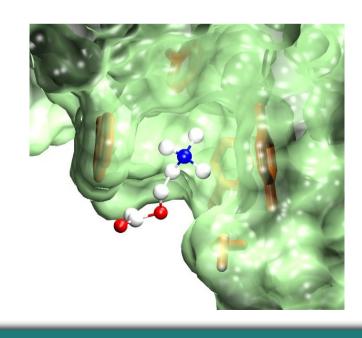
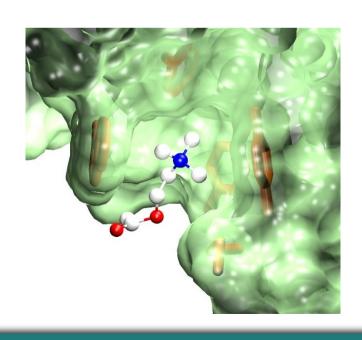
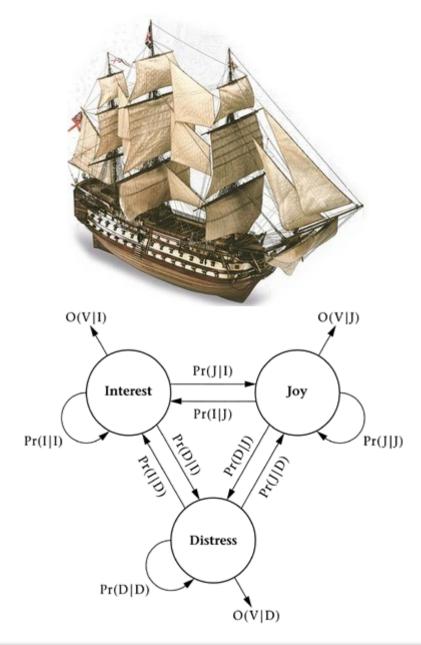
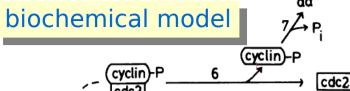
Toward a consistent set of interoperable standards to represent models and simulations.

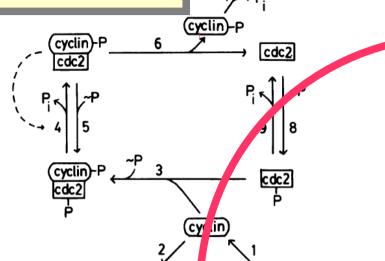
Nicolas Le Novère, EMBL-EBI











mathematical model

$d[C2]/d! = k_6[M] - k_8[\sim P][C2] + k_9[CP]$	
$d[CP]/dt = -k_3[CP][Y] + k_8[\sim P][C2] - k_9$	[CP]
$d[pM]/dt = k_3[P][Y] - [pM]F([M]) + k_5[$	- <i>P</i>][M]
$d[M]/dt = [pM]Y(M] - k_5[\sim P][M] - k_6[M]$	
$d[Y]/dt = k_1[aa] - k_2[Y] - k_3[CP][Y]$	
$d[YP]/dt = k_6[M] - \lambda [YP]$	
-	

اه	20	40	60	80	100
0.1		<u>[M]</u> [CT] ℃			
0.2					,
0.3			<u>[YT]</u> [CT]		
0.4			[YT]	l	

Parameter	Val	e	Notes
$k_1[aa]/[CT]$	0.015 min ⁻¹		*
k_2	0		†
$k_3[CT]$	200 min ⁻¹		*
k ₄	10–1000 min	(adjustable)	
k ₄ '	0.018min^{-1}	_	
$k_5[\sim P]$	0		‡
k ₆	$0.1-10 \text{ m/n}^{-1}$ (adjustable)	
k ₇	0.6 mir ⁻¹		†
$k_8[\sim P]$	>>19		§
k9	>k ₆		§

simulation

Tyson et al (1991) PNAS 88(1):7328-32

computational model

Models at the core of integrative systems biology

- Computational models encode the relationships between the building blocks of a system
- Computational models can be linked to experimental datasets: controlled links
- Computational models can be exchanged: computer storable and readable
- Computational models can be analysed in many different ways by different tools: standard API
- Computational models can be modified, split, merged: Encoded in a suitable design
 - → Standardisation is unavoidable!

A "complete" (?) mosaic of standards

	Models	Simulation	Results
Minimal requirements	MIRIAM	MIASE	
Data-models	CellVL biology. math. data. knowledge.	SED-ML	SBRML
Ontologies	S30	KISAO	TEDDY

Model description

	Models	Simulation	Results
Minimal requirements	MIRIAM	MIASE	
	•••••		
Data-model		ED-ML	SBRML
Ontologies	S30	KISAO	TEDDY

The Systems Biology Markup Language

News Documents Downloads Forums Facilities Community Events About

Q Google Site Search..

The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biological processes. It's applicable to simulations of metabolism, cell-signaling, and many other topics. SBML has been evolving since mid-2000 thanks to an international community of software developers and users. This website is the global portal for the SBML effort; here you can find information about all aspects of SBML.

For the curious

What is SBML? Read our basic introduction and then perhaps browse the mailing lists to get a sense for what's currently going on in the world of SBML.

For modelers

Are you looking for ready-to-run software that supports SBML? The SBML Software Guide lists over 180 systems today. Are you instead looking for ready-to-use models? Visit the BioModels Database 🗗. where you can find hundreds!

For software developers

Are you interested in developing SBML support for your software? Read our basic introduction and then the SBML specifications to understand how to use SBML. After that, you may want to look at libSBML, an API library supporting many programming languages.

No matter how you use SBML, we invite you to sign up for news updates either through our RSS feed, our Twitter feed &, or one of the mailing lists, and get involved with community efforts to help keep improving SBML. You can also call

SBML News

SBML-BioModels.net Hackathon

(25 Jan. '10) The next Hackathon will be held May 1-4 in Seattle. Please let us know if you're coming.

LibSBML 4.0.1 released!

(21 Jan. '10) This release of the libSBML version 4.x series fixes many reported small bugs in 4.0.0.

LibSBML 5 preview!

(18 Jan. '10) A preview version of libSBML version 5, with a plug-in architecture for Level 3 packages, is now available.

Older news ...

Community News

BioModels release 16

(26 Jan. '09) The latest release of the BioModels Database 🗗 features over 450 total models.

Cain 1.2 released!

(1 Jan. '09) Cain A is a stochastic simulator with highly efficient implementations of many methods.

BioUML Web Edition

(30 Nov. '09) BioUML, the Java-based modeling platform, now has a web edition .

Hucka M., H. Bolouri, A. Finney, H. M. Sauro, J. C. Doyle, H. Kitano et al (2003). The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models. Bioinformatics, 19: 524-531.

The Systems Biology Markup Language is a way to **exchange and reuse** (and hopefully **interface**) descriptions of quantitative models in "Systems Biology", in fact mostly well-stirred chemical kinetics so far.

It is not a procedural language.

It is not a programming language.

It is not a format for specific software configuration files.

Tools are supposed to understand the whole of SBML but not obligatory make use of everything (will not be true for Level 3).

Development philosophy: Start small, get good support, extend.

A feature should only be included if at least two software tools can use it: It is an <u>exchange</u> language.

Basic tools are provided to read, validate, write and process SBML. No need to re-invent the wheel. Let's focus on science instead.

SBML itself re-uses other standards: MathML, XHTML, RDF, existing ontologies.

It is supported by a community large, diverse, active and evolving.


```
<?xml version="1.0" encoding="UTF-8"?>
<sbml level="2" version="4" xmlns="http://www.sbml.org/sbml/level2/version4">
  <model>
    <listOfCompartments>
      <compartment id="cell" />
    </listOfCompartments>
    <listOfSpecies>
      <species id="A" compartment="cell" initialConcentration="1"/>
      <species id="B" compartment="cell" initialConcentration="0"/>
    </listOfSpecies>
    <listOfParameters>
      <parameter id="kon" value="1"/>
    </listOfParameters>
    <listOfReactions>
      <reaction>
        <listOfReactants>
          <speciesReference species="A" />
        </listOfReactants>
        <listOfProducts>
          <speciesReference species="B" />
        </listOfProducts>
        <kineticLaw>
          <math xmlns="http://www.w3.org/1998/Math/MathML">
            <apply>
              <times />
              <ci>kon</ci>
              <ci>A</ci>
              <ci>ci>cell</ci>
            </apply>
          </kineticLaw>
      </reaction>
    </listOfReactions>
  </model>
</sbml>
```


No biological semantics in the language itself

```
<?xml version="1.0" encoding="UTF-8"?>
<sbml level="2" version="4" xmlns="http://www.sbml.org/sbml/level2/version4">
  <model>
   <listOfCompartments>
     <compartment id="cell" />
   </listOfCompartments>
   <listOfSpecies>
     <species id="A" compartment="cell" initialConcentration="1"/>
     <species id="B" compartment="cell" initialConcentration="0"/>
   </listOfSpecies>
    <listOfParameters>
                                          Elements free of biological
      <parameter id="kon" value="1"/>
   </listOfParameters>
                                          semantics: we do not know
   <listOfReactions>
      <reaction>
                                         which type of species this is
       <listOfReactants>
         <speciesReference species="A" />
       </listOfReactants>
       <listOfProducts>
          <speciesReference species="B" />
       </listOfProducts>
       <kineticLaw>
         <math xmlns="http://www.w3.org/1998/Math/MathML">
           <apply>
             <times />
             <ci>kon</ci>
             <ci>A</ci>
             <ci>ci>cell</ci>
           </apply>
         </kineticLaw>
      </reaction>
    </listOfReactions>
  </model>
</sbml>
```


Reusing existing standards

```
<?xml version="1.0" encoding="UTF-8"?>
          <sbml level="2" version="1" xmlns="http://www.sbml.org/sbml/level2">
            <model>
              <listOfCompartments>
                <compartment id="cell" />
              </listOfCompartments>
              <listOfSpecies>
                <species id="A" compartment="cell" initialConcentration="1"/>
                <species id="B" compartment="cell" initialConcentration="0"/>
              </listOfSpecies>
              <listOfParameters>
                <parameter id="kon" value="1"/>
              </listOfParameters>
              <listOfReactions>
                <reaction>
                  <listOfReactants>
                    <speciesReference species="A" />
                  </listOfReactants>
                  <listOfProducts>
                    <speciesReference species="B" />
                  </listOfProducts>
                  <kineticLaw>
                    <math xmlns="http://www.w3.org/1998/Math/MathML">
                      <apply>
                        <times />
MathML
                        <ci>kon</ci>
                        <ci>A</ci>
                        <ci>ci>cell</ci>
                      </apply>
                     </kineticLaw>
                </reaction>
              </listOfReactions>
            </model>
          </sbml>
```


A more realistic example ...

```
<species</pre>
    id="A"
    name="\alpha-tubulin"
    compartment="cell"
    initialAmount="1000"
    substanceUnits="item"
    hasOnlySubstanceUnits="true"
    boundaryCondition="true"
    constant="false"
    charge="0"
    metaid="PX"
    sboTerm="SBO:0000245" >
  <notes>
    <body xmlns="http://www.w3.org/1999/xhtml">
      One of the components of a microtubule
    </body>
  </notes>
  <annotation>
    <rdf:RDF
        xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"
        xmlns:bqmodel="http://biomodels.net/model-qualifiers/"
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
      <rdf:Description rdf:about="#PX">
        <bgbiol:is>
          <rdf:Bag>
            <rdf:li rdf:resource="urn:miriam:uniprot:P68370"/>
            <rdf:li rdf:resource="urn:miriam:obo.go:G0%3A0045298"/>
          </rdf:Baq>
        </bqbiol:is>
      </rdf:Description>
    </rdf:RDF>
  </annotation>
</species>
```


Externalisation of biological semantics

```
<species</pre>
    id="A"
    name="\alpha-tubulin"
    compartment="cell"
    initialAmount="1000"
    substanceUnits="item"
    hasOnlySubstanceUnits="true"
    boundaryCondition="true"
    constant="false"
    charge="0"
    metaid="PX"
                                          macromolecule
   sboTerm="SBO:0000245" >
  <notes>
    <body xmlns="http://www.w3.org/1999/xhtml">
      One of the components of a microtubule
    </body>
  </notes>
  <annotation>
    <rdf:RDF
        xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"
        xmlns:bqmodel="http://biomodels.net/model-qualifiers/"
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
      <rdf:Description rdf:about="#PX">
        <bgbiol:is>
          <rdf:Bag>
            <rdf:li rdf:resource="urn:miriam:uniprot:P68370"/>
            <rdf:li rdf:resource="urn:miriam:obo.go:G0%3A0045298"/>
          </rdf:Baq>
        </bqbiol:is>
      </rdf:Description>
    </rdf:RDF>
  </annotation>
</species>
```


Reusing existing standards again

```
<species</pre>
               id="A"
               name="\alpha-tubulin"
               compartment="cell"
               initialAmount="1000"
               substanceUnits="item"
               hasOnlySubstanceUnits="true"
               boundaryCondition="true"
               constant="false"
               charge="0"
               metaid="PX"
               sboTerm="SBO:0000245" >
             <notes>
               <body xmlns="http://www.w3.org/1999/xhtml">
XHTML
                 One of the components of a microtubule
               </body>
             </notes>
             <annotation>
               <rdf:RDF
                   xmlns:bqbiol="http://biomodels.net/biology-qualifiers/"
                   xmlns:bqmodel="http://biomodels.net/model-qualifiers/"
                   xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
                 <rdf:Description rdf:about="#PX">
                   <bgbiol:is>
RDF
                     <rdf:Bag>
                       <rdf:li rdf:resource="urn:miriam:uniprot:P68370"/>
                       <rdf:li rdf:resource="urn:miriam:obo.go:GO%3A0045298"/>
                     </rdf:Bag>
                   </bqbiol:is>
                 </rdf:Description>
               </rdf:RDF>
             </annotation>
           </species>
```

Rate Rules can describe the temporal evolution of <u>any</u> <u>quantitative parameter</u>, e.g. transmembrane voltage;

