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Systems Biology models # ODE models

= Reconstruction of state variable evolution
from process descriptions:

®  Processes can be combined in ODEs (for deterministic simulations);
transformed in propensities (for stochastic simulations)

m  Systems can be reconfigured quickly by adding or removing a process

sl

DTS

substances are reaction R that substances
A and B consumed produces P and Q

by
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ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
(for 1 reactions 1 and 3, there are 2 reactions 7 and 10)
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Chemical kinetics and fluxes
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Statistical physics and chemical reaction
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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Law of Mass Action

Waage and Guldberg (1864)
activity

rate-constant l stoichiometry

R

v:k-Haini
/ i

velocity
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Law of Mass Action

Waage and Guldberg (1864)
activity

rate-constant l stoichiometry

R

v:k-Hain?‘
/ i

velocity

v:]g.HPi”i gas

v =k - H [XZ]"% solution
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Evolution of a reactant

®m  Velocity multiplied by stoichiometry
® negative if consumption, positive if production

_ | k
m Example of a unimolecular reaction  — Y

In Silico Systems Biology, EMBL-EBI, 09-14 July 2017



Evolution of a reactant

®m  Velocity multiplied by stoichiometry
® negative if consumption, positive if production

| | k
m Example of a unimolecular reaction  — Y

d|x]
d[y]
o =4+1-v=41-k-|z]
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Evolution of a reactant

®m  Velocity multiplied by stoichiometry
® negative if consumption, positive if production

| | k
m Example of a unimolecular reaction  — Y
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Reversible reaction

11 20 — y;vl = k1 - [x]

2T = 1Y s equivalent to

k2 y — 2x;0v2 = k2 - |y
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Reversible reaction

» 20 — y;vl = k1 - [z
T o Y is equivalent to y— 2002 = k2 - y

d

% = 2. p142 02 = —2- k1. [2]2+2- k2 - [y]

d

% =+1-01-1-02=+1-k1-[2]*~1-k2-[y]
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Conformational equilibrium
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Binding equilibrium
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How does a ligand activate its target?




How does a ligand activate its target?
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How does a ligand activate its target?

AG1 =-RT In K1 u —/ 'y ‘

J

o K T AG, = -RT In K4|

AG | K 4 N~
22 AG,,K,
"C (} AG1 + AGy = AGy + AGs
N AG3,K3 \ ]{1 X K4 — I{Q X Krg

kc-ff 1 % kfof-l koﬂ'? k off3
kﬂﬂl konil k0n2 kDHS



Add energies
Multiply constants
+1 quantum energy = constant divided by 10

Explore constants exponentially:

23 46 69 -92 -115 -13.8 -16.1
H H H H H ] H

0.1 0.3 0.50.7---
02 040.6
] u N ] [ [] []

10"  10®* 10° 10* 10° 10° 107

Parameter space
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Example of an enzymatic reaction

k
E+S§ES§E+P
2
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Example of an enzymatic reaction

k
E+S2Fs®Bpyp

ko
dlE|/dt = —ki|F]|S] kol 5]
diS]/dt = —ki[E][S] +ko[l/5]
A5 /dt = +ky[E][S] —ka[FS
AP /dt =
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Example of an enzymatic reaction

E+S% B pyp
dE|/dt = —k[B][S] ko Hks[F9]

NN

In Silico Systems Biology, EMBL-EBI, 09-14 July 2017



Example of an enzymatic reaction

E+S%ES§E+P
diE)/dt = —k[E|[S] +koFS
d[S]/dt = —ki[E][S] ko[PS
dES)/dt = +ky[E|[S] —kaES
Pl jdt =

[X]

p L
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Not feasible in general
* - Numerical integration



Numerical integration

Euler method:
dlz]/dt ~ (|z]irar — [2]¢) /At
(x)ionr = |x]p + d|x]/dt - At
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Numerical integration

