000 through the efforts of an international group of software developers and users. Today, SBML is **supported by over 100 software systems**, including the following (where '*' indicates SBML support in development):

BALSA	Dizzy	Moleculizer	SBMLR
BASIS	E-CELL	Monod	SBMLSim
BIOCHAM	ecellJ	Narrator	SBMLToolbox
BioCharon	ESS	NetBuilder	SBIiD
ByoDyn	FluxAnalyzer	Oscill8	SBToolbox
BioCyc	Fluxor	PANTHER Pathway	SBW
BioGrid	Gepasi	PathArt	SCIpath
BioModels	Gillespie2	PathScout	Sigmoid*
BioNetGen	HSMB	Pathway Analyser	SigPath
BioPathwise	HybridSBML	PathwayLab	SigTran
Bio Sketch Pad	INSILICO discovery	Pathway Tools	SIMBA
BioSens	JACOBIAN	PathwayBuilder	SimBiology
BioSPICE Dashboard	Jarnac	PATIKAweb	Simpathica
BioSpreadsheet	JDesigner	PaVESy	SimPheny*
BioTapestry	JigCell	PET	SimWiz
BioUML	JSim	PNK	SloppyCell
BSTLab	JWS Online	PottersWheel	SmartCell
CADLIVE	Karyote*	Reactome	SRS Pathway Editor
CellDesigner	KEGG2SBML	ProcessDB	StochSim
Cellerator	Kineticon	PROTON	StochKit
CellML2SBML	Kinsolver*	pysbml	STOCKS
Cellware	libSBML	PySCeS	TERANODE Suite
CL-SBML	MathSBML	runSBML	Trelis
CLEML	MesoRD	SABIO-RK	Virtual Cell
COPASI	MetaboLogica	SBML ODE Solver	WebCell
Cyto-Sim	MetaFluxNet	SBML-PET	WinSCAMP
Cytoscape	MMT2	SBMLeditor	XPPAUT
DBsolve	Modesto	SBMLmerge	

BioNetGen@VCell Release

(October 6, 2006) **BioNetGen@VCell** is a new release of BioNetGen, a tool for automatically generating a reaction network from user-specified rules for biomolecular interactions on the level of protein domains.

read more

PottersWheel supports SBML

(October 4, 2006) PottersWheel 1.2 beta, a MATLAB systems biology toolbox, supports model creation, fitting data, and designing new experiments.

read more

SBML Level 2 Version 2 Released!

(September 25, 2006) The final version of the SBML Level 2 Version 2 specification is now available!

read more

SBML Wikipedia entry

(September 18, 2006) There is now an updated entry for SBML in Wikipedia. Let us know your suggestions for improvements.

read more

SBML Tutorial at ICSB 2006

(September 8, 2006) Mike Hucka will be leading a tutorial on SBML this year at ICSB 2006 in Japan. The focus will be on the about-to-be-released SBML Level 2 Version 2.

read more

See older news items.

A Free and Open Language

Advances in biotechnology are leading to larger, more complex quantitative models. The systems biology

- Pre-released on March 20th 2007
- Simpler and cleaner (units ...)
- Generic entities (compartmentType, speciesType)
 - → path to generalised reactions
- Constraints and initialAssignments
- Controlled (MIRIAM) annotations (+ links to SBO)
- Backward compatible with Level 2 Version 1
- More detailed and bug-free specification ... 158 pages, 10pt, small margin.

Is SBML enough? What's missing?

- An SBML model lists participants, but does not identify them.
- An SBML model contains mathematical expressions, but does not tell-us what they "mean", and how they are derived.
- An SBML model constructed for a certain modelling approach cannot be used straight-away within another modelling framework.
 - ⇒ SBML models cannot be easily searched SBML models cannot be easily converted SBML models cannot be easily merged

- Proposed guidelines for curation of quantitative models
 - Specifically about encoding & annotation
 - Limited to models that can be simulated
- Effort arose from a meeting organized by Andrew Finney during ICSB 2004
- Not specific to SBML; applicable to any structured model format

_computational

PERSPECTIVE

Minimum information requested in the annotation of biochemical models (MIRIAM)

Nicolas Le Novère^{1,15}, Andrew Finney^{2,15}, Michael Hucka³, Upinder S Bhalla⁴, Fabien Campagne⁵, Julio Collado-Vides⁶, Edmund J Crampin⁷, Matt Halstead⁷, Edda Klipp⁸, Pedro Mendes⁹, Poul Nielsen⁷, Herbert Sauro¹⁰, Bruce Shapiro¹¹, Jacky L Snoep¹², Hugh D Spence¹³ & Barry L Wanner¹⁴

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models. it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.

European Bleinformatics Institute, Hindton, CB10 LSD, UK.