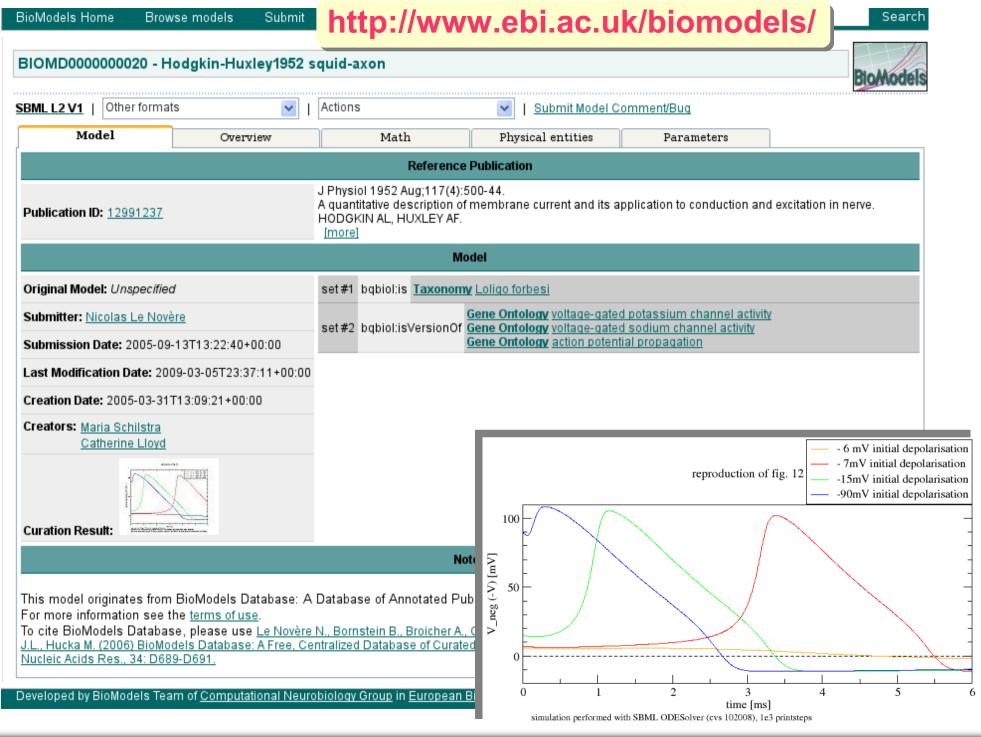
Events can describe any discontinuous change, e.g. neurotransmitter release or repolarisation;

A species is an entity participating to a reaction, **not always** a **chemical** entity:

It can be a molecule

It can be a cell

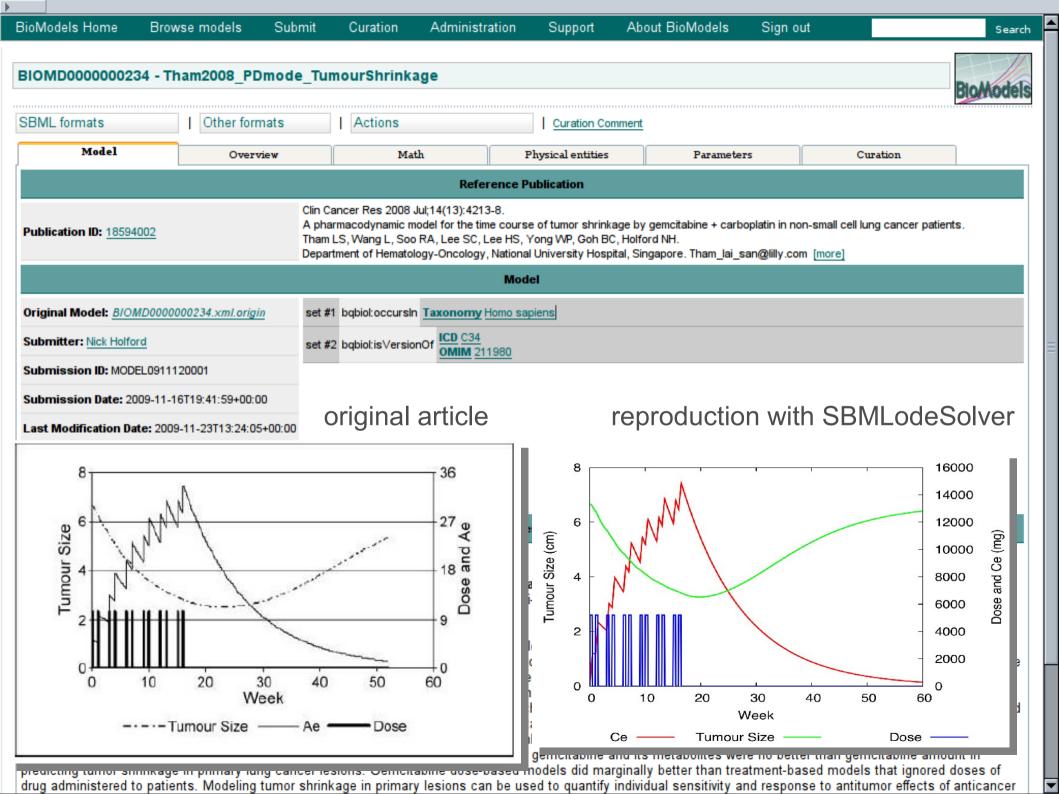
It can be an organ


It can be an organism

→ Systems Biology is scale-free!

Hodgkin-Huxley

```
<rateRule metaid="metaid 0000048" variable="V">
 <notes>\overline{//www.w3.org/1999/xhtml">dV/dt = (I - (i Na + i K + i L))/Cm</notes>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
   <apply>
     <divide/>
     <apply>
       <minus/>
       <ci> I </ci>
                                                            rate rule:
       <apply>
         <plus/><ci> i Na </ci><ci> i K </ci><ci> i L </ci>
                                                            dx/dt = f(x,y,z)
       </apply>
     </apply>
     <ci> Cm </ci>
   </apply>
 </rateRule>
<assignmentRule metaid="metaid 0000042" variable="i Na">
  <notes>i Na = q Na * m^3.0 * h * (V - E Na)</notes>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
   <apply>
     <times/>
                                                            assignment rule:
     <ci> g Na </ci>
     <apply>
       <power/><ci> m </ci><cn> 3.0 </cn>
                                                            x = f(y,z)
     </apply>
     <ci> h </ci>
     <apply>
       <minus/><ci> V </ci><ci> E Na </ci>
     </apply>
   </apply>
  </assignmentRule>
```

An example of pharmacodynamic model

```
<rateRule metaid="metaid 0000031" variable="Size">
  <math xmlns="http://www.w3.org/1998/Math/MathML">
    <apply>
      <times/>
      <apply>
        <minus/>
        <apply>
          <times/><ci> RateIn </ci><ci> Effect </ci>
        </apply>
        <apply>
          <times/><ci> Kover </ci><ci> Size </ci>
        </apply>
      </apply>
                                           \frac{dze}{dt} = (Rate_{in} \times Effect - K_{over} \times Size) \times Size
      <ci> Size </ci>
    </apply>
  </rateRule>
<assignmentRule metaid="metaid 0000027" variable="Effect">
  <math xmlns="http://www.w3.org/1998/Math/MathML">
    <apply>
      <minus/>
      <cn> 1 </cn>
      <apply>
        <divide/>
        <ci> Ce </ci>
        <apply>
          <plus/><ci> AE50 </ci> Ce </ci>
        </apply>
      </apply>
    </apply>
  </assignmentRule>
```

Tham et al (2008) A pharmacodynamic model for the time course of tumor shrinkage by gemcitabine + carboplatin in non-small cell lung cancer patients. Clin Cancer Res. 2008 14(13): 4213-8.

$$Effect = 1 - \frac{E_{max} - Ce}{Amt_{50} + Ce}$$

Difference between | L1, L2 and L3

L2 L3

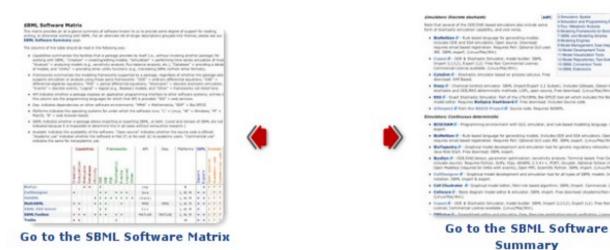
- predefined functions
- proprietary infix math notation
- reserved namespaces for annotation
- no controlled annotation
- no discrete events
- monolithic
- default values

- function definitions
- all math in MathML
- no reserved namespaces no reserved namespaces for annotations
- controlled RDF annotation
- discrete events
- monolithic
- default values

- function definitions
- all math in MathML
- for annotations
- controlled RDF annotation
- discrete events
- modular
- no default values

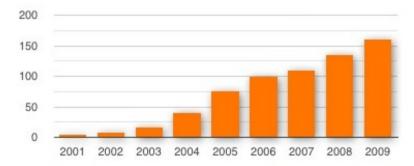
Progressive simplification, generalisation and externalisation

Modular SBML, with core + optional packages


- Core package Release candidate
- Graph Layout specification finalised
- Complex species specification finalised
- Groups specification under discussion
- Model composition specification under discussion
- Qualitative models specification under discussion
- Graph rendering specification proposed
- Distributions and ranges specification proposed
- Arrays and sets specifications proposed
- Geometry specification proposed
- Spatial diffusion needed
- Dynamic structures needed

???

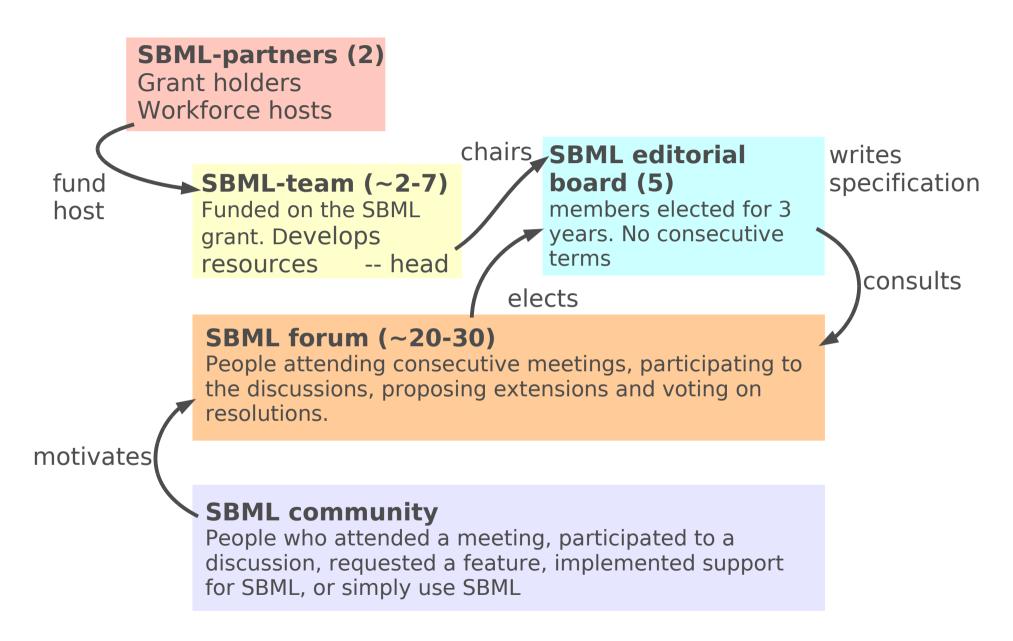
SBML Software Guide


SBML software and projects come in many varieties. Here we summarize all SBML-compatible systems known to us. The *matrix* provides an at-a-glance summary, whereas the *summary* provides longer descriptions of each software or project grouped by themes. Please **use the survey form** of to notify us about additions and suggestions.

Number of software packages listed in the matrix today: 181

Historical trend

The following graph shows the total number of known SBML-compatible software packages each year, as counted by the SBML Team. The counts shown are for approximately the middle of each year.


(Note: the flat period in 2007 is an artifact of inadequate record keeping rather than a lull in SBML software development.)

Disclaimers

The listing of a software project or other work on this page does not constitute an endorsement from anyone associated with the

Current structure of the Current structure of the

More on SBML Level 3 by Sarah Keating tomorrow during the demo session

Model semantics

	Models	Simulation	Results
Minimal requirement	MIRIAM	NASE	
Data-models	Sell Loiology. math. data. knowledge.	SED-ML	SBRML
Ontologies	S30	KISAO	TEDDY

MIRIAM guidelines

_computational BIOLOGY

PERSPECTIVE

- Reporting guidelines for curation of quantitative models
 - Specifically about encoding & annotation
 - Limited for the moment to models that can be numerically evaluated
- Not specific to SBML; applicable to any structured model format

Minimum information requested in the annotation of biochemical models (MIRIAM)

Nicolas Le Novère^{1,15}, Andrew Finney^{2,15}, Michael Hucka³, Upinder S Bhalla⁴, Fabien Campagne⁵, Julio Collado-Vides⁶, Edmund J Crampin⁷, Matt Halstead⁷, Edda Klipp⁸, Pedro Mendes⁸, Poul Nielsen⁷, Herbert Sauro¹⁰, Bruce Shapiro¹¹, Jacky L Snoep¹², Hugh D Spence¹³ & Barry L Wanner¹⁴

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models. it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.

¹European Bioinformatics Institute, Hinxton, CB10 13D, UK, ²Physiomics PLC, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA,K. ^aControl and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, USA. ⁴National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore 560065, India. ⁵Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10021, USA. Center for Genomic Sciences, Universidad Nacional Autónoma de México. Av Universidad s/n. Cuernavaca. Morelos. 62100, Mexico. 7Bioengineering Institute and Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland, New Zealand, ⁸Max-Planck Institute for Molecular Genetics, Berlin Center for Genome based Bioinformatics (BCB), Ihnestr. 73, 14195 Berlin, Germany. ⁹Virginia Bioinformatics Instituta, Virginia Tach, Washington St., Blacksburg, Virginia 24061-0477, USA, ¹⁰Keck Graduata Institute, 535 Watson Drive. Claremont, California 91711, USA. ¹¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. ¹²Triple-J Group for Molecular Cell Physiology, Department of Biochemistry, Stellenbosch University, Private Bag X1, Mattieland 7602, South Africa. ¹⁹Department of Scientific Computing & Mathematical Modeling, GlaxoSmithKline Research & Development Limited, Medicines Research Centre, Gummels Wood Road, Stevenage, Herts, SG1 2NY, UK. 14Purdue University, Department of Biological Sciences, Lilly Hall of Life Sciences, 915 W. State Street, West Lafayette, Indiana 47907-2054, USA. ¹⁹These authors have contributed equally to the work. Correspondence should be addressed to N.L.N. (e.mail- lenny@ehi ac uk)

Published online 6 December 2005; doi:10.1038/nbt1156

During the genomic era we have witnessed a vast increase in availability of large amounts of quantitative data. This is motivating a shift in the focus of molecular and cellular research from qualitative descriptions of biochemical interactions towards the quantification of such interactions and their dynamics. One of the tenets of systems biology is the use of quantitative models (see Box 1 for definitions) as a mechanism for capturing precise hypotheses and making predictions ^{1,2}. Many specialized models exist that attempt to explain aspects of the cellular machinery. However, as has happened with other types of biological information, such as sequences, macro-molecular structures or

Box 1 Glossary

Some terms are used in a very specific way throughout the article. We provide here a precise definition of each one.

Quantitative blochemical model. A formal model of a biological system, based on the mathematical description of its molecular and cellular components, and the interactions between those components.

