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What is Systems Biology?
Where does it come from ?
What are the challenges ahead?

Nicolas Le Novere, Babraham Institute, EMBL-EBI
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Systems Biology is the study of the emerging
properties of a biological system, taking into
account all the necessary constituents, their

relationships and their dynamics



Emergence of the notion of system

’

telecommunications,
automata,
multi-agents,
Systems Biology

Description of the

structural biology,
molecular biology

astronomy
classical mechanics,
anatomy, physiology
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Systems are formalised mid-XXth

Cybernetics:

GENERAL
SYSTEM
THEORY

FRUNDATIONG

SR e

APRLIGATIONS

Ludwig von Bertalanffy

“[A system consists of] a dynamic order of parts and processes
standing in mutual interaction. [...] The fundamental task of
biology [is] the discovery of the laws of biological systems"
Ludwig von Bertalanfy, Kritische Theorie der Formbildung, 1928



The three paradigms of Biology

Systems Biology

OMICS

Eccles/Katz
Hodgkin/Huxley

Physiology

Hill/Meyerhoff Kossel

Michaelis/Menten

Pavlov/Langley
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Towards Systems Biology

Organ level
SBML
Tissue models
Signalling pathways User-friendly
Gene regulatory  pyryinje neuron SImlEIes
networks Multi-agent
Cell cycle systems
Goldbeter/Koshland Simple circuits
Covalent cascades
Stochastic
c | cUrons algorithms
. omplex neu
Metabolic networks piex MCA/BST

Boolean networks

Denis Noble

Heart pacemaker Rall's cable methods
approximation
neurobiology
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60s and 70s

m  Mihajlo Mesarovic: 1966 Symposium
“general systems theory and biology

m  Stuart Kaufmann,
Rene Thomas: 1969-73
boolean networks for
gene regulation

® Henri Kacser:
Metabolic control analysis,
Michel Savageau:
Biochemical Systems Theory
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90s: maturation of the community

Publication of modelling work in high visibility journals, e.q.:

Tyson. modeling the cell-division cycle - cdc2 and cyclin interactions.
PNAS 1991; McAdams and Shapiro. Circuit simulation of genetic
networks. Science 1995; Barkai and Leibler. Robustness in simple
biochemical networks. Nature 1997; Neuman et al. Hepatitis C viral
dynamics in vivo and the antiviral efficacy of interferon-alpha therapy.
Science 1998; Yue et al. Genomic cis-regulatory logic: Experimental
and computational analysis of a sea urchin gene . Science 1998; Bray
et al. Receptor clustering as a cellular mechanism to control sensitivity.
Nature 1998; Bhalla ad lyengar. Emergent properties of signaling
pathways. Science 1998

Structuring of the community modelling metabolism
Large-scale modelling and simulation projects
E-Cell project 1996; The Virtual Cell 1998
Availability of high-throughput data on parts and interactions
Two-hybrids (1989); microarrays (1995) etc.
Large-scale funding for wet+dry studies of biological systems

Alliance For Cellular Signalling (http://www.afcs.org/). First of the NIH
“glue grants”. 1998
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Formal revival of Systems Biology

= “Modelling” Systems Biology
1998 - Hiroaki Kitano founds the Systems Biology Institute in Tokyo

First appearance: Kyoda, Kitano. Virtual Drosophila project:
Simulation of drosophila leg formation. Genome Informatics Series

(1998)

Kitano, H. Perspectives on systems biology. New Generation
Computing Volume 18, Issue 3, 2000, Pages 199-216

= “Network” Systems Biology

First appearance: Leroy Hood. Systems biology: new opportunities
arising from genomics, proteomics and beyond. Experimental
Hematology. Volume 26, Issue 8, 1998, Page 681

Schwikowski B, Uetz P, Fields S. A network of protein-protein
interactions in yeast. Nat Biotechnol. 2000 Dec;18(12):1257-61.

2000 - Leroy Hood founds the Systems Biology Institute in Seattle



Two kinds of Systems Biology?