Physiomics PLC, Magdalen Cartice, Oxford Gisnera Park, Oxford,
OX4 4GA, K. "Control and Dynamical Systems, California Institute of
Exchnology, Pasadona, California 19125, USA. "National Contre for Biological
Sciences, TiFR, USA-GKNY Campus, Bangalore 560065, India. "Institute
of Computational Bismedicine, Well Medical College of Cornal University,
New York, New York 10021, USA. "Center for Genomic Sciences, Universida
Austional Aufchanna de Mézico, A. Universidad str., Cusamazca, Morrolos,
62100, Mesico. "Pilosopinaering Institute and Department of Engineering
Science, The University of Aukstand, Private Bag 29019, Buckshal, New
Zaaland, "Max.-Planck Institute for Molecular Genetics, Barlin Center for
Genome based Bioinformatics (BGS), linester, 73, 14195 Berlin, Germany,
Palgnia Bioinformatics Institute, Virginia Tach, Weshington St., Blacksburg,
Virginia 2406-1477, USA. "1946-66 Giaudae Institute, 559 Weshord Drive,
Claramont, California 91711, USA. "1149 Propulsion Laboratory, California
Institute of Tachnology, Pasadems, California 1917, USA." "1161-169
For Molecular Cell Physiology, Department of Biochemistry, Stellenbosch
University, Private Bag X1, Marioland 7602, South Africa. "Vogastrament of
Scientific Computing & Mathematical Modelling, Glassofimithine Research
Rout, Steveninge, Marts, Sci. 2VY, UK. "Plantide University, Department of
Biological Science, Lilly Hall of Lin Sciences, 915 W. State Street, West
Liftyytti, Indiana 47907-2004, USA. "*Pirmse authers have contributed
equality to the work. Cornesponders about the addressed to N.L.N.

Published online 6 December 2005; doi:10.1038/nbt1156

During the genomic era we have witnessed a vast increase in availability of large amounts of quantitative data. This is motivating a shift in the focus of molecular and cellular research from qualitative descriptions of biochemical interactions towards the quantification of such interactions and their dynamics. One of the tenets of systems biology is the use of quantitative models (see Box 1 for definitions) as a mechanism for capturing precise hypotheses and making predictions ^{1,2}. Many specialized models exist that attempt to explain aspects of the cellular machinery. However, as has happened with other types of biological information, such as sequences, macromolecular structures or

Box 1 Glossary

Some terms are used in a very specific way throughout the article. We provide here a precise definition of each one.

Quantitative blochemical model. A formal model of a biological system, based on the mathematical description of its molecular and cellular components, and the interactions between those components.

Encoded model. A mathematical model written in a formal machine-readable language, such that it can be systematically parsed and employed by simulation and analysis software without further human translation.

MIRIAM-compilant model. A model that passes all the tests and fulfills all the conditions listed in MIRIAM.

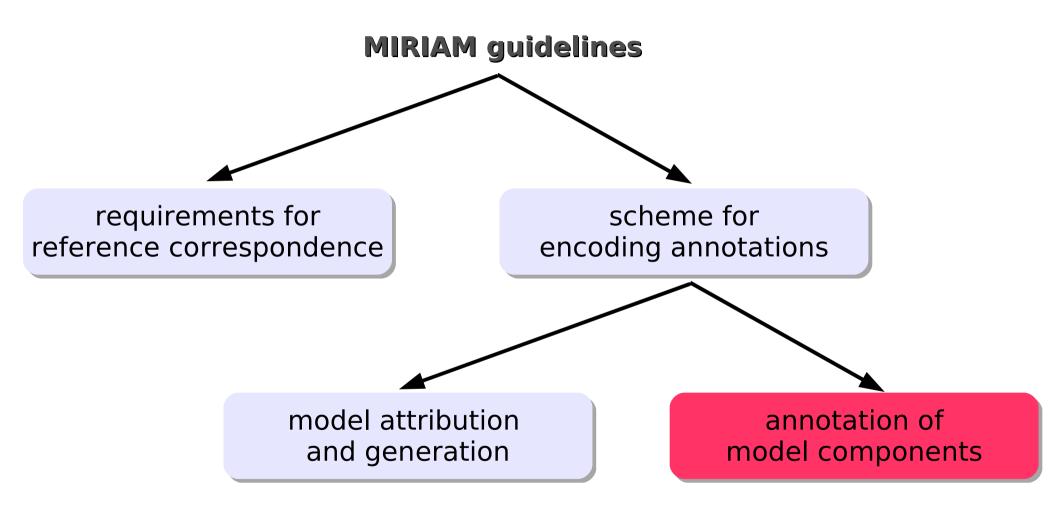
Reference description. A unique document that describes, or references the description of the model, the structure of the model, the numerical values necessary to instantiate a simulation from the model, or to perform a mathematical analysis of the model, and the results one expects from such a simulation or analysis.

Curation process. The process by which the compliance of an encoded model with MIRIAM is achieved and/or verified. The curation process may encompass some or all of the following tasks: encoding of the model, verification of the reference correspondence and annotation of the model.

Reference correspondence. The fact that the structure of a model and the results of a simulation or an analysis match the information present in the reference description.

NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 12 DECEMBER 2005

1509



Characteristics of a useful identifier

Unique

an identifier must never be assigned to two different objects;

Perennial

the identifier is constant and its lifetime is permanent;

Standards compliant

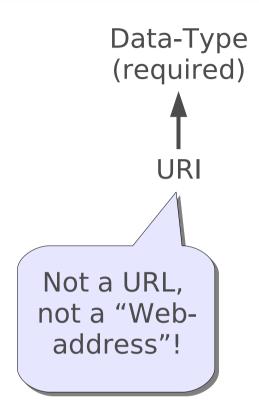
must conform on existing standards, such as URI;

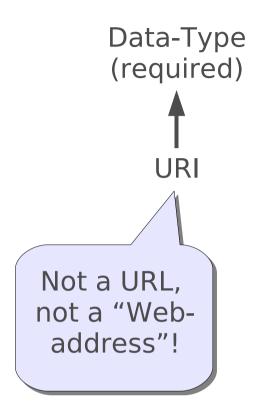
Resolvable

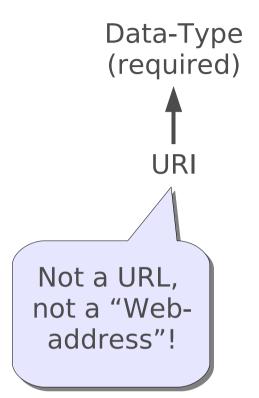
identifiers must be able to be transformed into locations of online resources storing the object or information about the object;

