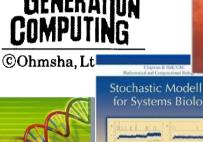
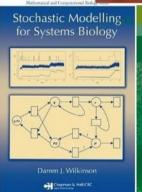
What happened to Biology at the end of XXth century?

Annu. Rev. Genomics Hum. Genet. 2001. 2:343-72 Copyright © 2001 by Annual Reviews. All rights reserved

A New Approach to Decoding Life: Systems Biology

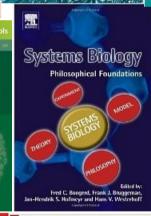
Trey Ideker^{1,2}, Timothy Galitski¹, and Leroy Hood^{1,2,3,4,5} Institute for Systems Biology¹, Seattle, Washington 98105; Departments of

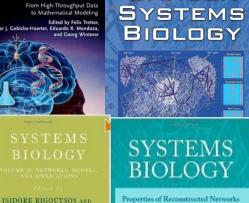

New Generation Computing, 18(2000)199-216 Ohmsha, Ltd. and Springer-Verlag


invited Paper

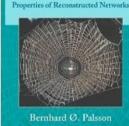
Perspectives on Systems Biology

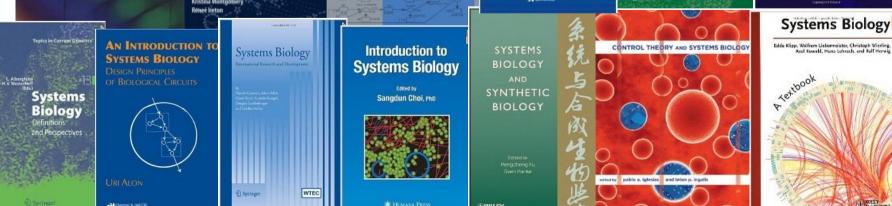
Hiroaki KITANO
Sony Computer Science Laboratories, Inc.



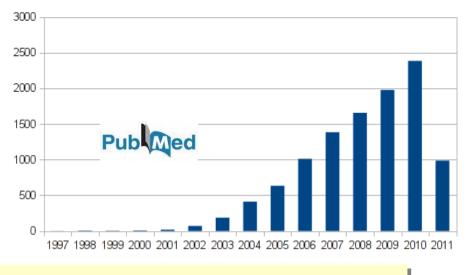

> Computational

System Modeling in Cellular Biology


Systems Biology


Systems Biology in Psychiatric Research


CANCER



What is Systems Biology?

- First mention of the term:1928 (L Von Bertallanfy)
- Modern revival of the term: 1998 (L Hood, H Kitano)

Systems Biology is the study of the **emerging** properties of a biological system, taking into account all the **necessary** constituents, their **relationships** and their **dynamics**.

Systems-wide analysis (omics)

- Born: 1990s
- Technologies: high-throughput, statistics
- People's background: molecular biologists, mathematicians
- Key lesson: the selection of a phenotype is done at the level of the system, not of the component (gene expression puzzle)

Application of systems-theory

- Born: 1960s
- Technologies: quantitative measurements, modelling
- People's background: biochemists, engineers
- Key lesson: the properties at a certain level are emerging from the dynamic interaction of components at a lower level

Nobel Symposium on Systems Biology (June 2009)

Jens Nielsen

Johan Elf

networks

Leroy Hood

Marc Vidal

Mike Snyder

Marc Kirschner

Charlie Boone

Ruedi Aebersold

Terence Hwa

Erin O'Shea

Jussi taipale

models

Eric Davidson

Stanislas Leibler Michel Savageau

Lucy Shapiro Roger Brent Hans Westerhoff

Luis Serrano Uwe Sauer Francois Nedelec

Naama Barkai Jorg Stelling Jim Ferrell

33.g 3.a....