Encoded model. A mathematical model written in a formal machine-readable language, such that it can be systematically parsed and employed by simulation and analysis software without further human translation.

MIRIAM-compliant model. A model that passes all the tests and fulfills all the conditions listed in MIRIAM.

Reference description. A unique document that describes, or references the description of the model, the structure of the model, the numerical values necessary to instantiate a simulation from the model, or to perform a mathematical analysis of the model, and the results one expects from such a simulation or analysis.

Curation process. The process by which the compliance of an encoded model with MIRIAM is achieved and/or verified. The curation process may encompass some or all of the following tasks: encoding of the model, verification of the reference correspondence and annotation of the model.

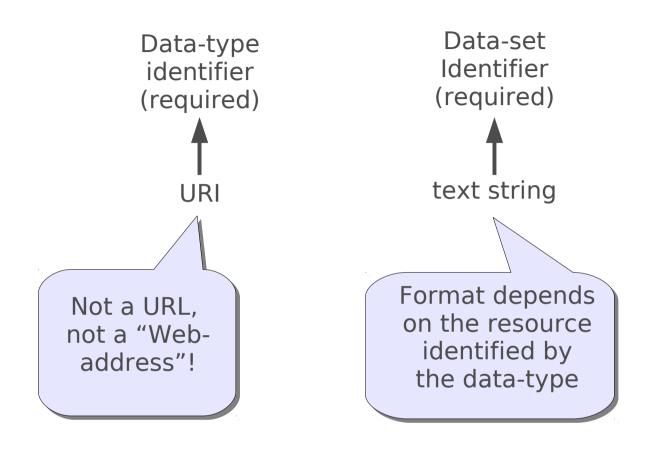
Reference correspondence. The fact that the structure of a model and the results of a simulation or an analysis match the information present in the reference description.

NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 12 DECEMBER 2005

1509

MIRIAM compliance

Models must:


- be encoded in a public machine-readable format
- be clearly linked to a single reference description
- reflect the structure of the biological processes described in the reference paper (list of reactions etc.)
- be instantiable in a simulation (possess initial conditions etc.)
- be able to reproduce the results given in the reference paper
- contain creator's contact details
- annotation to unambiguously identify each model constituent

Why are annotations important?

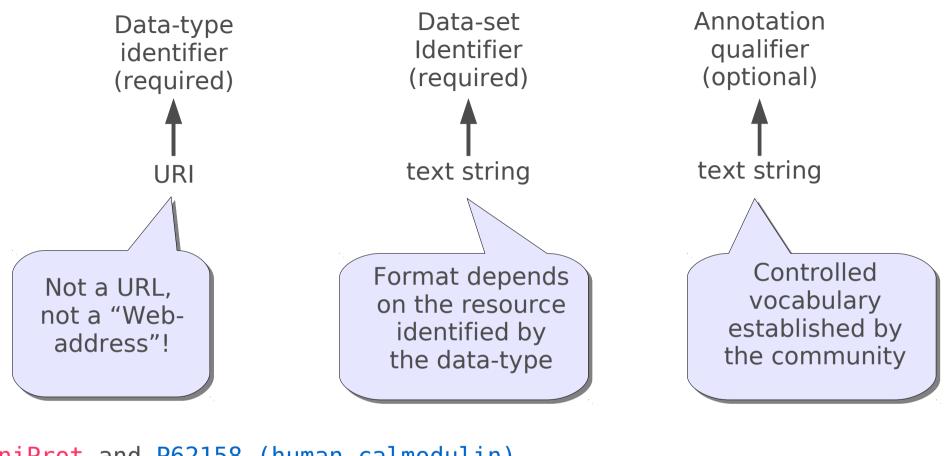
Annotation of model components are essential to:

- unambiguously identify model components
 - improve understanding the structure of the model
 - allow easier comparison of different models
 - ease the integration of models
- allow efficient search strategies
- add a semantic layer to the model
 - improve understanding of the biology behind the model
 - allow conversion and reuse of the model
 - ease the integration of model and biological knowledge

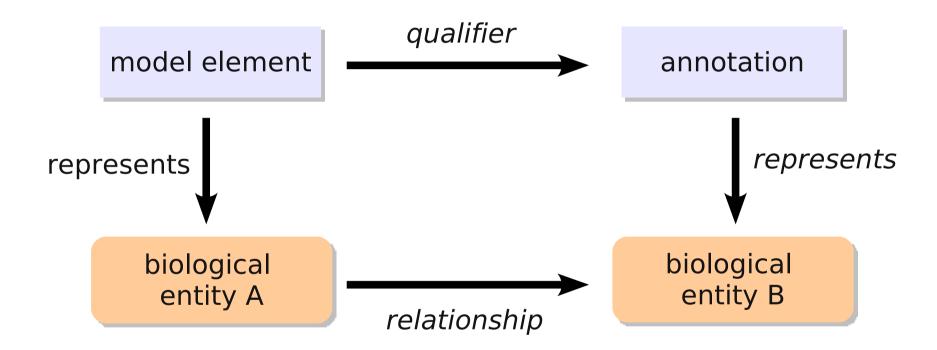
MIRIAM annotation


```
UniProt and P62158 (human calmodulin)

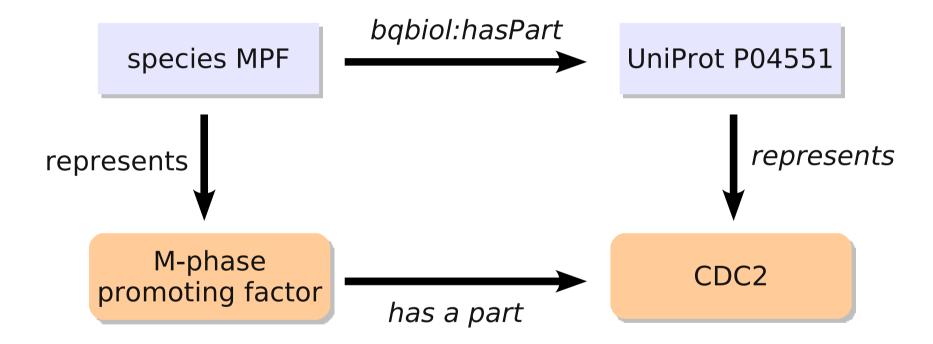
urn:miriam:uniprot:P62158


EC code and 1.1.1.1 (alcohol dehydrogenase)

urn:miriam:ec-code:1.1.1.1


Gene Ontology and G0:0000186 (activation of MAPKK activity)

urn:miriam:obo.go:G0%3A0000186
```


MIRIAM annotation

Qualification of annotation

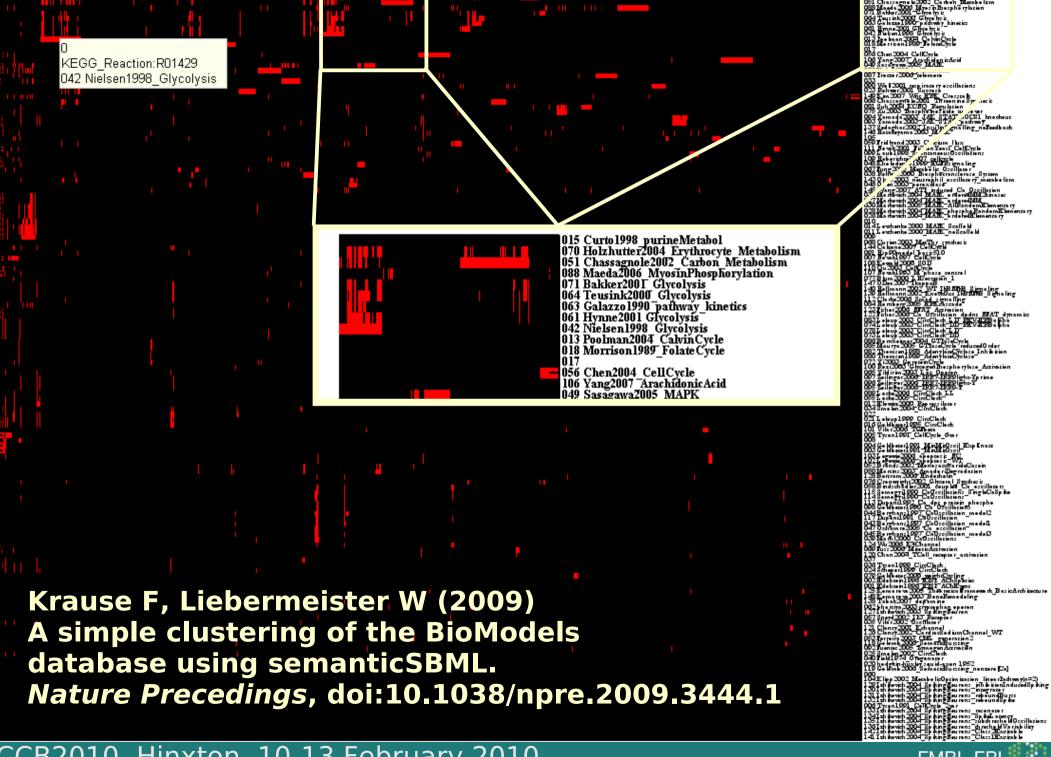
Qualification of annotation

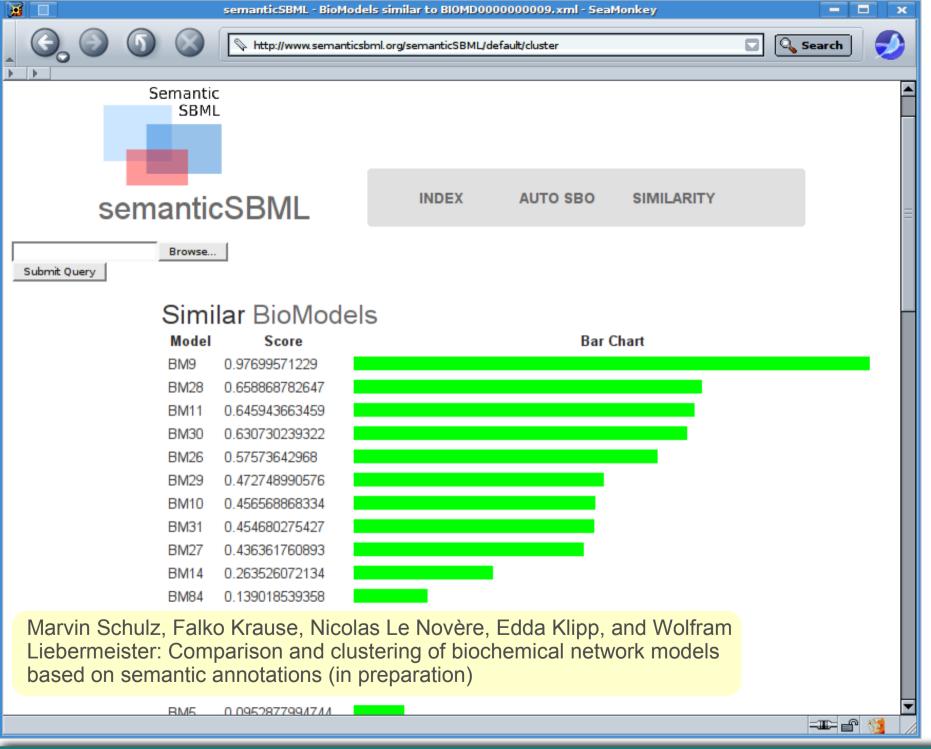

```
<species id="Ca calmodulin" metaid="cacam">
  <annotation>
    <rdf:RDF
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">
      <rdf:Description rdf:about="#cacam">
        <bgbiol:hasPart>
          <rdf:Bag>
            <rdf:li rdf:resource="urn:miriam:uniprot:P62158"/>
            <rdf:li rdf:resource="urn:miriam:obo.chebi:CHEBI%3A29108"/>
          </rdf:Bag>
        </bqbiol:hasPart>
      </rdf:Description>
    </rdf:RDF>
 </annotation>
</species>
```

Tools developing support for MIRIAM identifiers

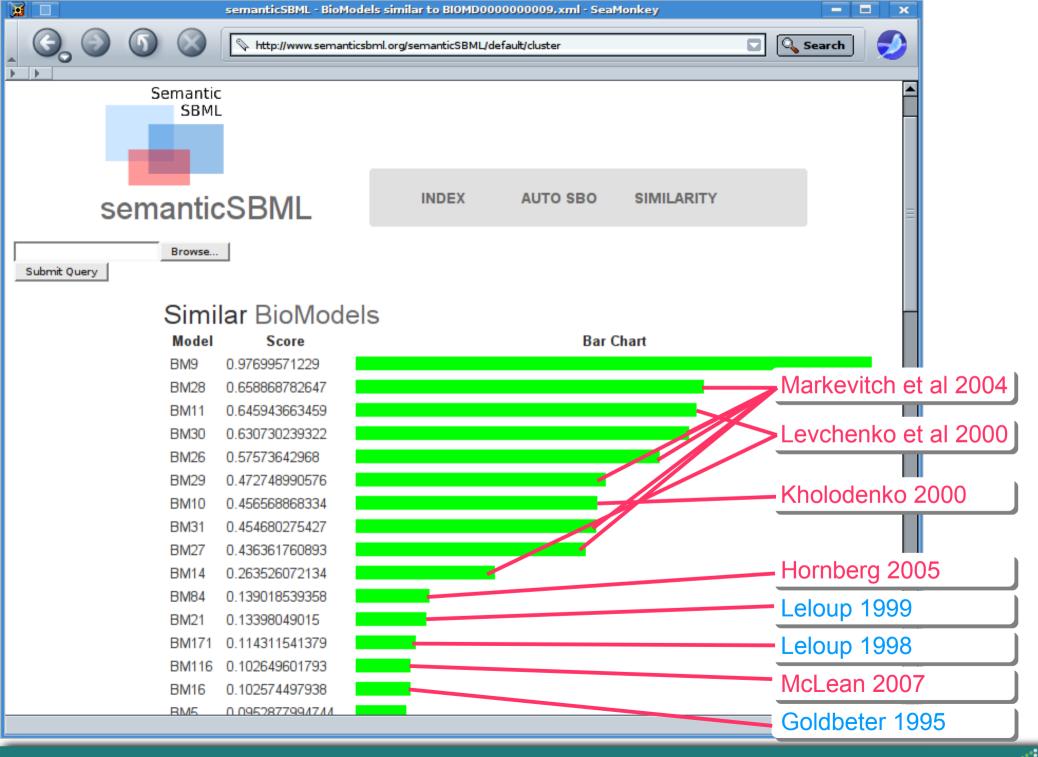
- Data resources
 - BioModels Database (kinetic models)
 - PSI consortium (protein interactions)
 - Reactome (pathways)
 - SABIO-RK (reaction kinetics)
 - Yeast consensus model database
 - Human consensus model database
 - E-MeP (structural genomics)
- MIRIAM Resources statistics
 - ~5000 web page requests per month
 - ~550000 web service requests per month

- Application software
 - ARCADIA (graph editor)
 - BIOUML (modeling and simulation)
 - COPASI (Simulation)
 - libAnnotationSBML
 - libSBML
 - SAINT (semantic annotation)
 - SBML2BioPAX
 - SBML2LaTeX
 - SBMLeditor (model editor)
 - SemanticSBML (annotation and merging)
 - Snazer (Network analysis, Simulations)
 - Systems Biology Workbench (model design and simulation)
 - The Virtual Cell (Simulation)

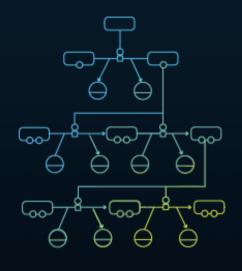

Application: whole-cell metabolic models


Yeast Metabolic Model Herrgård M.J., Swainston N., Dobson P., Dunn W.B., Arga K.V., Arvas M., Blüthgen N., Borger S., Costenoble R, Heinemann M., Hucka M., Le Novère N., Li P., Liebermeister W., Mo M.L., Oliveira A.P., Petranovic D., Pettifer S., Simeonidis E., Smallbone K., Spasic I., Weichart D., Brent R., Broomhead D.S., Westerhoff H.V., Kırdar B., Penttilä M., Klipp E., Palsson B.Ø., Sauer U., Oliver S.G., Mendes P., Nielsen J., Kell D.B. (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nature Biotechnology, 26: 1155-1160.