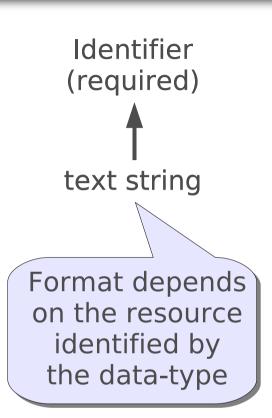

Free of use

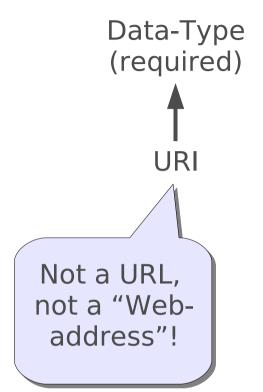
everybody should be able to use and create identifiers, freely and at no cost.

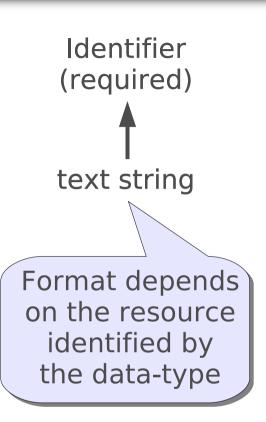


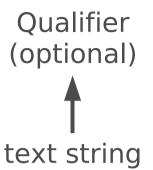


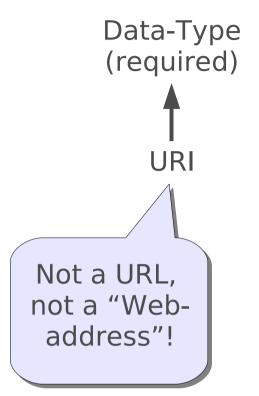


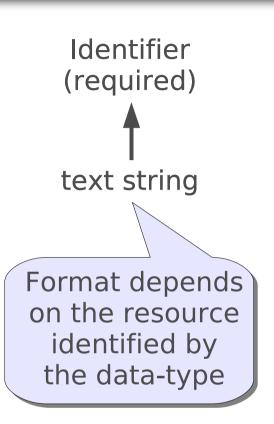


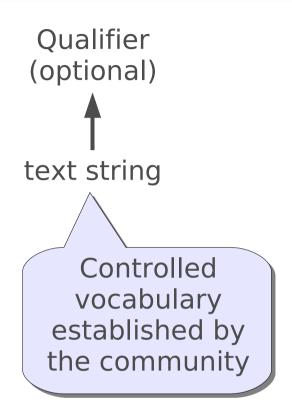


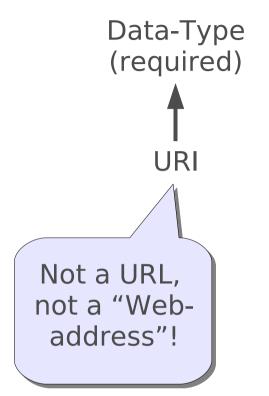


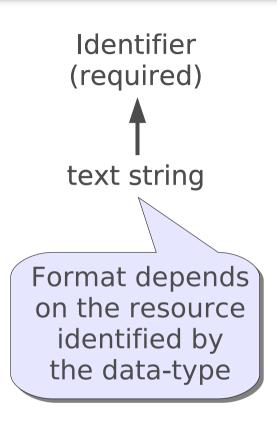


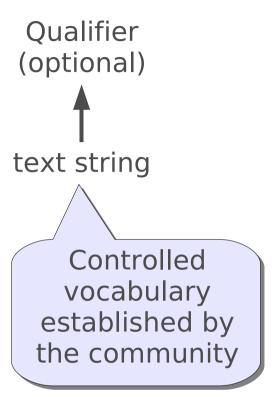












The data-type and the identifier can be combined in a single URI

URL style: http://www.MyResource.org/#MyIdentifier

URN style: urn:lsid:MyResource.org:MyIdentifier

MIRIAM Database

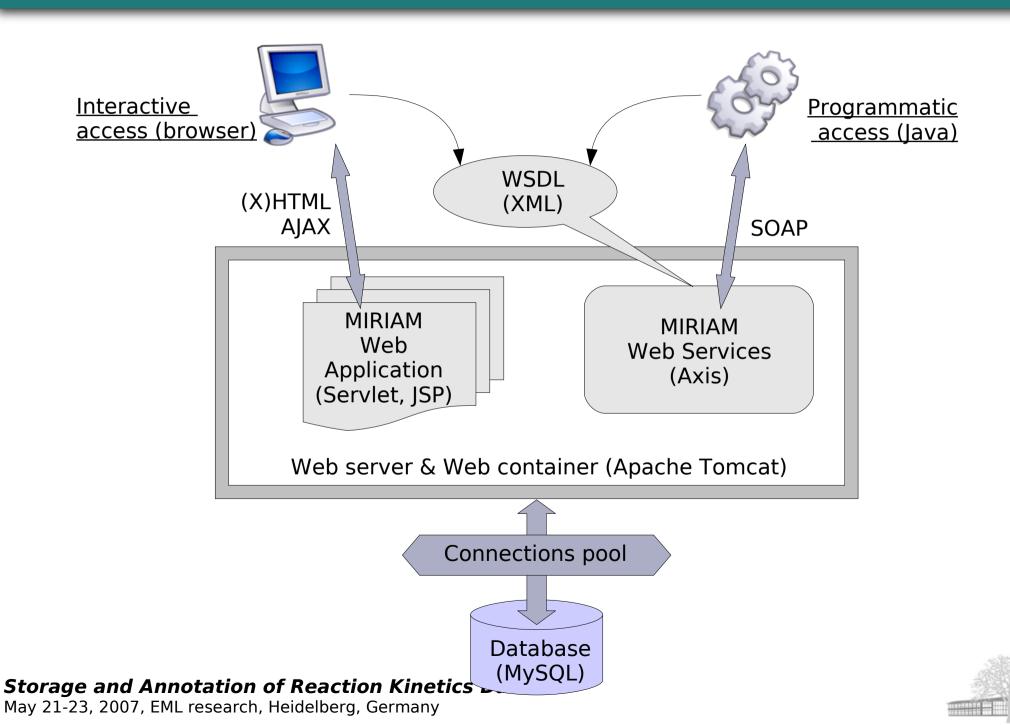
Core element of the resource, storing all the information about the data-types and associated information;