Edda Klipp Boris Kholodenko

Bela Novak

Hiroaki Kitano

Stefan Hohmann

Bernard Palsson
Harley McAdams

Nicolas Le Novère William Bialek

Mans Ehrenberg

Nobel Symposium on Systems Biology (June 2009)

Jens Nielsen

Bernard Palsson

Nicolas Le Novère

Johan Elf

networks

Leroy Hood

Marc Vidal

Mike Snyder

Marc Kirschner

Charlie Boone

Ruedi Aebersold

Terence Hwa

Erin O'Shea

Jussi taipale

Avid Regev

Jeff Hasty

Michael Elowitz

Yoshihide Hayashizaki

Richard Young

models

Eric Davidson

Stanislas Leibler Michel Savageau

Lucy Shapiro Roger Brent Hans Westerhoff

Luis Serrano Uwe Sauer Francois Nedelec

Naama Barkai Jim Ferrell

Jorg Stelling

Edda Klipp Boris Kholodenko

Bela Novak

Hiroaki Kitano

Stefan Hohmann

Harley McAdams

William Bialek

Mans Ehrenberg

synthetic biology cell reprogramming

What happened to biology at the end of XXth century?

RESEARCH ARTICLE

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Daniel G. Gibson,¹ John I. Glass,¹ Carole Lartigue,¹ Vladimir N. Noskov,¹ Ray-Yuan Chuang,¹ Mikkel A. Algire,¹ Gwynedd A. Benders,² Michael G. Montague,¹ Li Ma,¹ Monzia M. Moodie,¹ Chuck Merryman,¹ Sanjay Vashee,¹ Radha Krishnakumar,¹ Nacyra Assad-Garcia,¹ Cynthia Andrews-Pfannkoch,¹ Evgeniya A. Denisova,¹ Lei Young,¹ Zhi-Qing Qi,¹ Thomas H. Segall-Shapiro,¹ Christopher H. Calvey,¹ Prashanth P. Parmar,¹ Clyde A. Hutchison III,² Hamilton O. Smith,² J. Craig Venter^{1,2*}