2152 species, 1857 reactions, 4861 MIRIAM annotations


Human Metabolic Model

4889 species, 8866 reactions, 66968 MIRIAM annotations



Model representation

	Models	Simulation	Results
Minimal requirements	MIRIAM	MIASE	
Data-model	SSGN	ED-ML	SBRML
Ontologies	S30	KISAO	TEDDY

A Visual Notation for Network Diagrams in Biology

SBGN.org is the global portal for documentation, news, and other information about the Systems Biology Graphical Notation (SBGN) project, an effort to standardize the graphical notation used in maps of biochemical and cellular processes studied in systems biology.

Standardizing the visual representation is crucial for more efficient and accurate transmission of biological knowledge between different communities in research, education, publishing, and more. When biologists are as familiar with the notation as electronics engineers are familiar with the notation of circuit schematics, they can save the time and effort required to familiarize themselves with different notations, and instead spend more time thinking about the biology being depicted.

SBGN is made up of [] three orthogonal languages], representing different visions of biological systems. Each language defines a comprehensive set of symbols with precise semantics, together with detailed syntactic rules how maps are to be interpreted.

On this site, you can browse some <u>example maps</u> to get a feeling for SBGN, read the SBGN <u>specification documents</u>, join <u>online discussions</u>, see current working documents and software support in the <u>SBGN wiki</u>, and much more.

SBGN is the work of many people. It would not have been possible without the generous <u>support of multiple organizations</u> over the years, for which we are very thankful.

To quote SBGN as a whole, please use:

Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H. The Systems Biology Graphical Notation. Nat Biotechnol. 2009 27(8):735-41.

SBGN News

(02 Sep. '09) The first specifications for <u>SBGN Entity</u> <u>Relationships</u> and <u>SBGN</u> <u>Activity Flows</u>] are out.

- An unambiguous way of graphically describing and interpreting biochemical and cellular events
- Limited amount of symbols
 Re-use existing symbols

Smooth learning curve

- Can represent logical or mechanistic models, biochemical pathways, at different levels of granularity
- Detailed technical specification, precise data-models and growing software support
- Initiated by Hiroaki Kitano. Developed over four years by a diverse community

The Systems Biology Graphical Notation

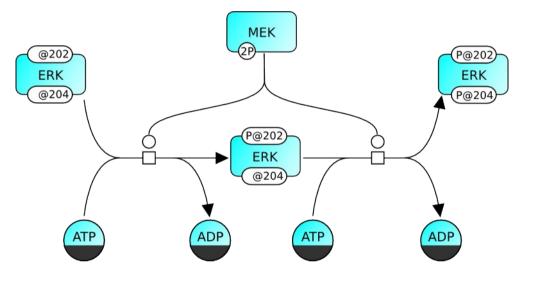
Nicolas Le Novère¹, Michael Hucka², Huaiyu Mi³, Stuart Moodie⁴, Falk Schreiber^{5,6}, Anatoly Sorokin⁷, Emek Demir⁸, Katja Wegner⁹, Mirit I Aladjem¹⁰, Sarala M Wimalaratne¹¹, Frank T Bergman¹², Ralph Gauges¹³, Peter Ghazal^{4,14}, Hideya Kawaji¹⁵, Lu Li¹, Yukiko Matsuoka¹⁶, Alice Villéger^{17,18}, Sarah E Boyd¹⁹, Laurence Calzone²⁰, Melanie Courtot²¹, Ugur Dogrusoz²², Tom C Freeman^{14,23}, Akira Funahashi²⁴, Samik Ghosh¹⁶, Akiya Jouraku²⁴, Sohyoung Kim¹⁰, Fedor Kolpakov^{25,26}, Augustin Luna¹⁰, Sven Sahle¹³, Esther Schmidt¹, Steven Watterson^{4,22}, Guanming Wu²⁷, Igor Goryanin⁴, Douglas B Kell^{18,28}, Chris Sander⁸, Herbert Sauro¹², Jacky L Snoep²⁹, Kurt Kohn¹⁰ & Hiroaki Kitano^{16,30,31}

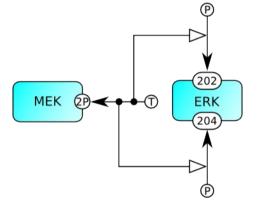
¹EMBL European Bioinformatics Institute, Hinxton, UK. ²Engineering and Applied Science, California Institute of Technology, Pasadena, California, USA. 3SRI International, Menlo Park, California, USA. 4Centre for Systems Biology at Edinburgh, University of Edinburgh, Edinburgh, UK. 5 Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany, 6 Institute of Computer Science, University of Halle, Halle, Germany. 7School of Informatics, University of Edinburgh, Edinburgh, UK. 8Memorial Sloan Kettering Cancer Center -Computational Biology Center, New York, NY, USA. 9 Science and Technology Research Institute, University of Hertfordshire, Hatfield, UK. ¹⁰National Cancer Institute, Bethesda, Maryland, USA. ¹¹Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. ¹²Department of Bioengineering, University of Washington, Seattle, Washington, USA. ¹³BIOQUANT, University of Heidelberg, Heidelberg Germany. 14 Division of Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK. 15 Riken OMICS Science Center, Yokohama City, Kanagawa, Japan. 16 The Systems Biology Institute, Tokyo, Japan. 17 School of Computer Science, University of Manchester, Manchester, UK. ¹⁸Manchester Interdisciplinary Biocentre, Manchester, UK. ¹⁹Clayton School of Information Technology, Faculty of Information Technology. Monash University, Melbourne, Victoria, Australia. 20 U900 INSERM, Paris Mines Tech, Institut Curie, Paris, France. 21 Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada, 22 Bilkent Center for Bioinformatics, Bilkent University, Ankara, Turkey. 23The Roslin Institute, University of Edinburgh, Midlothian, UK. 24Department of Biosciences and Informatics, Keio University, Hiyoshi, Kouhoku-ku, Yokohama, Japan. 25 Institute of Systems Biology, Novosibirsk, Russia. 26 Design Technological Institute of Digital Techniques SB RAS, Novosibirsk, Russia. 27 Ontario Institute for Cancer Research, Toronto, Ontario, Canada. 28 School of Chemistry, University of Manchester, Manchester, UK. 29 Department of Biochemistry, Stellenbosch University, Matieland, South Africa. 30 Sony Computer Science Laboratories, Tokyo, Japan. 31 Okinawa Institute of Science and Technology, Okinawa, Japan. Correspondence should be addressed to N.L.N. (lenov@ebi.ac.uk).

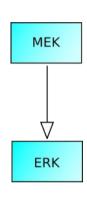
NATURE BIOTECHNOLOGY VOLUME 27 NUMBER 8 AUGUST 2009

39 authors, 31 affiliations

741

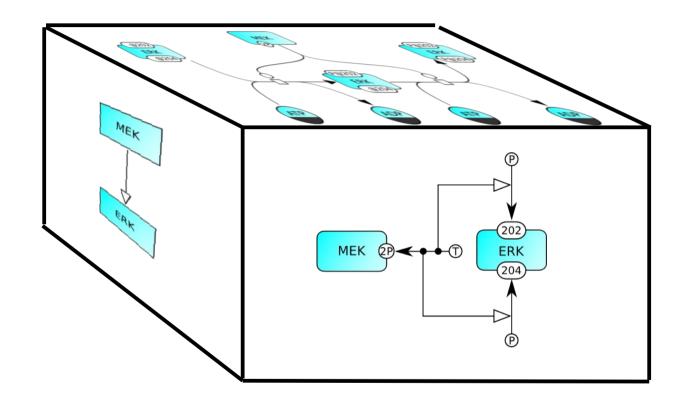



Graph trinity: three languages in one notation


Process Descriptions

Entity Relationships

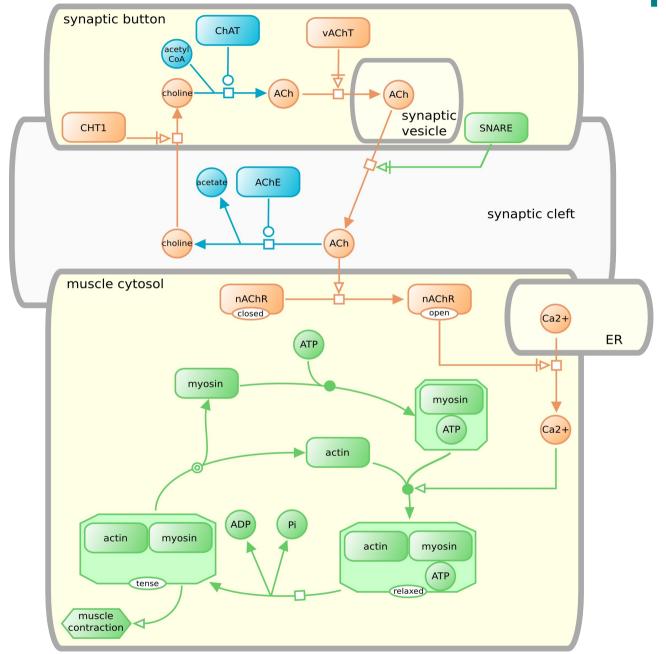
Activity Flows


- Unambiguous
- Mechanistic
- Sequential
- Combinatorial explosion

- Unambiguous
- Mechanistic
- Non-sequential
- Independence of relationships

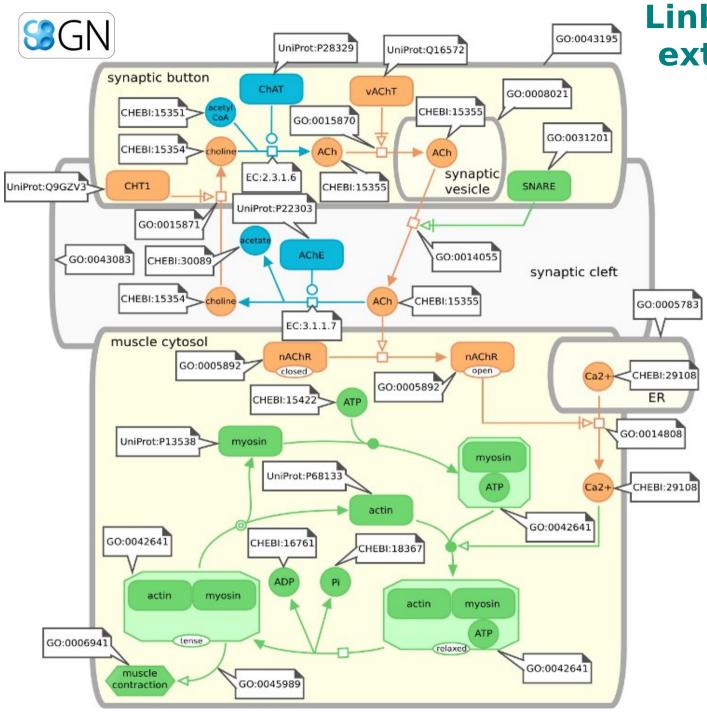
- Ambiguous
- Conceptual
- Sequential

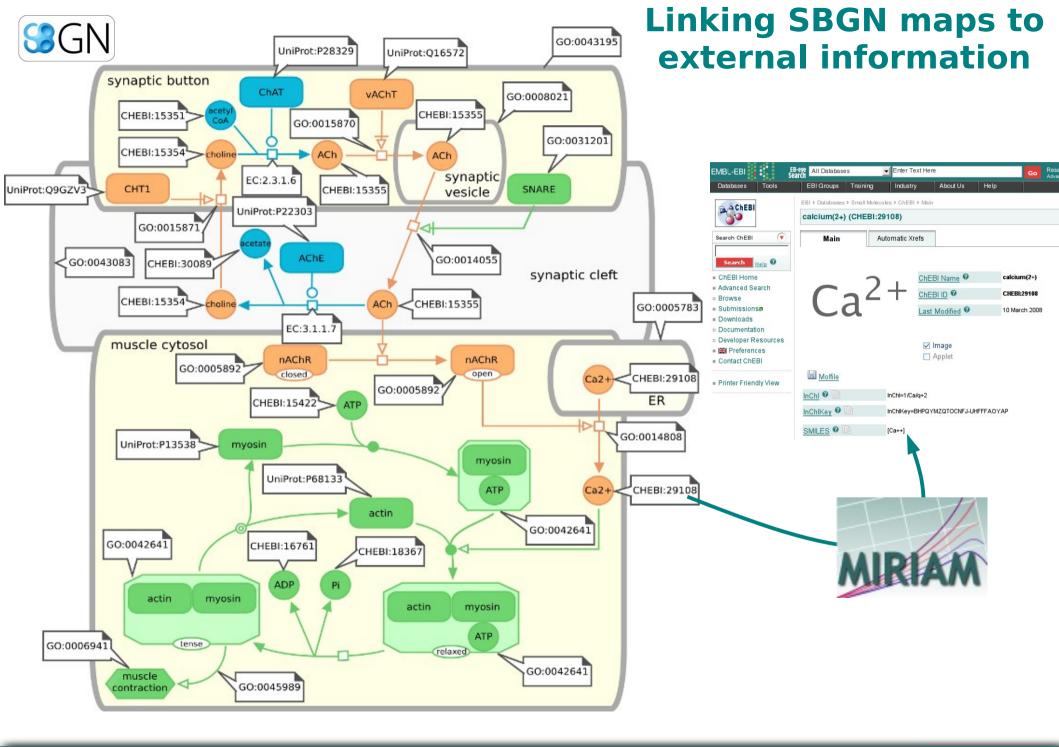
Three orthogonal projections of biology



multi-cellular processes in

Process Description


language


catalytic processes

transport processes

contractile proteins

Linking SBGN maps to external information

Current structure of the

advise and monitor

SBGN scientific committee

Grant holders to support SBGN Experts/pioneers in graphical representation Leading figures in related fields