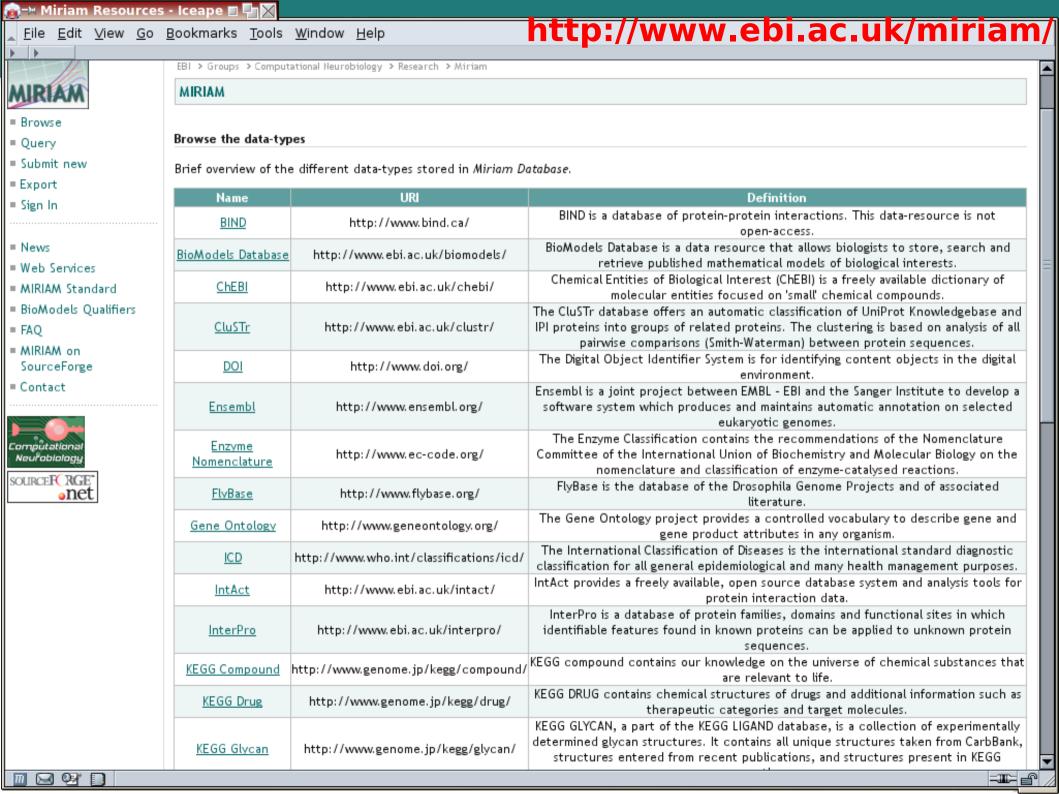
MIRIAM Web Services

SOAP-based application programming interface (API) for querying MIRIAM Database

MIRIAM Library

Library to use MIRIAM Web Services


MIRIAM Web Application


Interactive web interface for browsing and querying MIRIAM Database, and submit or edit data-types.

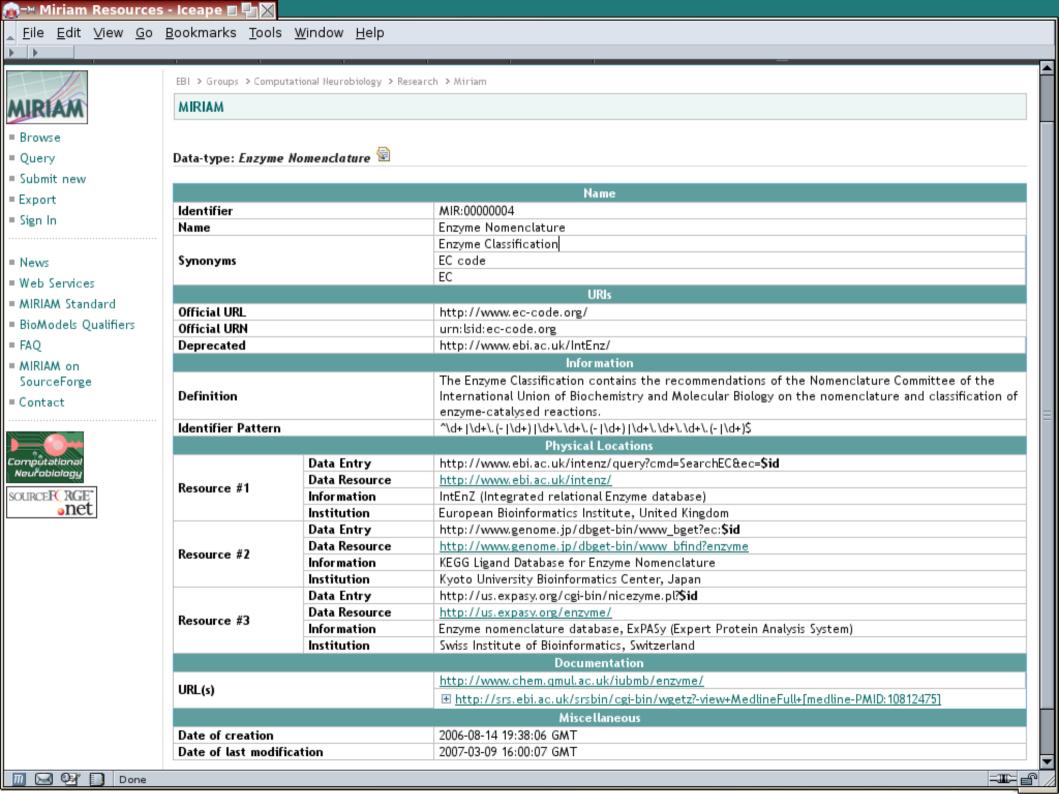
requirements for a MIRIAM-compliant resource