2 JULY 2010 VOL 329 SCIENCE www.sciencemag.org

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi1 and Shinya Yamanaka1,2,*

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

² CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

*Contact: yamanaka@frontier.kyoto-u.ac.jp DOI 10.1016/j.cell.2006.07.024

Cell 126, 663-676, August 25, 2006 @2006 Elsevier Inc. 663

EXTREME GENETIC ENGINEERING

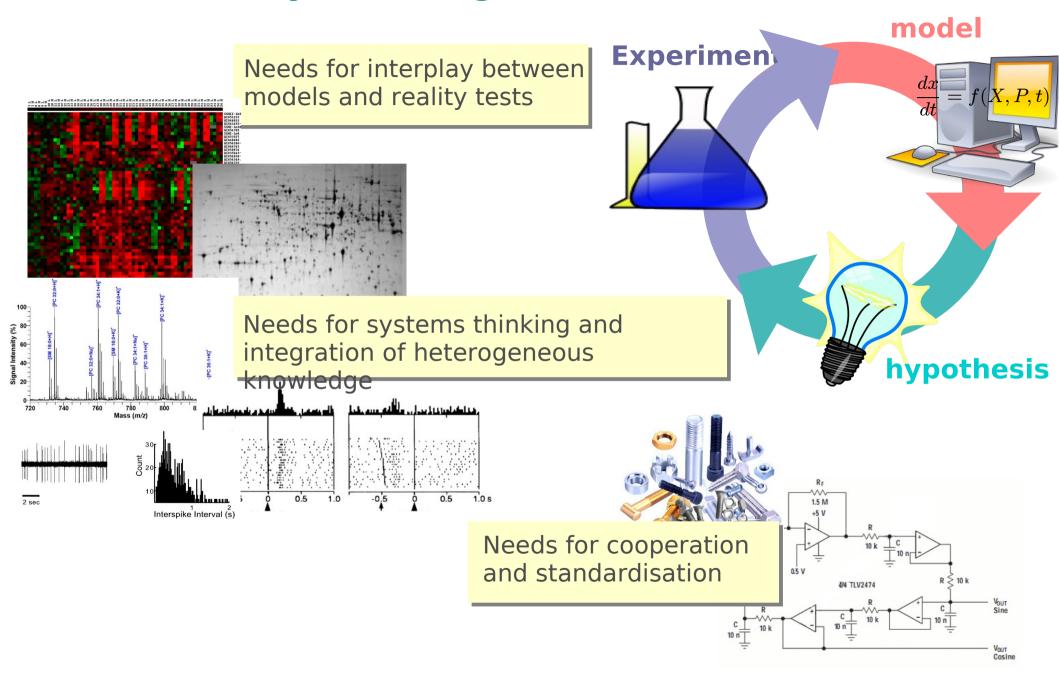
An Introduction to Synthetic Biology

lanuary 2007

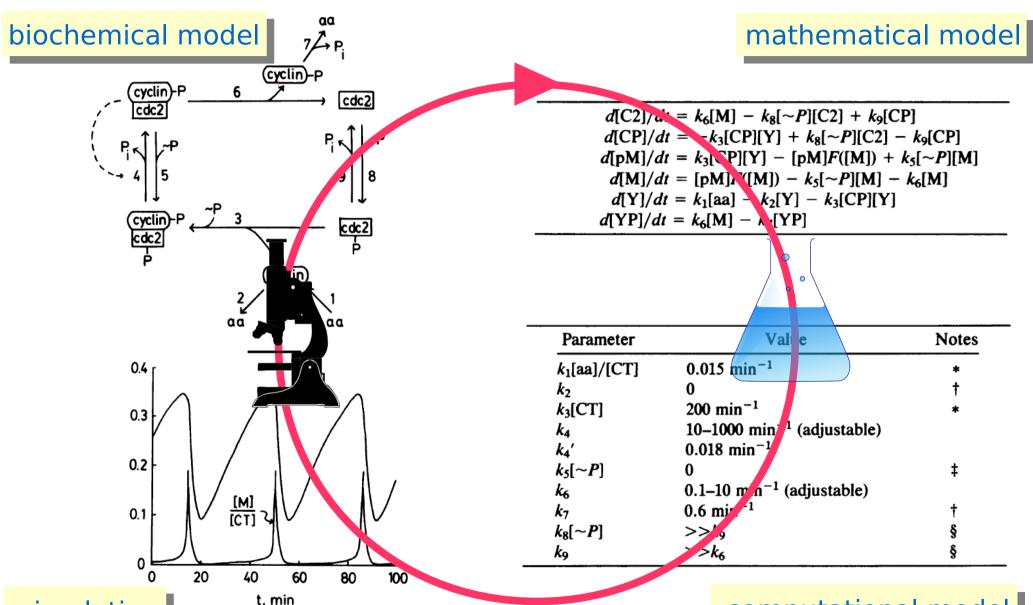
history

About

The International Genetically Engineered Machine competition (iGEM) is Biology competition. Student teams are given a kit of biological parts at the beginning Standard Biological Parts. Working at their own schools over the summer, they use the


A synthetic oscillatory network of transcriptional regulators

Michael B. Elowitz & Stanislas Leibler

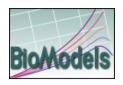

Departments of Molecular Biology and Physics, Princeton University, Princeton, New Jersev 08544, USA