Euler method:
dlz]/dt ~ (|z]irar — [2]¢) /At
(x)ionr = |x]p + d|x]/dt - At

Elityar = [Ely 4+ ((ka +E3)[L5]e — k1 [E][S]y) -
Slexar =[Sl + (k2| 5] — k1 [E]¢[S]s)

S Tewne = [E5]e + (Ki[E)e][S)e — (ko + k3)[/5]e) -
Plixa: = [Py + ka2 5]
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Numerical integration

Euler method:
dlz]/dt ~ (|z]irar — [2]¢) /At
(x)ionr = |x]p + d|x]/dt - At

Elivar = [Ele  + ((k2 +k3)[ 5] — k1|E]e]S]e) -
Slevar =[Sl + (ko[ 25 — k1| E]e[S])
STerae = [ESTe 4+ (ka[ELe[S]e — (k2 + k3)[F5]e)
Plivar = |[Ply + ks[/25]

4% order Runge-Kutta:
Tligae = |x]y + (F1 + 2F5 + 2F3 + Fy) /6 - At

with  Fy = dlz]/dt = f(|z]t,t)
Fy = f([z]; + At/2- Fy, t + At/2)
Fy, = f([:lf]t + At - F3,t+ At)
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Choose the right formalism

ka,s kcats kdp
FE+S—FEFS——FEFP——FE+P
kds kcatp kap
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Choose the right formalism

kas kcats k p d P

Bis e pg fees pp Fes pp AP Pk [P
kds kcatp kap

E+ S hé ES Feats s pp ké E+P irreversible catalysis
kds ka,p
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Choose the right formalism

d[P]

kas kcats kdp
E+8§<= S <= EP == E+P —_

kds kcatp kap

= kap[EP) — kap [ EI[P)

E+S— Kas ES —=catsy Feats EP — Ldp E+ P irreversible catalysis

kds ka,p
E+ S = Fas ES —=catsy Keats E+ P product escapes before rebinding
kds
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Choose the right formalism

ts kp
E+§ 2 pg Leatss pp 22 By p

kds

E+S;ES
kds

E—I—SQES
kds

S —

d|P
U] kil EP) — oy EIIP
kcatp kap dt
at kdp . . .
Keats FP—F+ P irreversible catalysis
kap
Feats E+ P product escapes before rebinding
Kcats p quasi-steady-state
d[P] 5]

W — [E]kcat Km i [S]
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Enzyme Kkinetics

Victor Henri (1903)

Lois Générales de I'Action des Diastases.
Paris, Hermann.

Leonor Michaelis, Maud Menten (1913).
Die Kinetik der Invertinwirkung,
Biochem. Z. 49:333-369

George Edward Briggs, John Burdon Sanderson
Haldane (1925)

A note on the kinetics of enzyme action,
Biochem. J., 19: 338-339
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Briggs-Haldane on Henri-Michaelis-Menten

E+S 2 EsBELp 5 = klES]

k_1

[E]=[E, ]-[ES]

A28 hlBlS) ~ k(B8] - kES] =0
|ES) %"* — [E] - [ES]
5 [E)[S]
[ES] = ,
s ESI+ 72 = [E
K, = = ;_ k2 1
. £5)= Bl
[E)S]
[ES] = == d[P] S ., 5]
Ko dt k?[E”]fer[S] mer e+ [9]

In Silico Systems Biology, EMBL-EBI, 09-14 July 2017



Briggs-Haldane on Henri-Michaelis-Menten

E+S 2 EsBELp 5 = klES]

k_1

[E)=[E, -ES)
A hmys - ke [Emka[@
.

steady-state!!l [BSIfg = (Bl —[ES]
ky[E][S]
[ES] = E_y + ks .
ES)(1+ 7gp) = [Ei]
K, = kot t+ ks 1
m ky [ES] [En]l n %u].\.
E][S]
T E 4P s |, s
K, ?—kg[En]jm_l_[S]— mes o 5]
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Generalisation: activators
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Generalisation: activators

d
o -

(NB: You can derive that as the fraction
of target bound to the activator)
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Phenomenological ultrasensitivity

W _,
dt Ka + |a]
dly] _~ [a]?

dt 0 Ka? 1 |a]?

il _,
dt Ka™ + |a]™
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iv PROCEEDINGS OF THE PHYSIOLOGICAL Hill (1910)] Phys,o/ 40 iv-Vii.

