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Some of Babraham Institute’s historical fame

● Discovery of the liposome
Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions 
across the lamellae of swollen phospholipids. J Mol Biol 13, 238–252

● Discovery of IP3 signalling and release of internal calcium stores
H Streb, RF Irvine, MJ Berridge, I SchulzH Streb, RF Irvine, MJ Berridge, I 
Schulz (1983) Release of Ca2+ from a nonmitochondrial intracellular store in 
pancreatic acinar cells by inositol-1, 4, 5-trisphosphate. Nature 306, 67-69

● DNA methylation responsible of parental imprinting
W Reik, A Collick, ML Norris, SC Barton, MA Surani (1987) Genomic 
imprinting determines methylation of parental alleles in transgenic mice. 
Nature 328, 248-251

● Phosphorylation of PIP2 into PIP3 by PI3K
PT Hawkins, TR Jackson, LR Stephens (1992) Platelet-derived growth factor 
stimulates synthesis of Ptdlns(3,4,5)P3 by activating a Ptdlns(4,5)P2 3-OH 
kinase. Nature 358, 157-159
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Tools

Signalling
Epigenetics
Stem-Cells

Stem cell differentiation

Neuronal specification

Responses to PI signals

Immune response and ageing

Calcium in synapses

Phosphatase in neurons

Phophoinositides

Inflammation

Lipids in infections and cancer

Whole genome metabolism 
(ageing, stem cell differentiation)

Metabolism
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The many faces 
of modelling in biology
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What is the goal of using mathematical models?

Describe

1917
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What is the goal of using mathematical models?

Describe Explain

1917 1952
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What is the goal of using mathematical models?

Describe Explain Predict

1917 1952 2000
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What is a mathematical model?

Wikipedia (October 14th 2013): “A mathematical model is a description of a 
system using mathematical concepts and language.”
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What is a mathematical model?

What we want to know
or compare with experiments

variables

[x]

Vmax

Kd

EC
50

length

t
1/2

Wikipedia (October 14th 2013): “A mathematical model is a description of a 
system using mathematical concepts and language.”
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What is a mathematical model?

What we already know
or want to test

Wikipedia (October 14th 2013): “A mathematical model is a description of a 
system using mathematical concepts and language.”

 
variables relationships

[x]

Vmax

Kd

EC
50

length

t
1/2

If
then
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What is a mathematical model?

Wikipedia (October 14th 2013): “A mathematical model is a description of a 
system using mathematical concepts and language.”

 
variables relationships constraints

[x]

Vmax

Kd

EC
50

length

t
1/2

If
then

[x]≥0

Energy conservation

Boundary conditions
(v < upper limit)

Objective functions
(maximise ATP)

Initial conditions

The context or what 
we want to ignore
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Hodgkin-Huxley
action potential

Chance
catalase

Chance
glycolysis

Noble
pacemaker

Kauffman
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Kacser
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Thomas
logic models
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Karr et al
Whole 
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Synthetic biology

 2013

Thiele et al
Recon 2

BioModels

 1989
Palsson

Erythrocyte
metabolism
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Computer simulations Vs. mathematical models
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One would like to be able to follow this more general process 
mathematically also. The difficulties are, however, such that one 
cannot hope to have any very embracing theory of such processes, 
beyond the statement of the equations. It might be possible, however, 
to treat a few particular cases in detail with the aid of a digital 
computer. This method has the advantage that it is not so necessary 
to make simplifying assumptions as it is when doing a more 
theoretical type of analysis.

Computer simulations Vs. mathematical models
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Birth of Computational Systems Biology
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Birth of Computational Systems Biology
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The Computational Systems Biology loop

“biological” model
mathematical model

computational model
simulation

parameterisationvalidation
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Representation of time

No time: correlations, steady-states

Discrete time

Continuous time

Pseudo-time 
(t4 – t0 is not 2 x t2 -t0): Logic models
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Representation of time

No time: correlations, steady-states

Discrete time

Continuous time

Pseudo-time 
(t4 – t0 is not 2 x t2 -t0): Logic models
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Variable granularity
Single particles Discrete populations

Continuous populations

Fields
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Variable granularity
Single particles Discrete populations

Continuous populations

Fields
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Spatial representation

No dimension Homogeneous
(well-stirred, isotropic)

Compartments

Cellular automata Finite elements Real space

[x]
[x]

A

[x]
B
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Spatial representation

No dimension Homogeneous
(well-stirred, isotropic)

Compartments

Cellular automata Finite elements Real space
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Stochasticity

Deterministic simulation

Stochastic differential equations

Stochastic simulations 
(SSA, “Gillespie”)

Ensemble models (distributions)

Probabilistic models

Initial conditions
Parameter values
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Stochasticity