NATURE VOL 403 20 JANUARY 2000 www.nature.com

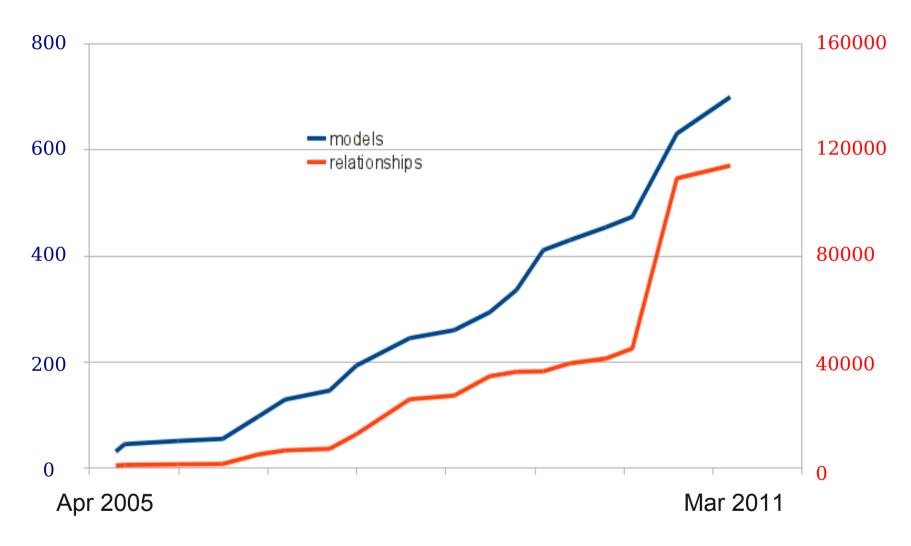
New way of doing biomedical research

The models I am talking about

simulation


Tyson et al (1991) PNAS 88(1):7328-32

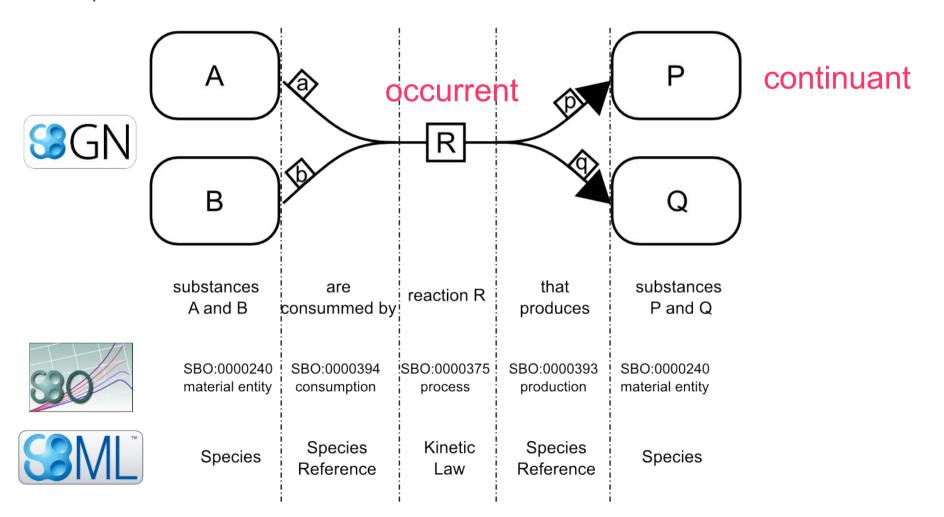
computational model

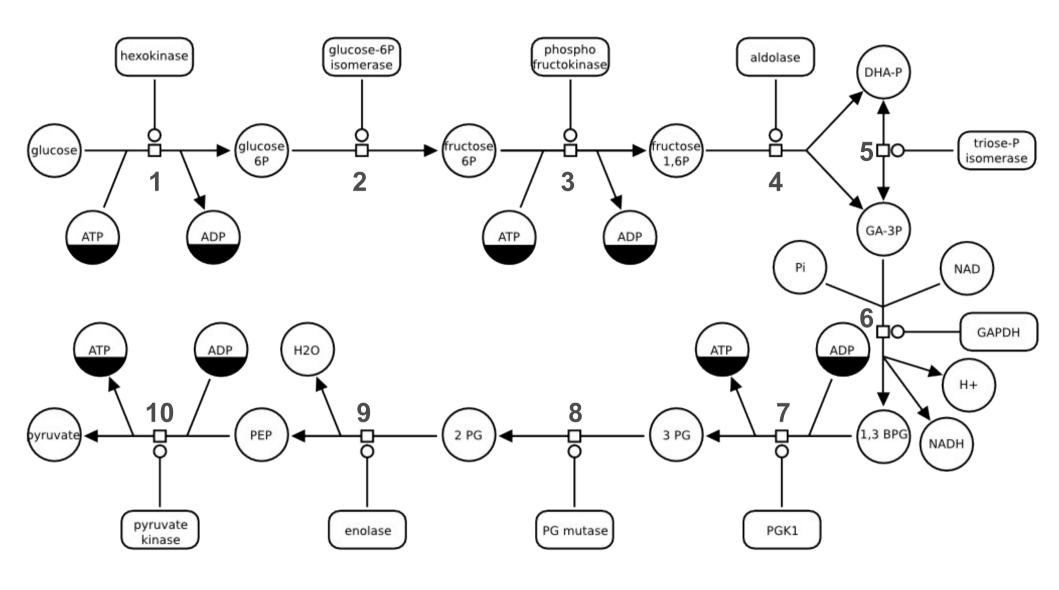

Computational modelling left the niches

- Metabolic networks Fung et al. A synthetic gene-metabolic oscillator. Nature 2005; Herrgård et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008
- Signalling pathways Bray et al. Receptor clustering as a cellular mechanism to control sensitivity.