SBGN editorial board (5)

members elected for 3 years. No consecutive terms

elects

writes specification

consults

SBGN forum (~20-30)

People attending consecutive meetings, participating to the discussions, proposing extensions and voting on resolutions.

motivates

SBGN community

People who attended a meeting, participated to a discussion, requested a feature, implemented support for SBGN, or simply use SBGN

Lack of biological semantics in

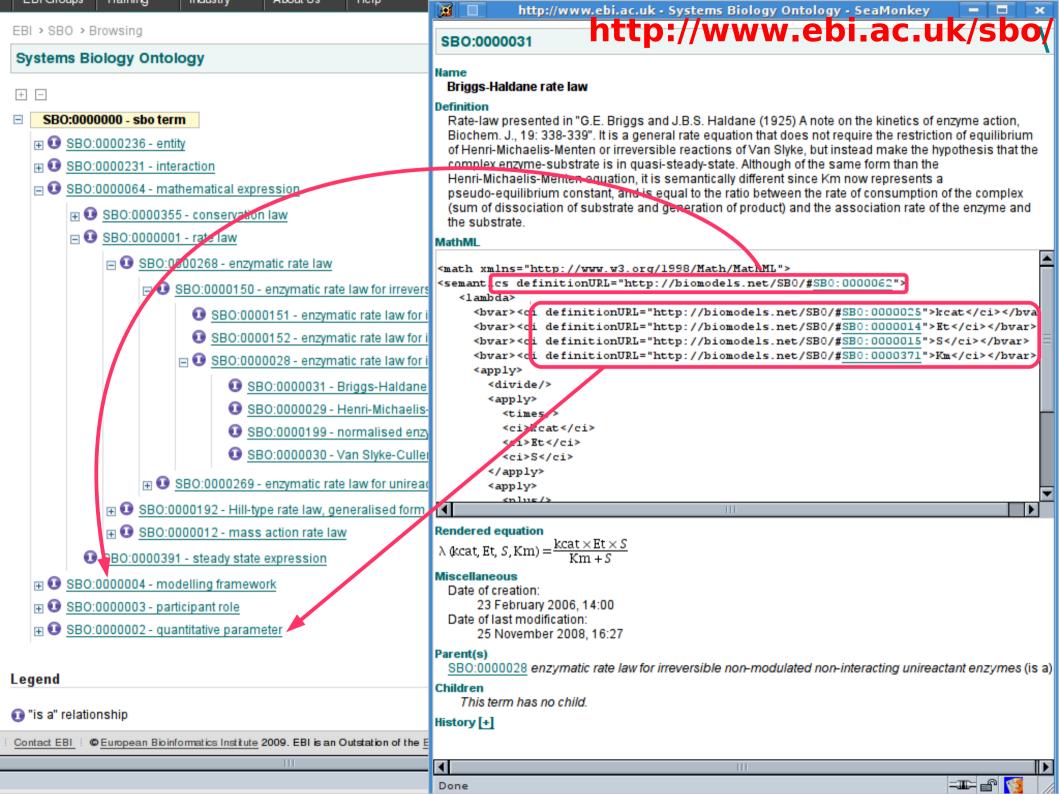

```
<listOfCompartments>
 <compartment id="C">
</listOfCompartments>
<listOfSpecies>
 <species id="A"/>
 <species id="B"/>
 <species id="C"/>
</listOfSpecies>
<listOfReactions>
 <reaction>
    <listOfReactants>
      <speciesReference species="A"/>
    </listOfReactants>
   <listOfProducts>
      <speciesReference species="B"/>
   </listOfProducts>
    <listOfModifiers>
      <speciesReference species="C"/>
    </listOfModifiers>
    <kineticLaw>
      <listOfParameters>
       <parameter id="U"/>
       <parameter id="V"/>
      </listOfParameters>
    </kineticLaw>
 </reaction>
</listOfReactions>
```

What are those?

("who" has been answered by MIRIAM annotations)

Do those affect/are affected by the reaction?

How should-I understand this?


Model semantics

	Models	Simulation	Results
Minimal requirements	MIRIAM	MIASE	
Data-models	CellVL biology. math. data. knowledge.	SED-ML	SBRML
Ontologies	S30	KISAO	TEDDY

Systems Biology Ontology vocabularies

- Entities, that is existing objects, whether functional or material, such as "macromolecule", or "channel".
- Roles of reaction participants, including terms like "substrate", "catalyst" etc.
- Parameter used in quantitative models. This vocabulary includes terms like "Michaelis constant", "forward unimolecular rate constant"etc. A term may contain a precise mathematical expression stored as a MathML lambda function. The variables refer to other parameters.
- Mathematical expressions. Examples of terms are "mass action kinetics", "Henri-Michaelis-Menten equation" etc. A term may contain a precise mathematical expression stored as a MathML lambda function. The variables refer to the other vocabularies.
- Modelling framework to precise how to interpret the rate-law. E.g. "continuous modelling", "discrete modelling" etc.
- Event type, such as "catalysis" or "addition of a chemical group".

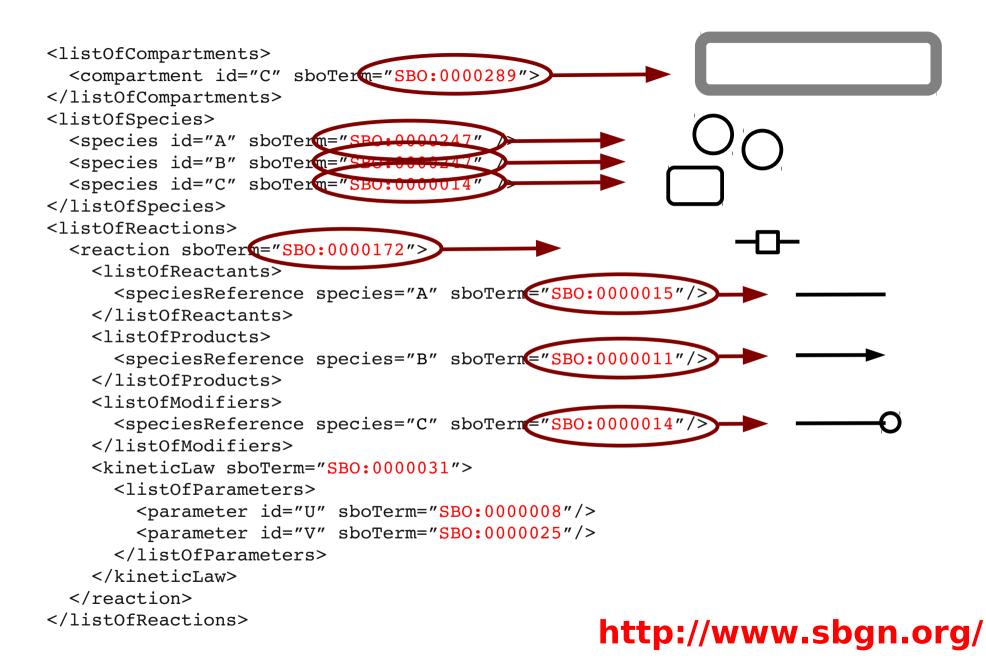
Le Novère N., Courtot M., Laibe C. Adding semantics in kinetics models of biochemical pathways. Proc 2nd Intl Symp Experimental Standard Conditions of Enzyme Characterizations (2007), 137-153. Available at http://www.beilstein-institut.de/index.php?id=196

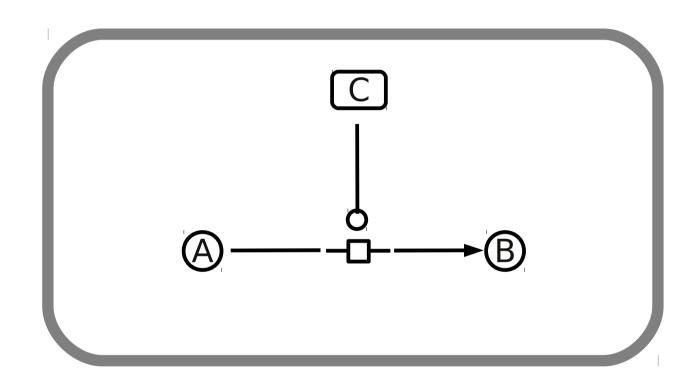

```
<listOfCompartments>
  <compartment id="C" sboTerm="SBO:0000289">
</listOfCompartments>
<listOfSpecies>
  <species id="A" sboTerm="SBO:0000247" />
  <species id="B" sboTerm="SBO:0000247" /</pre>
  <species id="C" sboTerm="SBO:0000014" />
</listOfSpecies>
<listOfReactions>
  <reaction sboTerm="SBO:0000172">
    <listOfReactants>
      <speciesReference species="A" sboTerm="SBO:0000015"/>
    </listOfReactants>
    stOfProducts>
      <speciesReference species="B" sboTerm="SBO:0000011"/>
    </listOfProducts>
    <listOfModifiers>
      <speciesReference species="C" sboTerm="SBO:0000014"/>
    </listOfModifiers>
    <kineticLaw sboTerm="SBO:0000031">
      <listOfParameters>
        <parameter id="U" sboTerm="SBO:0000008"/>
        <parameter id="V" sboTerm="SBO:0000025"/>
      </listOfParameters>
    </kineticLaw>
  </reaction>
</listOfReactions>
```



```
<listOfCompartments>
                                                    functional compartment
 <compartment id="C" sboTerm="SB0:0000289">
</listOfCompartments>
<listOfSpecies>
                                                 simple chemical
 <species id="A" sboTerm="SBO:0000247"</pre>
                                                   simple chemical
 enzyme
 <species id="C" sboTerm="SBU:0000014"</pre>
</listOfSpecies>
<listOfReactions>
                                           catalysis
  <reaction sboTern="SBO:0000172">
   <listOfReactants>
                                                                   substrate
     <speciesReference species="A" sboTern="SBO:0000015"/>
   </listOfReactants>
   stOfProducts>
                                                                   product
     <speciesReference species="B" sboTern="SBO:0000011"/>
   </listOfProducts>
   <listOfModifiers>
     <speciesReference species="C" sboTern="SBO:0000014"/>
                                                                  catalyst
   </listOfModifiers>
                                                ► Briggs-Haldane equation
   <kineticLaw sboTern="SBO:0000031">
     <listOfParameters>
                                                          Km
       <parameter id="U" sboTerm="SBO:0000008"/>
       <parameter id="V" sboTerm=("SBO:0000025"/>
                                                           kcat
     </listOfParameters>
   </kineticLaw>
 </reaction>
</listOfReactions>
```

Conversion between modeling frameworks


```
discrete simulator
<listOfCompartments>
  <compartment id="C" sboTerm="SB0:0000289">
                                                                     vI = \frac{(k_{-1} + V)}{U} \cdot [A] \cdot [C]
</listOfCompartments>
<listOfSpecies>
  <species id="A" sboTerm="SBO:0000247" />
                                                                     v2 = k_{-1} \cdot [D]
  <species id="B" sboTerm="SBO:0000247" /</pre>
  <species id="C" sboTerm="SBO:0000014" />
                                                                     v3 = V \cdot [D]
</listOfSpecies>
<listOfReactions>
  <reaction sboTerm="SBO:0000172">
    <listOfReactants>
      <speciesReference species="A" sboTerm="SBO: $\inf000015"/>
    </listOfReactants>
    <listOfProducts>
      <speciesReference species="B" sboTerm= SBO:0000011"/>
    </listOfProducts>
      <speciesReference species="C" sborerm="SBO:0000014"/> continuous simulator
listOfModificate
    <listOfModifiers>
    </listOfModifiers>
                                                                    \nu = \frac{C \cdot V \cdot [A]}{(II + [A])}
    <kineticLaw sboTerm="SBO:0000031">
      <listOfParameters>
        <parameter id="U" sboTerm="SBO:0000008"/>
        <parameter id="V" sboTerm="SBO:0000025"/>
      </listOfParameters>
    </kineticLaw>
  </reaction>
</listOfReactions>
```



to BioPAX conversion using SBO

```
<listOfCompartments>
                                                      GO annotation
 <compartment id="C" sboTerm="SB0:0000289">
</listOfCompartments>
<listOfSpecies>
                                                 Small molecule
 <species id="A" sboTerm="SBO:0000247"</pre>
                                                   Small molecule
 <species id="B" sboTerm="">"""
                                                   Protein
 <species id="C" sboTerm="SBU:0000014"</pre>
</listOfSpecies>
<listOfReactions>
                                            catalysis
  <reaction sboTern="SBO:0000172">
    <listOfReactants>
     <speciesReference species="A" sboTern="SBO:0000015"/>
                                                             physicalEntityParticipant
    </listOfReactants>
   stOfProducts>
     <speciesReference species="B" sboTern="SBO:0000011"/>> physicalEntityParticipant
   </listOfProducts>
    <listOfModifiers>
     <speciesReference species="C" sboTern="SBO:0000014"/> physicalEntityParticipant
    </listOfModifiers>
    <kineticLaw sboTerm="SBO:0000031">
     <listOfParameters>
       <parameter id="U" sboTerm="SBO:0000008"/>
        <parameter id="V" sboTerm="SBO:0000025"/>
     </listOfParameters>
    </kineticLaw>
 </reaction>
</listOfReactions>
                                              http://www.biopax.org/
```

SOURCE to **SGN** conversion using **SBO**

Simulation description

	Models	Simulation	Results
Minimal requirements	MIRIAM	MIASE	
Data-models	Sell biology. math. data. know	SED-ML	SBRML
Ontologies	\$30	KISAO	TEDDY

Minimum information requested in the annotation of biochemical models (MIRIAM)

Nicolas Le Novère^{1,15}, Andrew Finney^{2,15}, Michael Hucka³, Upinder S Bhalla⁴, Fabien Campagne⁵, Julio Collado-Vides⁶, Edmund J Crampin⁷, Matt Halstead⁷, Edda Klipp⁸, Pedro Mendes⁹, Poul Nielsen⁷, Herbert Sauro¹⁰, Bruce Shapiro¹¹, Jacky L Snoep¹², Hugh D Spence¹³ & Barry L Wanner¹⁴

