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What is a mathematical model?

Wikipedia (October 14t 2013): “A mathematical model is a description of a
system using mathematical concepts and language.”
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What is a mathematical model?

Wikipedia (October 14t 2013): “A mathematical model is a description of a
system using mathematical concepts and language.”
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What is a mathematical model?

Wikipedia (October 14t 2013): “A mathematical model is a description of a
system using mathematical concepts and language.”

variables relationships
[X] _ 4] [B]
Y
Vmax
d[X]/dt =k - [Y]?
Kd
EC,, ;[X]z‘ —F()=0
length k(t) ~ N(k, 02)

If mass; > threshold

1/2 then mass;4a; = 0.5 - mass

What we already know
or want to test
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What is a mathematical model?

Wikipedia (October 14t 2013): “A mathematical model is a description of a
system using mathematical concepts and language.”

variables relationships constraints
[X] _ Al B8] x]=0
Ka= [AB] n
Vmax Energy conservation
dX]/dt =k -[Y]?
Kd Boundary conditions
Z[X]i —F(t)=0 (v < upper limit)
ECso t
Obijective functions
length k(t) ~ N(k, 02) (maximise ATP)
If mass; > threshold Initial conditions

1/2 then mass;;a; = 0.5 - mass

The context or what
we want to ighore
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Computer simulations Vs. mathematical models
[ 37 ]

| THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found that there are six
essentially different forms which this may take. In the most interesting form stationary waves
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns

on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-
dered  Sarcl : Lats A rieat] : .
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Computer simulations Vs. mathematical models
[ 37 ]

_ THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

One would like to be able to follow this more general proces
mathematically also. The difficulties are, however, such that on
cannot hope to have any very embracing theory of such processes
beyond the statement of the equations. It might be possible, howeve
to treat a few particular cases in detail with the aid of a digita
computer. This method has the advantage that it is not so necessar
to make simplifying assumptions as it is when doing a mor
theoretical type of analysis.
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Birth of Computational Systems Biology

The Mechanism of Catalase Action. !
II. Electric Analog Computer Studies

Britton Chance, David S. Greenstein, Joseph Higgins and C. C. Yang

From the Johnson Research Foundation, University of Pennsylvania,
Philadelphia, Pennsylvania

Received October 26, 1951

INTRODUCTION

In early studies of enzyme reactions only the disappearance of sub-
strate could be measured and only the steady-state operation of the
enzyme could be studied. We can now study directly the formation
and disappearance of compounds of enzyme and substrate by sensit
spectrophotometric methods. Thus not only the steady-state but s
the transient portions of the enzyme action are revealed. And th
transient portions are very sensitive indicators of the mechanism
which the enzyme acts.

Differential equations representing the transient formation 4
disappearance of an enzyme-substrate complex can readily be set

for enzyme reactions that follow the law of mass action, and solutic
nf theeo antiatinng are raadilv nhtained far tha sneecial and nften nn
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Birth of Computational Systems Biology

J. Physiol. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGKIN anp A. F. HUXLEY
From the Physiological Laboratory, Unwversity of Cambridge
(Recetved 10 March 1952)

‘icle concludes a series of papers concerned with the flowys
through the surface membrane of a giant nerve fibre
% % Katz, 1952; Hodgkin & Huxley, 19562 a—). Its general «
the results of the preceding papers (Part I), to put I |
atical form (Part II) and to show that they will accom
and excitation in quantitative terms (Part ITI).
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The Computational Systems Biology loop
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Representation of time
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Representation of time
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Variable granularity

Single particles Discrete populations
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Spatial representation

X y
No dimension Homogeneous Compartments
(well-stirred, isotropic)
[X],
° [X] [X]
B
Cellular automata Finite elements Real space
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Stochasticity

Ensemble models (distributions)
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Deterministic simulation
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Logic versus numeric
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Many other types of models

Matrix models
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Multi-agents models (cellular potts)

é Axial Resistence

Cable approximation

Gebze Technical University, 20 February 2017







	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