 Nature 1998; Bhalla ad Iyengar. Emergent properties of signaling pathways. Science 1998; Schoeberl et al. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 2002; Hoffmann et. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 2002; Smith et al. Systems analysis of Ran transport. Science 2002; Bhalla et al. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 2002; Nelson et al. Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression. Science 2004; Werner et al. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 2005; Sasagawa et al. Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 2005; Basak et al. A fourth IkappaB protein within the NF-κB signaling module. Cell 2007; McLean et al. Cross-talk and decision making in MAP kinase pathways. Nat Genet 2007; Ashall et al. Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription. Science 2009; Becker et al. Covering a broad dynamic range: information processing at the erythropoietin receptor. Science 2010
- Gene regulatory networks McAdams and Shapiro. Circuit simulation of genetic networks. Science 1995; Yue et al. Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science 1998; Von Dassow et al. The segment polarity network is a robust developmental module. Nature 2000; Elowitz and Leibler. A synthetic oscillatory network of transcriptional regulators. Nature 2000; Shen-Orr et al, Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002; Yao et al. A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 2008; Friedland. Synthetic gene networks that count. Science 2009
- Pharmacometrics models Labrijn et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. *Nat Biotechnol* 2009
- Physiological models Noble. Modeling the heart from genes to cells to the whole organ. Science 2002; Izhikevich and Edelman. Large-scale model of mammalian thalamocortical systems. PNAS 2008
- Infectious diseases Perelson et al. HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. *Science* 1996; Nowak. Population dynamics of immune responses to persistent viruses. *Science* 1996; Neumann et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferonal phatherapy. *Science* 1998