Systems-wide analysis
(omics)

Born: 1990s

Technologies: high-throughput,
statistics

People's background: molecular
biologists, mathematicians

Key lesson: the selection of a
phenotype is done at the level of
the system, not of the component
(gene expression puzzle)

Application of systems-
theory

Born: 1960s

Technologies: quantitative
measurements, modelling

People's background:
biochemists, engineers

Key lesson: the properties at a
certain level are emerging from
the dynamic interaction of
components at a lower level
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Rise of Systems Biology as a paradigm

End of BBSRC

Choi Systems Biology
calls
Palsson
: BMC Sys Bio
B ERE Alon Szallasi
Kriete MSB
SystemsX Klipp Kaneko 6 BBSRC centres
Systems Biology _
Enters FP6 IEE Sys Bio .
hepatosys BioQuant
YSBN SBML
Science special issue
Alliance for “Foundations of Tokyo Systems
Cellular Signaling Systems Biology” Biology Institute
Ideker/Hood
Von Dassow Seattle Institute
. “Computational for Systems Biology
ERATO-Kitano Cell Biology”
ECell

projects publications Institutes




Procedure does not depend on directionality

Build the system

Put numbers

Parametrise

Analyse

perturb

Bottom-up Top-down

literature network inference
biochemistry “omics”

parameter search not (always) relevant
Simulation structural analysis,

steady-state analysis

Inhibition, stimulation,
suppression, overexpression
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Why using mathematical models?

Describe Explain Predict

Extracellular Medium

P lac0l

ON GROWTH
AND FORM gn(t,V)

The Complete Revised Edition

P, tet01

d.

En'l' EL'l'
!

Intracellular Medium

gfp-aav

|2

ColEl

Proteins per cell

V_neg (-V) [mV]

DArcy Wentworth Thompson

— B 0 500 1000
e [ms] * Time (min)

1917 1952 2000
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length
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What we want to know
or compare with experiments



What is a mathematical model?

Wikipedia (April 17th 2013): “A mathematical model is a description of
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What is a mathematical model?

Wikipedia (April 17th 2013): “A mathematical model is a description of
a system using mathematical concepts and language.”

variables
[X]
Vmax
Kd

EC

50

length

1/2

relationships

_[4]-1B)
[AB]

dX]/dt =k -[Y]?

Z[X]i —F(t)=0
k(t) ~ N(k,o?)

If mass; > threshold
then massi+ A+ = 0.5 - mass

constraints

[X]>0
Energy conservation

Boundary conditions
(v < upper limit)

Objective functions
(maximise ATP)

Initial conditions

The context or what
we want to ighore



What is a mathematical model?

Wikipedia (April 17th 2013): “A mathematical model is a description of
a system using mathematical concepts and language.”

variables relationships constraints
X % _ 1A 1B] [x]>0
VY]
Vmax Energy conservation
dX]/dt =k -[Y]?
Kd Boundary conditions
E050 Z[X]i _F(t) =0 (v < upper limit)
Z Objective functions
length k(t) ~ N(k,o?) (maximise ATP)
If  mass; > threshold Initial conditions

12 then massi+ A+ = 0.5 - mass

Different types: Dynamical models, logical models, rule-based models,
multi-agent models, statistical models, etc.
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Computer simulations Vs. mathematical models
[ 37 ]

| THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found that there are six
essentially different forms which this may take. In the most interesting form stationary waves
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns

on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-
dered  Sarcl : Lats A rieat] : .



Computer simulations Vs. mathematical models
[ 37 ]

_ | THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

One would like to be able to follow this more general proces
mathematically also. The difficulties are, however, such that on
cannot hope to have any very embracing theory of such processes
beyond the statement of the equations. It might be possible, howeve
to treat a few particular cases in detail with the aid of a digita
computer. This method has the advantage that it is not so necessar
to make simplifying assumptions as it is when doing a mor
theoretical type of analysis.




Birth of Computational Systems Biology

J. Physiol. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGKIN anp A. F. HUXLEY
From the Physiological Laboratory, Unwversity of Cambridge
(Recetved 10 March 1952)

This article concludes a series of papers concerned with the flow of electric
current through the surface membrane of a giant nerve fibre (Hodgkin,
& Katz, 1952; Hodgkin & Huxley, 1952 a—c). Its general «
~ the results uf the preceding papers (Part I), to put |
® atical form (Part II) and to show that they will accom
and excitation in quantitative terms (Part ITI).

R.I.P. 30 May 2012
Cambridge



Birth of Computational Systems Biology

The Mechanism of Catalase Action. !
II. Electric Analog Computer Studies

Britton Chance, David S. Greenstein, Joseph Higgins and C. C. Yang
From the Johnson Research Foundation, University of Pennsylvania,

Philadelphia, Pennsylvania
Received October 26, 1951

INTRODUCTION

In early studies of enzyme reactions only the disappearance of sub-
strate could be measured and only the steady-state operation of the
enzyme could be studied. We can now study directly the formation
and disappearance of compounds of enzyme and substrate by sensit
spectrophotometric methods. Thus not only the steady-state but s
the transient portions of the enzyme action are revealed. And th
transient portions are very sensitive indicators of the mechanism
which the enzyme acts.

