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Systems Biology models ODE models

 → Reconstruction of state variable evolution 
      from process descriptions:

Processes can be combined in ODEs (for deterministic simulations); 
transformed in propensities (for stochastic simulations)

Systems can be reconfigured quickly by adding or removing a process
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ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
(for 1 reactions 1 and 3, there are 2 reactions 7 and 10)
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Statistical physics and chemical reaction
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Law of Mass Action

Waage and Guldberg (1864)
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Evolution of a reactant

Velocity multiplied by stoichiometry

negative if consumption, positive if production

Example of a unimolecular reaction 
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Reversible reaction

                  is equivalent to   

      

2x! y; v1 = k1 ¢ [x]2

y ! 2x; v2 = k2 ¢ [y]



Reversible reaction

                  is equivalent to   

      

2x! y; v1 = k1 ¢ [x]2

y ! 2x; v2 = k2 ¢ [y]
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Conformational equilibrium



Binding equilibrium



How does a ligand activate its target? 
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How does a ligand activate its target? 
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Add energies

Multiply constants

+1 quantum energy  = constant divided by 10

Explore constants exponentially:

Parameter space
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Example of an enzymatic reaction
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Example of an enzymatic reaction



Euler method:

Numerical integration
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 4th order Runge-Kutta:
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding

quasi-steady-state



Enzyme kinetics

Victor Henri (1903) Lois Générales de l'Action 
des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die 
Kinetik der Invertinwirkung, Biochem. Z. 49:333-
369

George Edward Briggs and John Burdon 
Sanderson Haldane (1925) A note on the 
kinetics of enzyme action, Biochem. J., 19: 338-
339



Briggs-Haldane on Henri-Michaelis-Menten
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Briggs-Haldane on Henri-Michaelis-Menten
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steady-state!!!



Generalisation: activators
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Beware of the ligand depletion!

d[y]/dt
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[a] is the concentration of FREE activator. In dose-
response experiments, the x-axis most often represents 
the TOTAL concentration (initial concentration). The two 
are equal only if the concentration of sensor (receptor, 
enzyme etc.) is much lower than the Ka.
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Generalisation: activators
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Phenomenological ultrasensitivity
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Origins of cooperativity: Hill

Hill (1910) J Physiol 40: iv-vii.



Origins of cooperativity: Hill

Hill (1910) J Physiol 40: iv-vii.
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Generalisation: inhibitors
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Generalisation: activators and inhibitors
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absolute Vs relative activators
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Questions?