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their

During the genomic era we have witnessed a vast increase in availability of large amounts of quantitative data. This is motivating a shift in the focus of molecular and cellular research from qualitative descriptions of biochemical interactions towards the quantification of such interactions and their dynamics. One of the tenets of systems biology is the use of quantitative models (see Box 1 for definitions) as a mechanism for capturing precise hypotheses and making predictions ^{1,2}. Many specialized models exist that attempt to explain aspects of the cellular machinery. However, as has happened with other types of biological information, such as sequences, macromolecular structures or

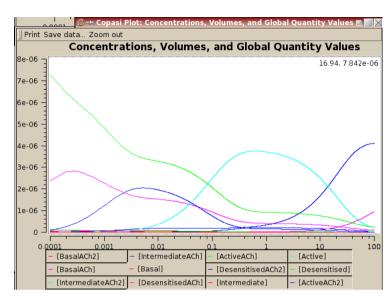
olishing Group http://www.nature.com/naturebiotechnok

Minimur biochem

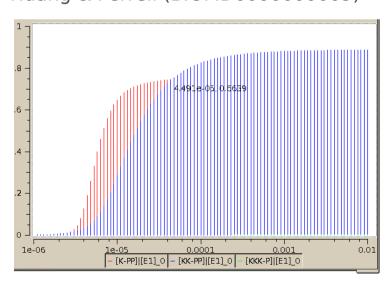
Nicolas Le Novère Iulio Collado-Vid Herbert Sauro 10, 1

6. The model, when instantiated within a suitable simulation environment, must be able to reproduce all relevant results given in the reference description that can readily be simulated. Not only does the simulation have to provide results qualitatively similar to the reference description, such as oscillation, bistability, chaos, but the quantitative values of variables, and their relationships (e.g., the shape of the phase portrait) must be reproduced within some epsilon, the difference being attributable to the algorithms used to run the simulation, and the

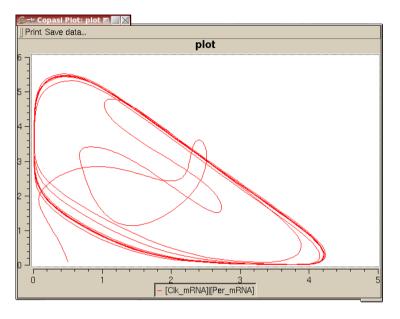
Most of the published lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format, lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models, it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their

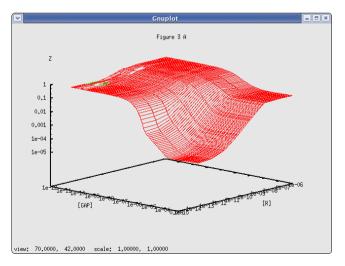

tion of

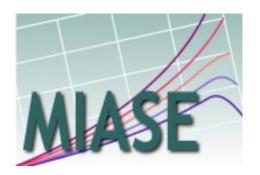
en⁷,


increase in availability of large amounts of quantitative data. This is motivating a shift in the focus of molecular and cellular research from qualitative descriptions of biochemical interactions towards the quantification of such interactions and their dynamics. One of the tenets of systems biology is the use of quantitative models (see Box 1 for definitions) as a mechanism for capturing precise hypotheses and making predictions^{1,2}. Many specialized models exist that attempt to explain aspects of the cellular machinery. However, as has happened with other types of biological information, such as sequences, macromolecular structures or

Reproduction of published simulation results

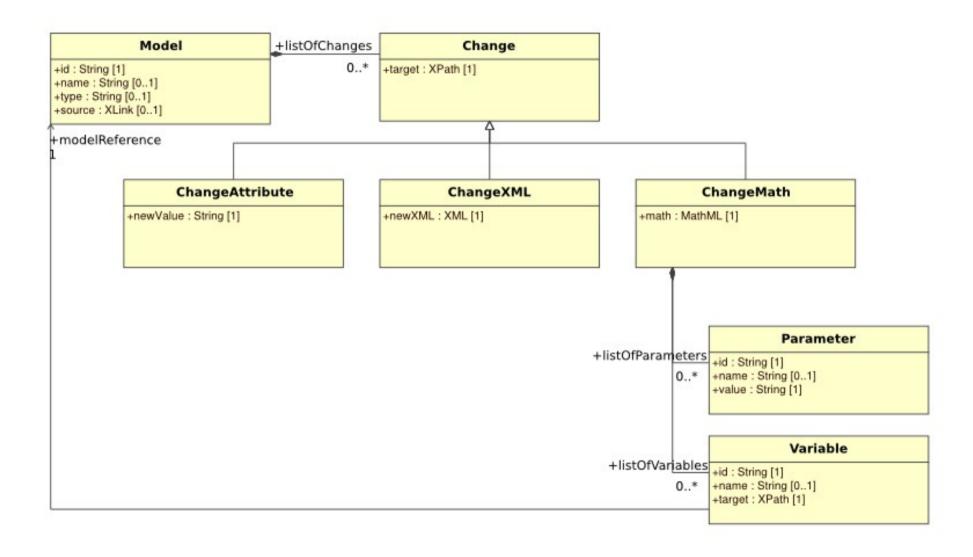

Edelstein et al 1996 (BIOMD000000002)


Huang & Ferrell (BIOMD000000009)



Ueda, Hagiwara, Kitanol 2001 (BIOMD000000022)

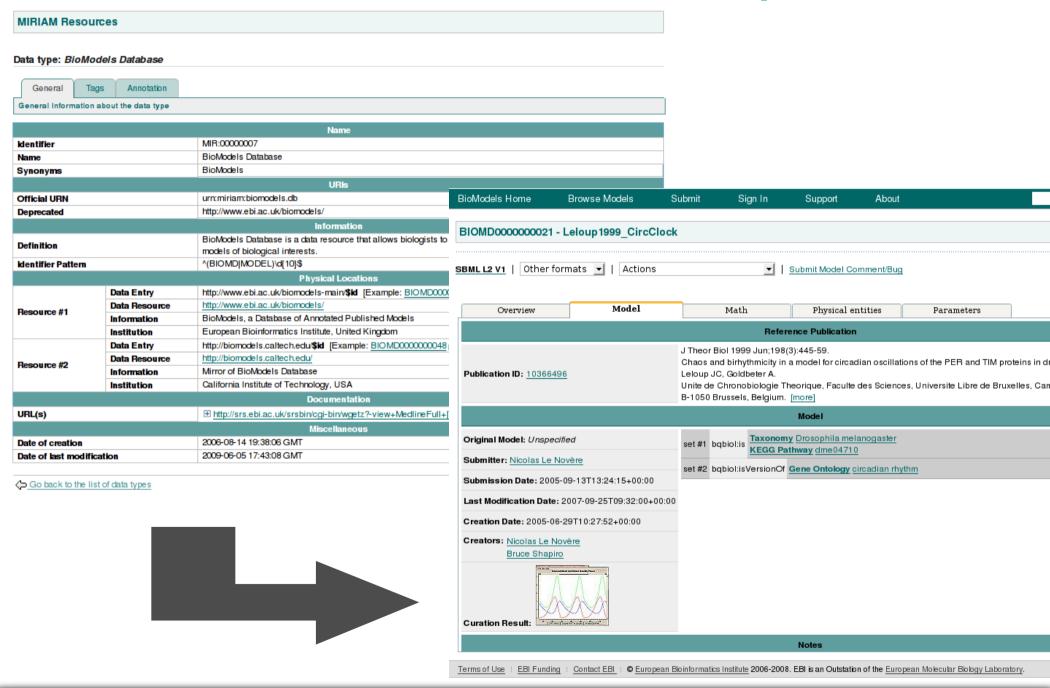
Bornheimer et al 2004 (BIOMD000000086)


Köhn D., Adams R., Beard D.A., Bergmann F.T., Bhalla U.S, Britten R., Chelliah V., Cooling M.T., Cooper J., Crampin E., Garny A., Hoops S., Hucka M., Hunter P., Klipp E., Laibe C., Miller A., Moraru i., Nickerson D., Nielsen P., Nikolski M., Sahle S., Sauro H., Schmidt H., Snoep J.L., Tolle D., Wolkenhauer O., Le Novère N.

Minimum Information About a Simulation Experiment (MIASE) Submitted

Köhn D., Le Novère N. SED-ML

An XML Format for the Implementation of the MIASE Guidelines.


Proc 6th Conf Comput Meth Syst Biol (2008), Heiner M and Uhrmacher AM eds, *Lecture Notes in Bioinformatics*, 5307: 176-190.

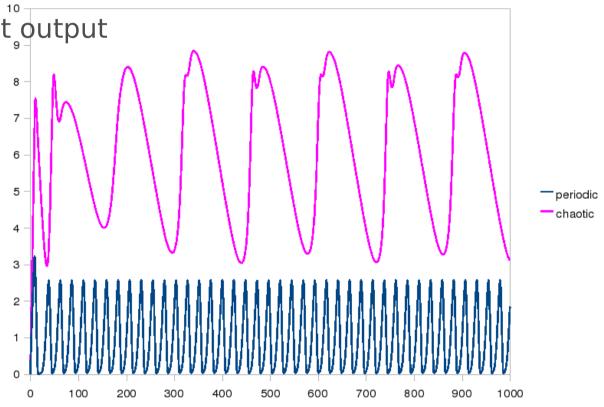

```
<?xml version="1.0" encoding="utf-8"?>
<sedML version="1.0" xmlns="http://www.miase.org/">
  <notes>Changing a system from oscillation to chaos/notes>
  <listOfModels>
    <model id="model1"</pre>
           name="Circadian Oscillations"
           type="SBML"
           source="urn:miriam:biomodels.db:BIOMD000000021" />
    <model id="model2"
           name="Circadian Chaos"
           type="SBML"
           source="model1">
      <listOfChanges>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V mT']/@value" newValue="0.28">
        </changeAttribute>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V dT']/@value" newValue="4.8">
        </changeAttribute>
      </listOfChanges>
    </model>
  </listOfModels>
```

```
<?xml version="1.0" encoding="utf-8"?>
<sedML version="1.0" xmlns="http://www.miase.org/">
  <notes>Changing a system from oscillation to chaos/notes>
                                                     Any model description
  <listOfModels>
    <model id="model1"</pre>
                                                     in XML such as SBML, CellML
           name="Circadian Oscillations"
                                                     VCML etc.
           type="SBML"
           source="urn:miriam:biomodels.db:BIOMD000000021" />
    <model id="model2"
           name="Circadian Chaos"
           type="SBML"
           source="model1">
      <listOfChanges>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V mT']/@value" newValue="0.28">
        </changeAttribute>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V dT']/@value" newValue="4.8">
        </changeAttribute>
      </listOfChanges>
    </model>
  </listOfModels>
```

```
<?xml version="1.0" encoding="utf-8"?>
<sedML version="1.0" xmlns="http://www.miase.org/">
  <notes>Changing a system from oscillation to chaos/notes>
  <listOfModels>
    <model id="model1"</pre>
           name="Circadian Oscillations"
           type="SBML"
           source="urn:miriam:biomodels.db:BIOMD000000021" />
    <model id="model2"
           name="Circadian Chaos"
           type="SBML"
           source="model1">
      <listOfChanges>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V mT']/@value" newValue="0.28">
        </changeAttribute>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V dT']/@value" newValue="4.8">
        </changeAttribute>
      </listOfChanges>
    </model>
  </listOfModels>
```

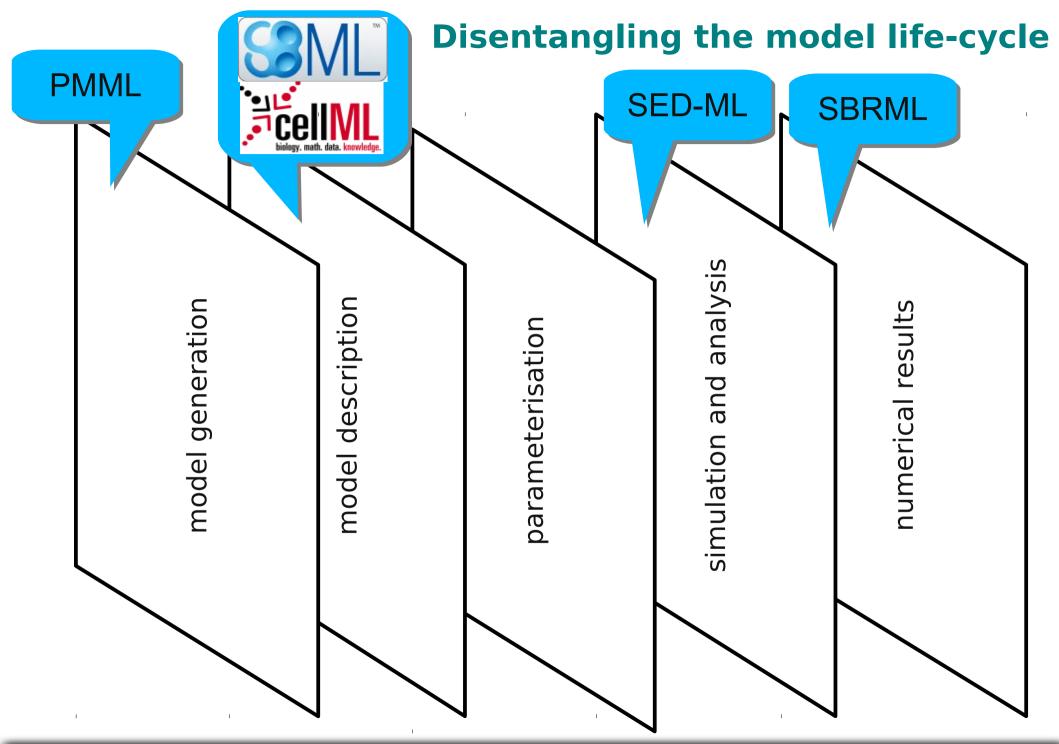

Description of models

```
<?xml version="1.0" encoding="utf-8"?>
<sedML version="1.0" xmlns="http://www.miase.org/">
  <notes>Changing a system from oscillation to chaos/notes>
  <listOfModels>
    <model id="model1"
           name="Circadian Oscillations"
           type="SBML"
           source="urn:miriam:biomodels.db:BIOMD000000021" />
    <model id="model2"
           name="Circadian Chaos"
           type="SBML"
          source="model1">
      <listOfChanges>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V mT']/@value" newValue="0.28">
        </changeAttribute>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V dT']/@value" newValue="4.8">
        </changeAttribute>
      </listOfChanges>
    </model>
  </listOfModels>
```