Open access

Anybody can access any public data without restriction (no commercial licence; no login page etc.)

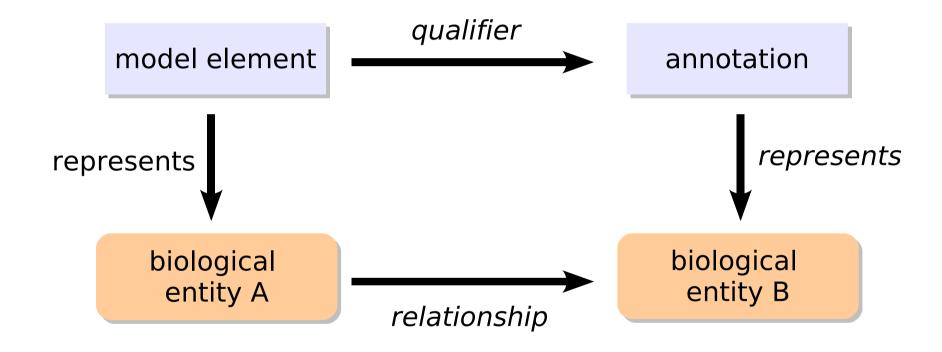
Atomicity

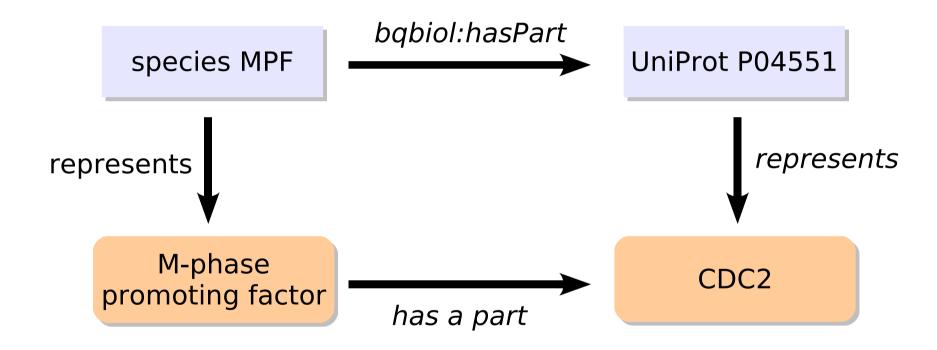
The granularity of the data distributed has to be appropriately selected (A database of "reactions" distributes reaction and not pathways) and consistent (e.g. classes or instances but not classes AND instances)

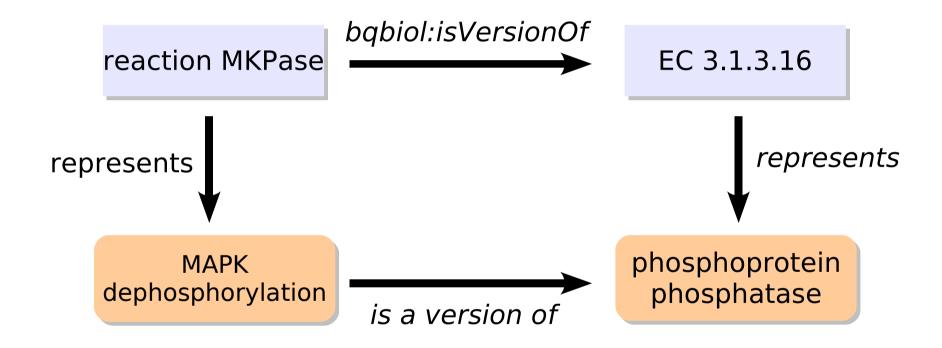

Identifier

An atomic data is associated to a unique and perennial identifier

Community recognition


The resource has to be "recognised" by the corresponding experimental community, be reasonably supported etc





Current BioModels.net Qualifiers

- bqmodel:is The modelling object represented by the model component is the subject of the referenced resource.
- bqmodel:isDescribedBy The modelling object represented by the component of the encoded model is described by the referenced resource.
- bqbiol:is The biological entity represented by the model component is the subject of the referenced resource.
- bqbiol:hasPart The biological entity represented by the model component includes the subject of the referenced resource, either physically or logically.
- bqbiol:isPartOf The biological entity represented by the model component is a physical or logical part of the subject of the referenced resource
- bqbiol:isVersionOf The biological entity represented by the model component is a version or an instance of the subject of the referenced resource.
- bqbiol:hasVersion The subject of the referenced resource is a version or an instance of the biological entity represented by the model component.
- bqbiol:isHomologTo The biological entity represented by the model component is homolog, to the subject of the referenced resource, i.e. they share a common ancestor.
- bqbiol:isDescribedBy The biological entity represented by the model component is described by the referenced resource.