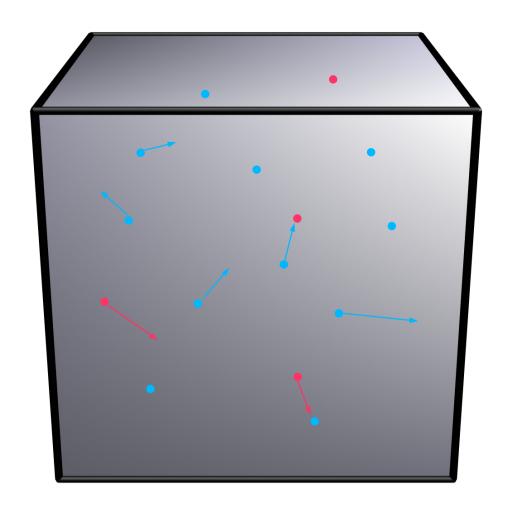
Computational models on the rise

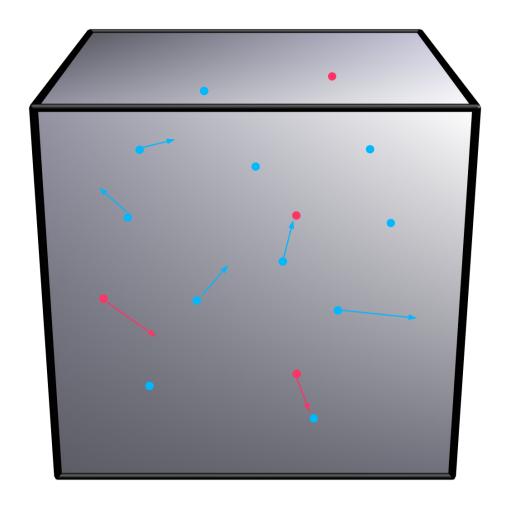



Growth of BioModels Database since its creation

Modelling chemical kinetics

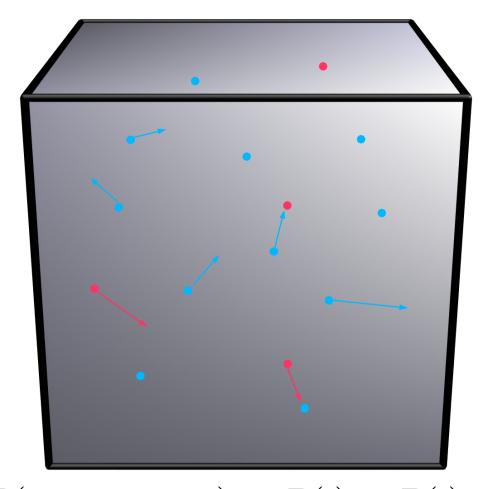
Systems Biology models ≠ ODE models


- Reconstruction of state variable evolution from process description:
 - Processes can be combined in ODEs (for deterministic simulations);
 transformed in propensities (for stochastic simulations)
 - Systems can be reconfigured quickly by adding or removing a process



ATP is consumed by processes 1 and 3, and produced by processes 7 and 10

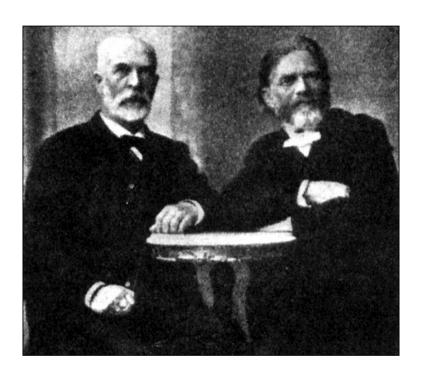
Statistical physics and chemical reaction

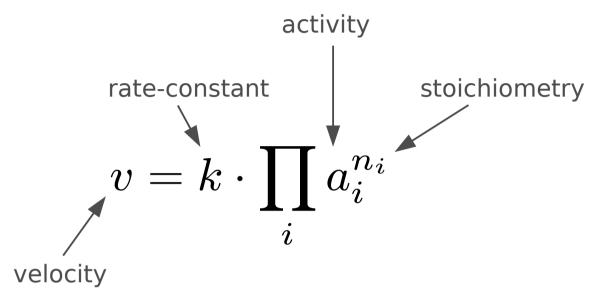

Statistical physics and chemical reaction

Probability to find an object in a container within an interval of time

$$P(\bullet) \propto \frac{n(\bullet)}{V} = [\bullet]$$

Statistical physics and chemical reaction

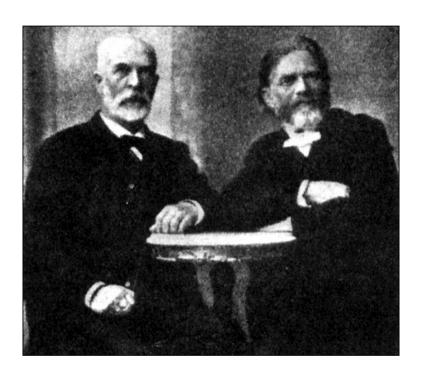

Probability to find an object in a container within an interval of time

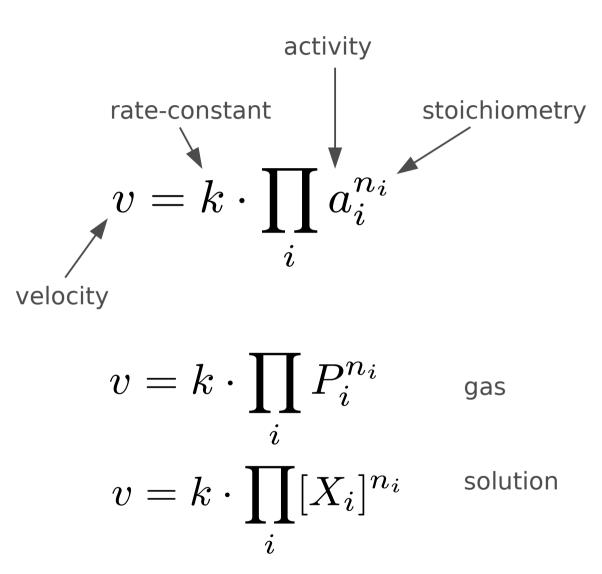

$$P(ullet) \propto rac{n(ullet)}{V} = [ullet]$$

$$P(\text{reaction} \cdot + \bullet) = P(\bullet) \times P(\bullet) \times P(\bullet \text{ reacts with } \bullet)$$