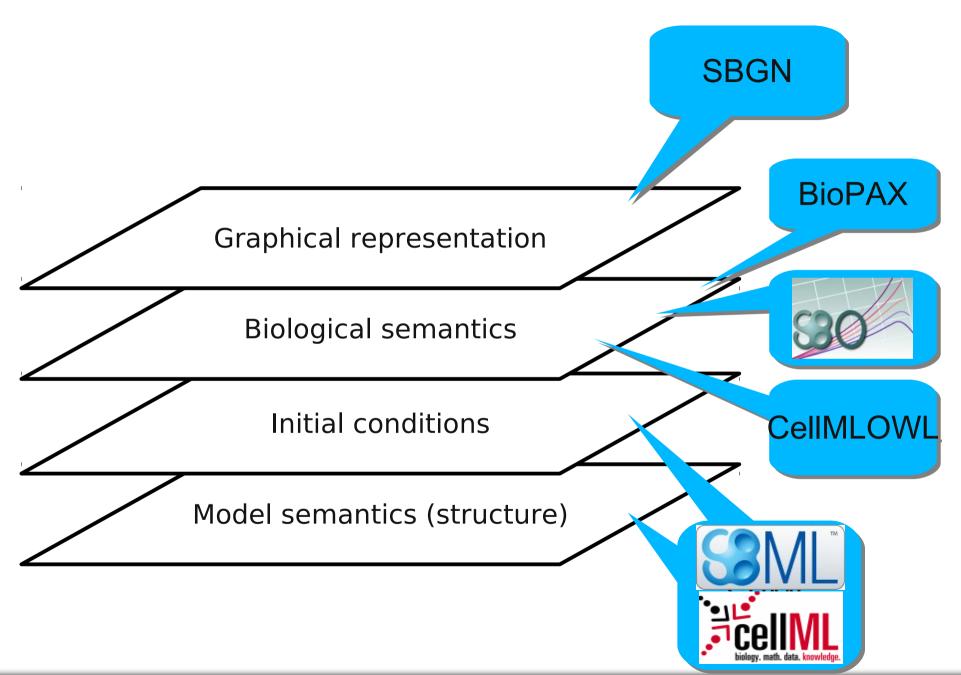

Description of models

```
<?xml version="1.0" encoding="utf-8"?>
<sedML version="1.0" xmlns="http://www.miase.org/">
  <notes>Changing a system from oscillation to chaos/notes>
  <listOfModels>
    <model id="model1"</pre>
           name="Circadian Oscillations"
           type="SBML"
           source="urn:miriam:biomodels.db:BIOMD000000021" />
    <model id="model2"
           name="Circadian Chaos"
           type="SBML"
           source="model1">
      <listOfChanges>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V mT']/@value" newValue="0.28">
        </changeAttribute>
        <changeAttribute target=</pre>
             "/sbml/model/listOfParameters/parameter[@id='V dT']/@value" newValue="4.8">
        </changeAttribute>
      </listOfChanges>
    </model>
  </listOfModels>
```

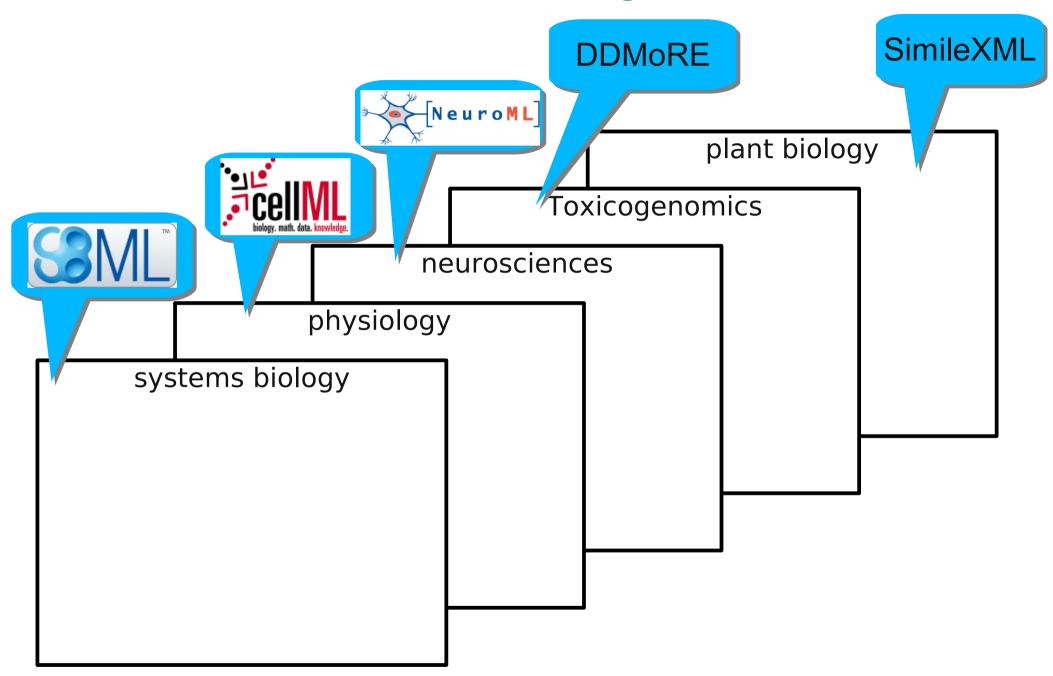
Production of results


- Description of models
- Description of simulations
- Description of tasks
- Description of result post-processing

■ Description of experiment output



Is the mosaic of standards really complete?


	Models	Simulation	Results
Minimal requirements	MIRIAM	MIASE	
Data-models	SML SGN	SED-ML	SBRML
Ontologies	S30	KISAO	TEDDY

Disentangling the level of discourse

Covering the whole life-science

Interfacing standards in the three dimensions

- SBML to BioPAX: interface using annotations (MIRIAM annotations and SBO terms), e.g.
 - mapping between Species and PhysicalEntity
 - mapping between Reactions and PhysicalInteraction
- Usage of SBML descriptions (or CellML or VCML) in SED-ML:
 Identification of variables using XPath
- Descriptions using SBML and NeuroML: Interface based on shared namespaces

Separating scales and representations example of neurosciences

- Brain function is a multi-scale process
 - Molecular: Opening of ion channels
 - Subcellular: Signalling pathways
 - Cellular: Propagation of the action potentials
 - Multi-cellular: Computation by micro-circuits
 - Tissular: Consciousness and depolarization waves
- Modelling neuronal processes requires many approaches
 - Modelling biochemistry
 - Modelling electrical activity
 - Modelling mechanics
- Role of the International Neuroinformatics Coordinating Facility

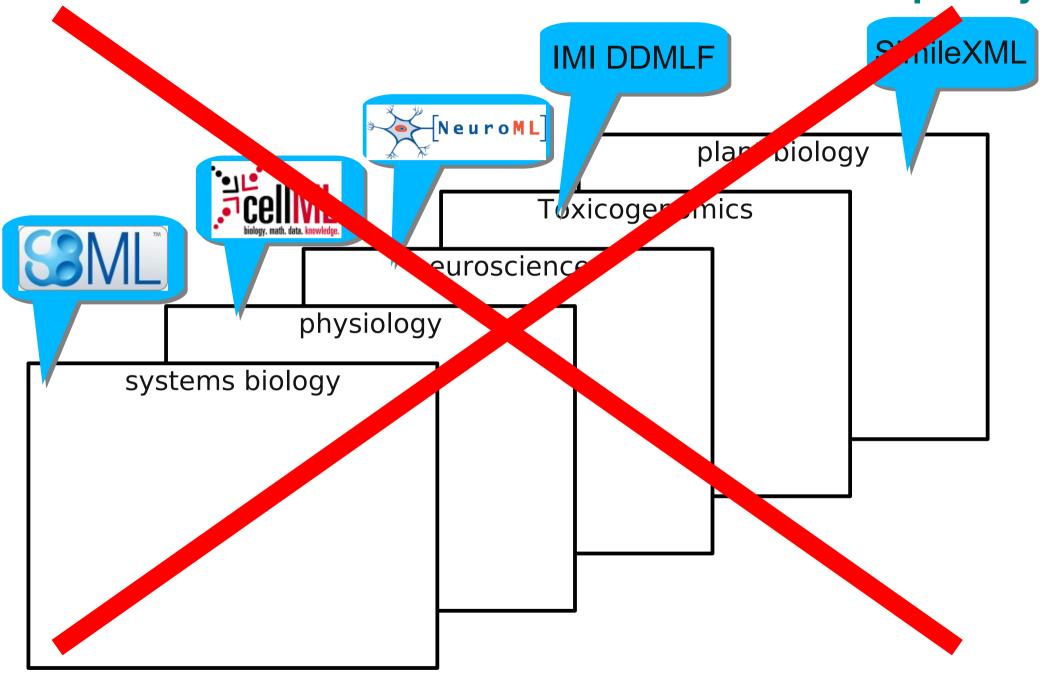
- ChannelML: state-based representation of molecule behaviour (part of NeuroML)
- SynapseML: (part of NeuroML)
- MorphML: cable representation of neurons (part of NeuroML)
- SBML: description of biochemical processes (interoperate with NeuroML)
- NeuML (temporary name): Effort started by the INCF to describe networks of single-compartment neurons
- Missing: Representation of mechanical processes
- Missing: Description of mean-field measurements

electrical behaviours

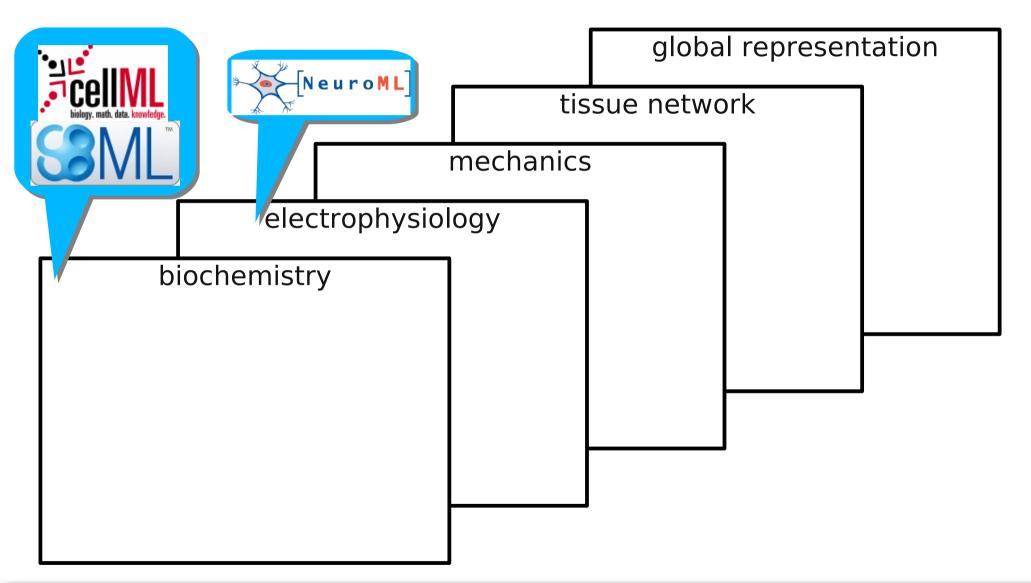
- ChannelML: state-based representation of molecule behaviour (part of NeuroML)
- SynapseML: (part of NeuroML)
- MorphML: cable representation of neurons (part of NeuroML)
- SBML: description of biochemical processes (interoperate with NeuroML)
- Missing: Representation of mechanical processes
- NeuML (temporary name): Effort started by the INCF to describe networks of single-compartment neurons
- Missing: Representation of tissus
- Missing: Description of mean-field measurements

biochemical processes

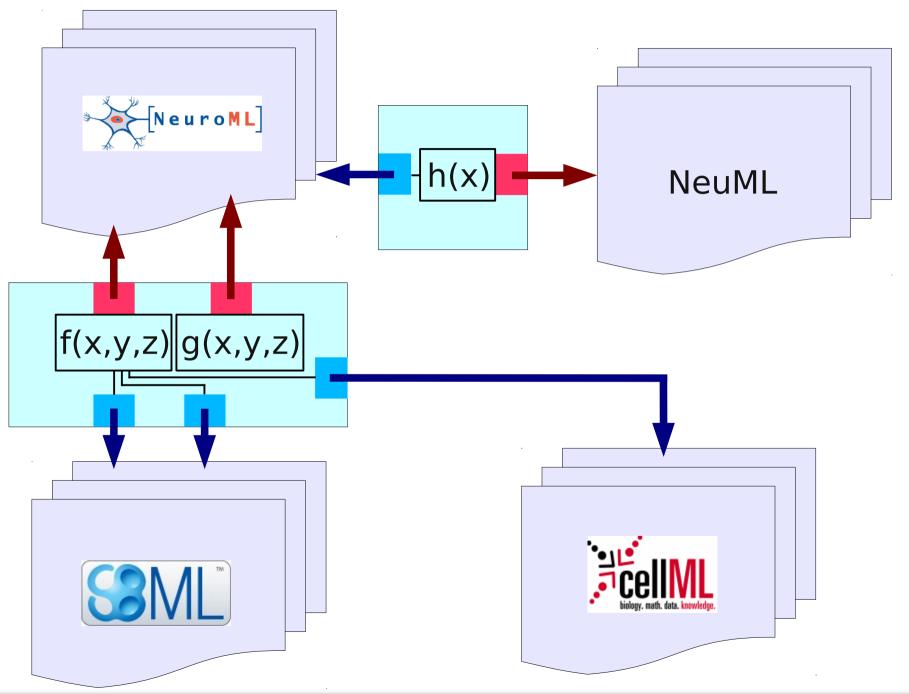
- ChannelML: state-based representation of molecule behaviour (part of NeuroML)
- SynapseML: (part of NeuroML)
- MorphML: cable representation of neurons (part of NeuroML)
- SBML: description of biochemical processes (interoperate with NeuroML)
- Missing: Representation of mechanical processes
- NeuML (temporary name): Effort started by the INCF to describe networks of single-compartment neurons
- Missing: Representation of tissus
- Missing: Description of mean-field measurements


mechanical processes

- ChannelML: state-based representation of molecule behaviour (part of NeuroML)
- SynapseML: (part of NeuroML)
- MorphML: cable representation of neurons (part of NeuroML)
- SBML: description of biochemical processes (interoperate with NeuroML)
- Missing: Representation of mechanical processes
- NeuML (temporary name): Effort started by the INCF to describe networks of single-compartment neurons
- Missing: Representation of tissus
- Missing: Description of mean-field measurements


Networks of coupled cells

- ChannelML: state-based representation of molecule behaviour (part of NeuroML)
- SynapseML: (part of NeuroML)
- MorphML: cable representation of neurons (part of NeuroML)
- SBML: description of biochemical processes (interoperate with NeuroML)
- Missing: Representation of mechanical processes
- NeuML (temporary name): Effort started by the INCF to describe networks of single-compartment neurons
- Missing: Representation of tissus
- Missing: Description of mean-field measurements


The issues to tackle are trans-disciplinary

Non-overlapping languages

Multi-scale representation using adapters

Threats to the whole enterprise

- Current efforts are entirely dependent on key people (SBML: Mike Hucka, CellML: Peter Hunter/Poul Nielsen, NeuroML: Padraig Gleeson, SBGN: NLN). Their disengagement means disaggregation.
- Current funding structure is fragile. Many different grants, sometimes only supporting meetings (SBGN), none of them infrastructure rolling funding, often tied to individuals.
- Current efforts are not immune against intellectual property claims that would destroy the community (e.g. Caltech and SBML)
- Existing standards are developed with very different approaches, quality checks, and are based on completely different assumptions (e.g. NeuroML assumes implicit knowledge)
- APIs needs industry-grade support, incompatible with standard academic usages and possibilities

Views: desktop mobile print

STANDARDS

PARTICIPATE

MEMBERSHIP

ABOUT W3C

Skip

STANDARDS

Web Design and Applications

Web Architecture

Semantic Web

XML Technology

Web of Services

Web of Devices

Browsers and Authoring
Tools

... or view all

WEB FOR ALL

W3C A to Z

Accessibility

Internationalization

Mobile Web

eGovernment

Developing Economies

▼ Interested in Next Steps for RDF? Come to the W3C Workshop! 20 January 2010 | Archive

W3C is organizing a Workshop on the Next Steps for RDF around June 2010; we will announce the exact dates and location as soon as possible. Since its publication in 2004, the Resource Description Framework (RDF) has become the core architectural block of the Semantic Web. The standard is now widely deployed in terms of tools and applications. Due to this wide deployment, additional R&D activities, and the publication of newer standards (e.g., SPARQL, OWL, POWDER, and SKOS), a number of issues regarding RDF have come to the fore. Workshop participants will discuss these issues and help determine whether it is time for a new version of RDF. W3C Membership is not required to participate in the Workshop, but each participant must be associated with an accepted position paper. The deadline for position papers is 29 March 2010; see the Call for Participation for more information. Updates (including the exact date and location of the Workshop) will be added to the Call for Participation and will be announced on the Semantic Web Activity News Blog.