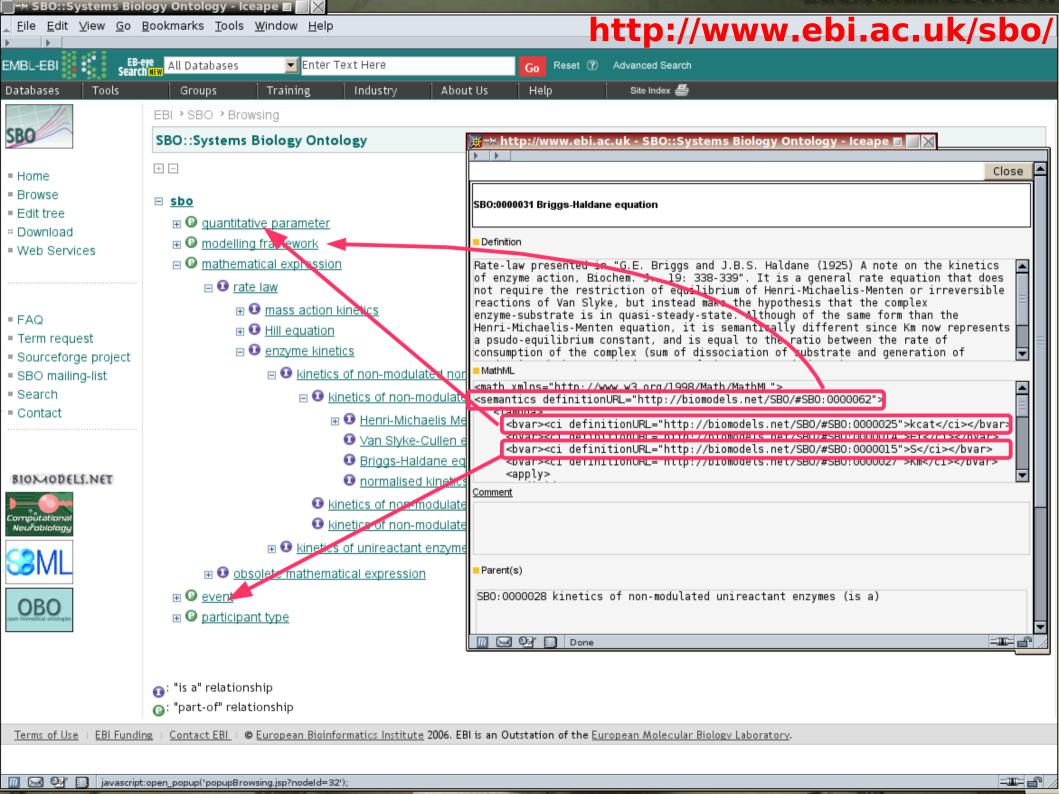

```
<species id="Ca calmodulin" metaid="cacam">
 <annotation>
    <rdf:RDF
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">
      <rdf:Description rdf:about="#cacam">
        <bgbiol:hasPart>
          <rdf:Bag>
            <rdf:li rdf:resource="http://www.uniprot.org/#P62158"/>
            <rdf:li rdf:resource="http://www.ebi.ac.uk/chebi/#CHEBI:29108"/>
          </rdf:Bag>
        </bqbiol:hasPart>
      </rdf:Description>
    </rdf:RDF>
 </annotation>
</species>
```


How to chose the right annotation?

- Choose the right level of abstraction
 - Precise enough to narrow down to the meaning of the component: not "vertebrate" for "mammal"; not "protein phosphorylation" for "MAPK phosphorylation"
 - Comprehensive enough to encompass the whole semantic of the component: not "rodent" for "mammal"; not "threonine phosphorylation" for "MAPK phosphorylation"
- Complete
 - If annotation of one part of a complex, annotate all the parts: Partial annotation can be misleading. The function of Cyclin/CDK is different of the function of CDK
 - (if annotating resource incomplete, file a curator request ...)
- Comply with usual identifier requirements
 - Unique, perennial, standard compliant, resolvable ...

Hidden assumptions

```
<reaction>
  <listOfReactants>
     <speciesReference species="S" />
  </listOfReactants>
  <listOfProducts>
     <speciesReference species="P" />
                                                                   Ε
  </listOfProducts>
                                                                S \rightarrow P
  <listOfModifiers>
     <speciesReference species="E" />
                                                    Import in a discrete simulator
  </listOfModifiers>
  <kineticLaw>
     <listOfParameters>
       <parameter id="Km"/>
       <parameter id="kp"/>
     </listOfParameters>
     <math xmlns="http://www.w3.org/1998/Math/MathML">
       <apply>
                                                                        Henri-Michaelis-Menten
         <divide/><apply>
                                                 E+S \rightleftharpoons ES \rightarrow E+P; k_1 = k_1/K_m
                     <times/><ci>E</ci>
                              <ci>kp</ci>
                              <ci>S</ci>
                                                        k_{_{1}} Van Slyke-Cullen
                   </apply>
                   <apply>
                                                 E+S \rightarrow ES \rightarrow E+P; k_1 = k_n/K_m
                     <plu><plus/><ci>Km</ci>
                             <ci>S</ci>
                   </apply>
                                                        k_1 k_D Briggs-Haldane
       </apply>
     E+S \rightleftharpoons ES \rightarrow E+P; k_1 = (k_1 + k_n)/K_m
  </kineticLaw>
</reaction>
                                                        k<sub>-1</sub>
```