Differential equations representing the transient formation 4
disappearance of an enzyme-substrate complex can readily be set

for enzyme reactions that follow the law of mass action, and solutic .
nf thoeo sntiatinng are raadilv nhtained far the sneecial and onften 1n N




The Computational Systems Biology loop

mathematical model

T ] H 144 dF ma
biological modeII I=Cy3-+Tgn* (V Vi) +Guam®h (V = Vi) +3,(V = 1),

Cutside T | dﬂllrlii =a, . _.Bnﬂ'l

%, =0-01 (V+10)/(exp V;]m_1),

dm/dt =a (1 —m) N m,
B, =0-125 exp (V/80),

dhjdt=ay(1—B) B,

[
T j Oy, =01 (V+25)/(exp V;)25—1),
!
Cn 2= E B,.=4 exp (V/18),
I . l a, =0-07 exp (V/20),
I
+ . Jh=1/(expVi';)gl[}+l).
o\ gperimental values
_____..«-""'Il Constant Range )
- Y (1) (4)
. . c cm? o TN 08 to 15
validation V:.{(,:ﬂ;} ) parameterisation § -esto -119
% V; (mV) - 11 - 4t0 - 22
A R 4
> 50 Jx (m.mho/cm?) 34 26 to 49
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20
10 !
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The challenges ahead

Types of representation
Scales and the mesoscopic gap
Genotype-system-phenotype problem

Drug discovery models
Vs systems modelling

Drug discovery models
Vs “omics” data



The four views of systems biology
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Interaction networks

m Statistical modelling
m  Functional genomics

m [ntAct, DIP, String

directed
sequential

¢ ¢ ¢

mechanistic



Undirected, directed, signed

O

O

v+

O

© 0

Undirected

“Ainteracts with B”

directed

“Ainfluences B”

Signhed

A influences positively B



Activity Flows

m | ogical modelling

m Signalling pathways, gene regulatory networks

m KEGG non-metabolic, STKE

ubc9 |

elk-1

\Y4

c-fos

<t+— erk

directed
sequential
mechanistic

XE[E

24



Undirected, directed, signed

A signed interaction network
» B IS equivalent to an activity flow




Process Descriptions

directed
erk sequential
&

mechanistic

Process modelling

Biochemistry, Metabolic networks
Generally within “closed world”
Subjected to combinatorial explosion

KEGG metabolic, Reactome



Entity Relationships

m Rule-based modelling
m  Molecular Biology
m “Open world”

®m |ndependent rules: no explosion
@ directed

v
> sequential [ ™ Molecular Interaction Maps
7

mechanistic

c-fos
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The problem of scales

Coupled
multi-scale
models

Theoretical and
Computational
roadblockers

24 orders m‘ps)
magnitude

9 orders of -
magnitude Adapted from Castiglione et al. (2014)
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Chew et al. (2014)
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A Emergent properties and the
’ N\ = gene-system-phenotype puzzle

Waddington C.H., Kacser H (1957)
The Strategy of the Genes:

A Discussion of Some Aspects of
Theoretical Biology.

George Allen & Unwin
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Emergent properties and the
gene-system-phenotype puzzle

Waddington C.H., Kacser H (1957)
The Strategy of the Genes:

A Discussion of Some Aspects of
Theoretical Biology.

George Allen & Unwin

Many networks can theoretically
generate the same phenotype,
and this happens, in a synchronous
(sister cells with same phenotype but
different transcript/prote/metabol/omes) ~ 5
- x e
and diachronous manner (*omes of a cell- )
changes over time but same phenotype). - _




Reverse engineering is hard ...

Gene A|Gene B |Gene C|Gene DJ ...
Phenotype X| ¢/ X v X
Phenotype Y| X X v
Phenotype Z X v v X
Gene A

d

Gene C

Gene B

E

1

Gene D




Drug discovery modelling: pharmacometrics
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Drug discovery modelling: pharmacometrics

PK PD

[drugA] effect

time [drugA]



Drug discovery modelling: pharmacometrics

PK

-

[drugA]

time

[drugB]

time
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[drugA]

effect

[drugB]



Drug discovery modelling: pharmacometrics

PK PD
A A
[drugA] effect
. .
tim
Effect of A+B?
A
[drugB] effect
. .
time [drugB]




Systems modelling
d[T]

= —k1 x |T] x [D1]
[T]‘\

time
diT] _
= —k2 x [T x [D2]

[T]

time




Systems modelling

= —kl x [T] x |[D1] — k2 x |[T] x |[D2]




altentanll concentration {ug/ 1)

Drug discovery and pharmacometrics models




Drug discovery and pharmacometrics models




Signal Intensity (%)

Drug discovery and omics
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Systems Biology
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