▶ W3C Seeks Feedback on Early Draft of SPARQL 1.1 Property Paths; Six SPARQL Drafts Updated

27 January 2010 | Archive

→ UK Government Launches Open Data Site

26 January 2010 | Archive

The UK Government has unveiled its open data website, stata.gov.uk, developed with the help of Tim Berners-Lee (W3C Director) and John Sheridan (Linked Data Lead for data.gov.uk and co-Chair of the W3C eGovernment Interest Group). Like data.gov in the United States, the UK site reflects a growing awareness inside and outside of government that standards-based open data is a key enabler of government services and a building block for new information services across government and industry. Additionally, this new site showcases Semantic Web and Linked Data technologies. Learn more about Publishing Open Government Data and eGovernment at W3C.

Uniform Messaging Policy, Level One Draft Published

26 January 2010 | Archive

The World Wide Web Consortium (W3C) is an international community that develops standards to ensure the long-term growth of the Web. Join groups, and participate in W3C blogs and other discussion. We welcome your help to fulfill the W3C mission: to lead the Web to its full potential.

JOBS 🗏

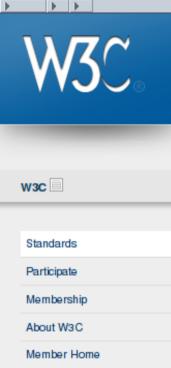
W3C is seeking a Chief Executive Officer; learn more about job opportunities.

W3C BLOG

SWSWiki

18 January 2010 by Ivan Herman

Take a few minutes to encourage web accessibility. You can make a difference.
6 January 2010 by Shawn Henry


Share Resources Supporting the Web Accessibility Business Case

14 December 2009 by Shawn Henry

VALIDATORS AND OTHER SOFTWARE

The W3C Community has created useful Open Source Software. The most popular is the W3C validator, which can help you with HTML, CSS, mobileOK content, and

Views: desktop mobile print

STANDARDS

PARTICIPATE

MEMBERSHIP

ABOUT W3C

Google™

Q

Skip

W3C » Standards

STANDARDS

W3C develops technical specifications and guidelines through a process designed to maximize consensus about the content of a technical report, to ensure high technical and editorial quality, and to earn endorsement by W3C and the broader community.

W3C provides a number of views of its specifications, including:

- by technology topic (such as 'all the HTML-related specifications')
- by status (this is an approximation of the "classic" TR view, with recent publications at the top and then all specifications grouped by status, from Recommendations to drafts)
- by date (most recent at the top)
- · by group (who is working on the specification)

If you are learning about Web technology, you may wish to start with the introduction below, and follow links for more and more detail.

Web Design and Applications

Web Design and Applications involve the standards for building and Rendering Web pages, including HTML, CSS, SVG, Ajax, and other technologies for Web Applications ("WebApps"). This section also includes information on how make pages accessible to people with disabilities (WCAG), internationalized, and work on mobile devices.

Web Architecture

Web Architecture focuses on the foundation technologies and principles which sustain the Web, including URIs and HTTP.

Semantic Web

In addition to the classic "Web of documents" W3C is helping to build a technology stack to support a "Web of data", the sort of data you find in databases. The ultimate goal of the Web of data is to enable computers to do more useful work and to develop systems that can support trusted interactions over the network. The term "Semantic Web" refers to W3C's vision of the Web of linked data. Semantic Web technologies enable people to create data stores on the Web, build

QUICK LINKS

All Specifications

Recent

Subscribe 🔊

FAQ

About Standards

USE THE STANDARDS

W3C Validator

W3C Cheatsheet

Tutorials

Translations

POPULAR

HTML

CSS

XML

WCAG

Views: desktop mobile print

On this page →

Standards »

STANDARDS

W3C

PARTICIPATE

technology topics

MEMBERSHIP

news

ABOUT W3C

Google™

0

Skip

STANDARDS

Web Design and Applications

Web Architecture

Semantic Web

XML Technology

Web of Services

Web of Devices

Browsers and Authoring Tools

All Standards and Drafts

About W3C Standards

WEB DESIGN AND APPLICATIONS

Web Design and Applications

upcoming events and taks

Web Design and Applications involve the standards for building and Rendering Web pages, including HTML, CSS, SVG, Ajax, and other technologies for Web Applications ("WebApps"). This section also includes information on how make pages accessible to people with disabilities (WCAG), internationalized, and work on mobile devices.

HTML & CSS ■

HTML and CSS are the fundamental technologies for building Web pages: HTML (html and xhtml) for structure, CSS for style and layout. Find resources for good Web page design as well as helpful tools.

Scripting and Ajax

Standard APIs for client-side Web Application development include those for Geolocation, XMLHttpRequest (Ajax), and mobile widgets. W3C standards for document models (the "DOM") and technologies such as XBL allow content providers to create interactive documents through scripting.

Graphics

W3C is the home of the widely deployed PNG raster format, SVG vector format, and the Canvas API. WebCGM is a more specialized format used, for example, in the fields of automotive engineering, aeronatics.

Audio and Video

Some of the W3C formats that enable authoring audio and video presentations include HTML, SVG, and SMIL (for synchronization). W3C is also working on a timed text format for captioning and other applications.

Accessibility

W3C's Web Accessibility Initiative (WAI) has published Web Content Accessibility Guidelines (WCAG) to help authors create content that is accessible to people with disabilities. WAI-ARIA gives authors more tools to create accessible Web Applications by providing additional semantics about widgets and behaviors.

Internationalization

W3C has a mission to design technology that works across cultures and languages. W3C standards such as HTML and XML are built on Unicode, for instance. In addition, W3C has published guidance for authors related to language tags bi-directional (bidi) text, and more.

Mobile Web

W3C promotes 'One Web' that is available on any device. W3C's Mobile Web Best Practices help authors understand how to

Privacy 🗏

The Web is a powerful tool for communications and transactions of all sorts. It is important to consider privacy and security

Math on the Web

Mathematics and formula are used on the Web for business reports, education materials and scientific research. W3C's

₹

BioModels.net

Michael Hucka

Biological Network Modeling Center California Institute of Technology Pasadena, California 91125, USA

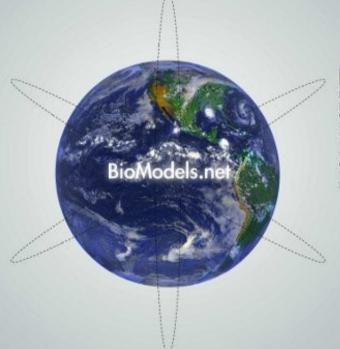
Andrew Finney

Physiomics PLC Oxford Science Park Oxford, OX4 4GA, UK

Nicolas Le Novère

European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton Cambridge, CB10 15D, UK

For computational modeling to become more widely used in biology, researchers must be able to exchange and share their results. The development and broad acceptance of common representation formats such as SBML is a crucial step in that direction, allowing researchers to exchange and build upon each other's work with greater ease and accuracy.


BioModels.net is another step: an international effort to

- 1) define agreed-upon standards for model curation
- 2) define agreed-upon vocabularies for annotating models, and
- provide a free, centralized, publicly-accessible database of annotated models in SBML and other structured formats.

Poster presented by Mike Hucka at the 6th ICSB Boston 2005

SRC

The Systems Biology Ontologies (SBO) are a set of interlinked controlled vocabularies tailored to the needs of the systems biology modeling community. The aim is to capture consensus definitions of commonly-used concepts and their relationships. Using SBO terms as a basis for annotating models and performing database searches (e.g., in BioModels Database) can lead to a greater degree of consistency, quality and interoperability.

BioModels Database

BioModels Database is a free, public repository of published quantitative models of biochemical and cellular systems. The models are curated to verify that they correspond to the reference publication and give the proper numerical results. Curators annotate the components of the models with terms from controlled vocabularies and links to external relevant data resources, allowing users to search accurately for the models they need and precisely identify their components.

References

Le Novère N, Bornstein B, Bruicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JE, Hucka M. Baoblodels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems. (2006) Nucleic Acids Rex, in press.

Le Novère N, Finney A, Hucka M, Bhalla U, Campagne P, Collado-Vides J, Crampin EJ, Halstead M, Klipp E, Mendes P, Nielsen P, Sauro H, Shapiro B, Snoep JL, Spence HD, Wanner BL, Minimal Information Requested in the Annotation of biochemical Models (MIRI-AM), (2005) Nature Biotechnology; in press.

MIRIAM

The Minimum Information Requested in the Annotation of Models (MIRIAM) is a proposed set of rules for curating quantitative models of biological systems. The rules define procedures for encoding and annotating models represented in machine-readable form. Their application will enable users to (a) have confidence that curated models are an accurate reflection of their associated reference description; (b) search collections of curated models with precision; (c) quickly identify the biological phenomena that a given curated model or model constituent represents; and (d) facilitate model reuse and composition into large subcellular models.

Acknowledgments

Funding for different aspects of the BioModels.met effort currently comes from the following organizations; the National Institute of General Medical Sciences (USA, grant GM070923-0251), the International Joint Research Program of NEDO (Japan), DARPA BioComp Bio-SPICE (USA), the European Molecular Biology Laboratory (ES), the California Institute of Technology (USA), the Systems Biology Institute (Japan), and the University of Hertfordshire (UK).

Database ಜ MIRIAM SBO ಜ MIASE ಜ SED-ML ಜ Qualifiers Events Contact

BioModels.net

The Next Step After Standard Formats

For computational modeling to become more widely used in biological research, researchers must be able to exchange and share their results. The development and broad acceptance of common model representation formats such as SBML is a crucial step in that direction, allowing researchers to exchange and build upon each other's work with greater ease and accuracy.

The BioModels.net project is another step; an international effort to:

- define agreed-upon standards for model curation.
- 2. define agreed-upon vocabularies for annotating models with connections to biological data resources
- 3. provide a free, centralized, publicly-accessible database of annotated, computational models in SBML and other structured formats

Helping to Define Community Standards

To facilitate assembling useful collections of quantitative models of biological phenomena, it is crucial to establish standards for the vocabularies used in model annotations as well as criteria for minimum quality levels of those models. The BioModels net project aims to bring together a community of interested researchers to address these issues. We are working towards defining these standards through white papers and process definitions. All of the products of our efforts are open and freely available through this site.

Standards and Processes Developed Hand-in-Hand with a New Database

The database component of BioModels.net is especially designed for working with annotated computational models; each model is carefully reviewed and augmented by human annotators on the BioModels.net team to add metadata linking the model elements to other biological databases and resources. The BioModels Database at the EBI system goes far beyond other collections of models by being a true database, featuring browsing, cross-referencing, searching, and facilities for visualization, exporting models in different formats, and remote API access.

Projects

The projects we are currently coordinating are:

- BioModels Database
- MIRIAM and the associated set of qualifiers and MIRIAM Resources
- SB0

A first step: common meetings

- January 2008: SBGN hackathon; BioModels DB; MIRIAM; SBO
- March 2009: SBML hackathon; BioModels DB; MIRIAM; SBO
- April 2009: CellML; SED-ML; SBGN hackathon
- May 2010: SBML hackathon; BioModels DB; MIRIAM; SBO; SFD-MI
- October 2010: 1st COMBINE MEETING with SBML; SBGN; ??
- From now on, two grouped annual meetings
 - **COMBINE** forum: presentation of support, discussion about future developments and collaboration etc.
 - HARMONY hackathon: developing support, writing specifications, tinkering with interoperability etc.

Requirements for a global coordination structure

- What?
 - Set of interoperable description languages
 - Cover all aspects of modelling and simulation
 - Cover all type of descriptions / views of the real
 - Role of community-maintained ontologies.
- How?
 - Independence towards Institutions, funders and individuals
 - Able to receive funds, to employ staff
 - Role of European Research Infrastructures? (ELIXIR, ISBE)
- Who?
 - Community developing their standards: Systems Biology, Physiology, Neuroscience (INCF), Drug discovery
 - Other players in knowledge-representation (W3C, ...)
 - Academic and corporate users: Modeling platforms (Matworks ...), Pharma (Pistoia alliance) ...

Acknowledgements

Visionnary: Hiroaki Kitano

SBML editors: Frank Bergmann, Andrew Finney. Stefan Hoops, **Michael Hucka**, Nicolas Le Novère, Sarah Keating, Sven Sahle, Herbert Sauro, Jim Schaff, Lucian Smith, Darren Wilkinson

SBGN editors: Emek Demir, Nicolas Le Novère, Huaiyu Mi, Stuart Moodie, Falk Schreiber, Anatoly Sorokin

SBO/MIRIAM: Mélanie Courtot, Nick Juty, Camille Laibe

SED-ML/MIASE: Dagmar Köhn/Waltemath

The EBI group Computational Systems Neurobiology

The whole community of Computational Systems Biology

THE END