Storage and Annotation of Reaction Kinetics Data May 21-23, 2007, EML research, Heidelberg, Germany

Systems Biology Ontology vocabularies

- Types and roles of reaction participants, including terms like "substrate", "catalyst" etc., but also "macromolecule", or "channel"
- Parameter used in quantitative models. This vocabulary includes terms like "Michaelis constant", "forward unimolecular rate constant"etc. A term may contain a precise mathematical expression stored as a MathML lambda function. The variables refer to other parameters.
- Mathematical expressions. Examples of terms are "mass action kinetics", "Henri-Michaelis-Menten equation" etc. A term may contain a precise mathematical expression stored as a MathML lambda function. The variables refer to the other vocabularies.
- Modelling framework to precise how to interpret the rate-law. E.g. "continuous modelling", "discrete modelling" etc.
- Event type, such as "catalysis" or "addition of a chemical group".


```
<reaction sboTerm="SBO:0000172">
  <listOfReactants>
    <speciesReference species="S" sboTerm="SBO:0000015"/>
  </listOfReactants>
  <listOfProducts>
    <speciesReference species="P" sboTerm="SBO:0000011"/>
  </listOfProducts>
  <listOfModifiers>
    <speciesReference species="E" sboTerm="SBO:0000014"/>
  </listOfModifiers>
  <kineticLaw sboTerm="SBO:0000031">
    <listOfParameters>
      <parameter id="K1" sboTerm="SBO:0000008"/>
      <parameter id="kp" sboTerm="SBO:0000025"/>
    </listOfParameters>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <divide/><apply>
                   <times/><ci>E</ci>
                           <ci>kp</ci>
                           <ci>S</ci>
                 </apply>
                 <apply>
                   <ci>S</ci>
                 </apply>
      </apply>
    </kineticLaw>
</reaction>
```

Storage and Annotation of Reaction Kinetics Data

May 21-23, 2007, EML research, Heidelberg, Germany


```
<reaction sboTern="SBO:0000172">
                                         catalysis
  <listOfReactants>
    <speciesReference species="S" sboTerm="SBO:0000015"/>
                                                                    substrate
  </listOfReactants>
  <listOfProducts>
                                                                   product
    <speciesReference species="P" sboTern="SBO:0000011"/>
  </listOfProducts>
  <listOfModifiers>
    <speciesReference species="E" sboTern="SBO:0000014"/>
                                                                  catalyst
  </listOfModifiers>
                                              Briggs-Haldane equation
  <kineticLaw sboTerm="SBO:0000031">
    <listOfParameters>
                                                          Km
      <parameter id="K1" sboTerm="SBO:0000008"/>
      <parameter id="kp" sboTerm="SBU:0000025"/>
                                                            kcat
    </listOfParameters>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <divide/><apply>
                   <times/><ci>E</ci>
                           <ci>kp</ci>
                           <ci>S</ci>
                 </apply>
                 <apply>
                   <plu><plu></pl></ri></ri>
                          <ci>S</ci>
                 </apply>
      </apply>
    </kineticLaw>
</reaction>
```

Storage and Annotation of Reaction Kinetics Data

May 21-23, 2007, EML research, Heidelberg, Germany


```
<reaction sboTerm="SBO:0000172">
  stOfReactants>
    <speciesReference species="A" sboTerm="SBO:0000015"/>
  </listOfReactants>
  <listOfProducts>
    <speciesReference species="B" sboTerm="SBO:0000011"/>
  </listOfProducts>
  <listOfModifiers>
    <speciesReference species="C" sboTerm="SBO:0000014"/>
  </listOfModifiers>
  <kineticLaw sboTerm="SBO:0000031">
    <listOfParameters>
      <parameter id="U" sboTerm="SBO:0000008"/>
      <parameter id="V" sboTerm="SBO:0000025"/>
    </listOfParameters>
  </kineticLaw>
</reaction>
```