Deterministic simulation

Stochastic differential equations

Stochastic simulations 
(SSA, “Gillespie”)

Ensemble models (distributions)

Probabilistic models

Initial conditions
Parameter values



 

 

University of Cambridge, 14 March 2017

Logic versus numeric
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Logic versus numeric
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Many other types of models

Multi-agents models (cellular potts)

Cable approximation

Matrix models
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Modelling chemical kinetics
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Systems Biology models ODE models

 → Reconstruction of state variable evolution 
      from process descriptions:

● Processes can be combined in ODEs (for deterministic simulations); 
transformed in propensities (for stochastic simulations)

● Systems can be reconfigured quickly by adding or removing a process

A

B

P

Q

R

a

b

p

q

substances
A and B

are
consumed

by

reaction R that
produces

substances
P and Q



 

 

University of Cambridge, 14 March 2017

ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
(for 1 reactions 1 and 3, there are 2 reactions 7 and 10)

1 2 3 4
5

6

78910
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Chemical kinetics and fluxes

S1

S2

E

P
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Statistical physics and chemical reaction
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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Law of Mass Action

Waage and Guldberg (1864)

rate-constant

velocity

stoichiometry

activity
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Law of Mass Action

Waage and Guldberg (1864)

activity

rate-constant

velocity

stoichiometry

gas

solution
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Evolution of a reactant

● Velocity multiplied by stoichiometry

● negative if consumption, positive if production

● Example of a unimolecular reaction 
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Evolution of a reactant

● Velocity multiplied by stoichiometry

● negative if consumption, positive if production

● Example of a unimolecular reaction 
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Evolution of a reactant

● Velocity multiplied by stoichiometry

● negative if consumption, positive if production

● Example of a unimolecular reaction 

 
       

[x]0

[x]0/e

t1/kln2/k

[x]0/2
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Reversible reaction

                  is equivalent to   
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Reversible reaction

                  is equivalent to   
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Example of an enzymatic reaction
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Example of an enzymatic reaction
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Example of an enzymatic reaction



 

 

University of Cambridge, 14 March 2017

t

[x]

Not feasible in general

                   Numerical integration

Example of an enzymatic reaction
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Euler method:

Numerical integration

t

[x]

Dt

t

[x]
[x]

t+Dt
 – [x]

t 
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Euler method:

Numerical integration

t

[x]

Dt

t

[x]
[x]

t+Dt
 – [x]
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Choose the right formalism
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Choose the right formalism

 irreversible catalysis
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding

quasi-steady-state
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Enzyme kinetics

Victor Henri (1903) Lois Générales de l'Action 
des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die 
Kinetik der Invertinwirkung, Biochem. Z. 49:333-
369

George Edward Briggs and John Burdon 
Sanderson Haldane (1925) A note on the 
kinetics of enzyme action, Biochem. J., 19: 338-
339
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Briggs-Haldane on Henri-Michaelis-Menten
 (only for info. Not needed)

[E]=[E
0
]-[ES]
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[E]=[E
0
]-[ES]

steady-state!!!

Briggs-Haldane on Henri-Michaelis-Menten
 (only for info. Not needed)
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Generalisation: activators

x y
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Generalisation: activators

v

50%v

v

50%v

a

x y

x y
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Generalisation: activators

v

50%v

v

50%v

a

x y

x y

(NB: You can derive that as the fraction 
of target bound to the activator)
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Phenomenological ultrasensitivity

v

50%v

v

v

50%v

50%v
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The Hill function

Hill (1910) J Physiol 40: iv-vii.
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Hill (1910) J Physiol 40: iv-vii.

1

0

The Hill function
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Generalisation: inhibitors

v

50%v

x y

i

x y

(NB: You can derive that as the fraction 
of target not bound to the inhibitor)
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Generalisation: activators and inhibitors

log [a]log [i]

x y

a

x y

i
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absolute Vs relative activators

v

50%v

a

x y
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absolute Vs relative activators

v

50%v

v(1+

v

a

x y

a

x y
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1 compartment
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2 compartments
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2 compartments

A B

Per unit of time
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2 compartments … with different volumes

A

B
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2 compartments … with different volumes

A

B

Per unit of time
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B

Per unit of time



 

 

University of Cambridge, 14 March 2017

2 compartments … with different volumes

A

B

Per unit of time
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2 compartments … with different volumes

A

B

Per unit of time

Kinetic constants must
be scaled with volumes:
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Øx
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

[x]

0

Ø Øx
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

[x]

0

1

Ø Øx
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

[x]

0

1

Ø Øx



 

 

University of Cambridge, 14 March 2017

Building and simulating
 

Models with COPASI
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Mathematics are beautiful
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