‘The possible effects of the aggregation of the molecules
of heemoglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results,

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant resulta.

Our work led me to believe that the divergence between the results
of different observers was due to an aggregation of the h@moglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barecroft and Camis with hamoglobin in solutions of
various salts, and with hamoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb + 0, == HbO,,
Hb, + n0, == Hb,0,,,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

Kz K
y—lm+(lm—k)i—;—i—h ............... (A.),
where A ¢/, is as Hb,, (100 — 1)"/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20, == Hb,0, and K that of Hb + 0, == HbO,:
K has the value ‘125 (Barcroft and Roberts).
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Generalisation: inhibitors

d[y)/dt

50% Vv T

1 dy) K"
X it Kt ]

/

(NB: You can derive that as the fraction
of target not bound to the inhibitor)
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Mathematics are beautiful

™ i "

Kp+ e Kr+e K
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Generalisation: activators and inhibitors

X D (= k- [
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absolute Vs relative activators

dy __ld
dt

d[y)/dt
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absolute Vs relative activators

dly] ] dly] a]
it U Ko+l g U Ute o)
d[y)/dt d[y]/dt '
vVl+o) + = - —=

V= = = =
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Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>—

dynamic system?
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Homeostasis

How can-we maintain kin

a stable level with a ) —

dynamic system?

Y, kzn — kout . [CE]

d|z]
dt

time
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Homeostasis

a stable level with a ) —

How can-we maintain kin
— x

dynamic system?

d|z]
Y, — kzn — kou .
dt o 1
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Homeostasis

How can-we maintain kin

a stable level with a ) —

dynamic system?

d|z]
W — kzn — kout : [CC] — kpert : [33]
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Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>

dynamic system?

d|z]

., — kzn — kout : [CC] — kpert : [33]

dt

In Silico Systems Biology, EMBL-EBI, 09-14 July 2017



1 compartment

d[ﬂf]
d[y]
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2 compartments

d[ﬂf]
d[y]
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2 compartments

Per unit of time

d[;jA:—l-k-[az]A nra=—1-k-|xja-Va
d[giB:‘H'k'[l‘]A nyg = +1-k-|z]a-Vp

Va=Vp =nra=nyp
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2 compartments ... with different volumes

Va=4-Vp

d[w]A_
It = —1 k[az]A
d[?/]B_
At —-|-1-k-[a:]A
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2 compartments ... with different volumes

Va=4-Vp

Per unit of time

d[;ﬂgA:—l-k-[az]A nra=—1-k-lx]a-Va
d[g}fB:‘H'k'[f]A nyg = +1-k-|z]a-Vp

nra =4-nypg
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2 compartments ... with different volumes

Va=4-Vp

Per unit of time

dt =1 k°[$]A.V_A nxA:k-[:E]A-V—A-VA

dly|s Va VA

b :+1-/€°[$]A°V—B nszk-[x]A-V—A°VB
B
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2 compartments ... with different volumes

Va=4-Vp

Per unit of time

d|z] V
th:_l k [w]A'V—j nxA:k-[x]A-)%-YZ
dly| B V.
gt =41k MA'V—g nyB:k'[l’]A'%‘/Vé

nra — NyYyp
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2 compartments ...

d[m]A VA
— —1.k. o4

dt 7]4 Va
d[?/]B V4
— 11 k- oA

dt zla VB

with different volumes

Kinetic constants must
be scaled with volumes:
k g VA
A—-B — N T
Va=4-Vg V4
Va
kB—>A =k —
Vb

Per unit of time
nra =k-|xla -

nyg = k- |z|a -

nra — NyYyp
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Questions?
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