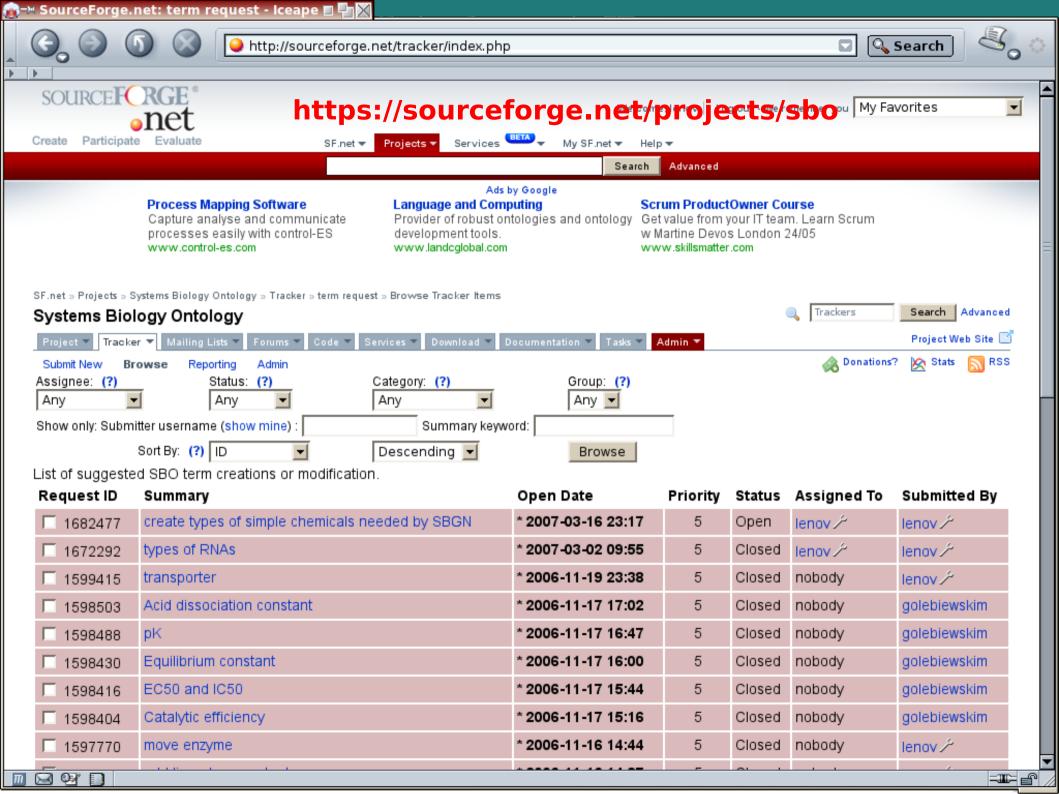
continuous simulator

$$v = \frac{C \cdot V \cdot [A]}{(U + [A])}$$

discrete simulator

$$vI = \frac{(k_{-1} + V)}{U} \cdot [A] \cdot [C]$$
$$v2 = k_{-1} \cdot [D]$$

$$v3 = V \cdot [D]$$




```
<listOfCompartments>
                                                      functional compartment
  <compartment id="C" sboTerm="SBO:0000289">
</listOfCompartments>
<listOfSpecies>
                                                   simple chemical
  <species id="A" sboTerm="SBO:0000247"</pre>
                                                     simple chemical
  <species id="B" sboTerm="""</pre>
                                                     enzyme
  <species id="C" sboTerm="SBU:0000014"</pre>
</listOfSpecies>
<listOfReactions>
                                            catalysis
  <reaction sboTer = "SBO:0000172">
    stOfReactants>
      <speciesReference species="A" sboTern="SBO:0000015"/>
                                                                      substrate
    </listOfReactants>
    <listOfProducts>
      <speciesReference species="B" sboTern="SBO:0000011"/>
                                                                      product
    </listOfProducts>
    <listOfModifiers>
      <speciesReference species="C" sboTern="SBO:0000014"/>
                                                                     catalyst
    </listOfModifiers>
                                                 Briggs-Haldane equation
    <kineticLaw sboTern="SBO:0000031">
      <listOfParameters>
                                                             Km
                          sboTerm="SBO:000008"/>
        <parameter id="U"</pre>
        <parameter id="V" sboTerm="SBO:0000025"/>
                                                              kcat
      </listOfParameters>
    </kineticLaw>
  </reaction>
</listOfReactions>
```

Storage and Annotation of Reaction Kinetics Data

May 21-23, 2007, EML research, Heidelberg, Germany

TErminology for the Description of DYnamics (https://sourceforge.net/projects/teddyontology)

- Dynamical behaviour of biological variables, including terms like "oscillation", "bistability", "steady-state", "equilibrium" etc.
- Characteristics used to describe dynamics, such as "period", "limit-cycle", "Hopf bifurcation"etc.
- Functional role of model elements. Examples of terms are "negative feedback", "integrator" etc.

An international collaboration

- <u>EBI</u>
 - Nicolas Le Novère
 - Mélanie Courtot
 - Marco Donizelli
 - Arnaud Henry
 - Christian Knuepfer
 - Chen Li
 - Lu Li
 - Camille Laibe
 - Nicolas Rodriguez
 - Alexander Broicher
- SBML team
 - Michael Hucka
 - Andrew Finney
 - Benjamin Borstein
 - Harish Dharuri
 - Enuo He
 - Sarah Keating
 - Maria Schilstra
 - Bruce Shapiro

- NCBS
 - Upinder Bhalla
 - Harsha Rani
- University of Washington
 - Herbert Sauro
- Vienna TBI
 - Rainer Machne
 - James Lu
- Systems Biology Institute
 - Hiroaki Kitano
 - Akira Funahashi
- JWS Online
 - Jacky Snoep
 - Hans Westerhoff

- Journals supporting BioModels Database
 - Molecular Systems Biology
 - All PLoS Journals
 - All BioMedCentral Journals
- Programs used for curation
 - CellDesigner/SBMLodeSolver
 - COPASI
 - Jarnac/JDesigner
 - MathSBML
 - RoadRunner
 - SBMLeditor
 - XPP-Aut

The community of Systems Biology for their contributions of models and comments.

European Bioinformatics Institute

British outstation of the European Molecular Biology Laboratory

- Databases
 - Sequences, structures
 - Transcriptomics, Proteomics pathways, models
 - Controlled vocabularies and dictionaries

- Research groups
 - Structural Genomics (Thornton)
 - Molecular Evolution (Goldman)
 - Text-Mining (Rebholz-Schumman)
 - Computational Systems Biology (Le Novère)
 - Statistical array analysis (Huber)
 - Genomic analysis of regulatory systems (Luscombe)
 - Systems Biology of ES cells (Bertone)