 $P(\text{reaction} \cdot \bullet) = P(\bullet) \times P(\bullet \text{ reacts})$
 $P(\text{reaction} \cdot + \bullet) = P(\bullet) \times P(\bullet) \times P(\bullet \text{ reacts with } \bullet)$

Law of Mass Action


Waage and Guldberg (1864)



Law of Mass Action

Waage and Guldberg (1864)

Evolution of a reactant

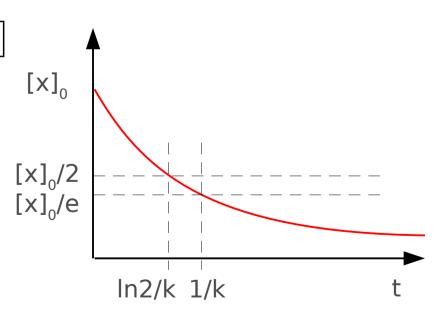
- Velocity multiplied by stoichiometry
- negative if consumption, positive if production
- lacktriangleright Example of a unimolecular reaction $x \stackrel{k}{
 ightarrow} y$

Evolution of a reactant

- Velocity multiplied by stoichiometry
- negative if consumption, positive if production
- lacktriangle Example of a unimolecular reaction $x \stackrel{k}{
 ightharpoonup} y$

$$\frac{d[x]}{dt} = -1 \cdot v = -1 \cdot k \cdot [x]$$

$$\frac{d[y]}{dt} = +1 \cdot v = +1 \cdot k \cdot [x]$$


Evolution of a reactant

- Velocity multiplied by stoichiometry
- negative if consumption, positive if production
- lacktriangleright Example of a unimolecular reaction $x \stackrel{k}{
 ightarrow} y$

$$\frac{d[x]}{dt} = -1 \cdot v = -1 \cdot k \cdot [x]$$

$$\frac{d[y]}{dt} = +1 \cdot v = +1 \cdot k \cdot [x]$$

$$x(t) = [x]_0 \cdot e^{-kt}$$

Reversible reaction

$$2x \stackrel{k1}{\rightleftharpoons} y$$
 is equivalent to $y
ightarrow 2x; v1 = k1 \cdot [x]^2$ $y
ightarrow 2x; v2 = k2 \cdot [y]$

Reversible reaction

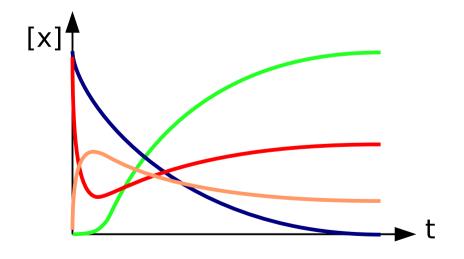
$$2x \stackrel{k1}{\rightleftharpoons} y$$
 is equivalent to $2x o y; v1 = k1 \cdot [x]^2$ $y o 2x; v2 = k2 \cdot [y]$

$$\frac{d[x]}{dt} = -2 \cdot v1 + 2 \cdot v2 = -2 \cdot k1 \cdot [x]^{2} + 2 \cdot k2 \cdot [y]$$

$$\frac{d[y]}{dt} = +1 \cdot v1 - 1 \cdot v2 = +1 \cdot k1 \cdot [x]^2 - 1 \cdot k2 \cdot [y]$$

Example of an enzymatic reaction

$$E+S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\Rightarrow} E+P$$

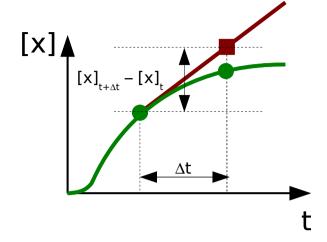

Example of an enzymatic reaction

$$E+S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\Rightarrow} E+P$$
 $d[S]/dt = -k_1[E][S] +k_2[ES]$
 $d[P]/dt = +k_3[ES]$
 $d[E]/dt = -k_1[E][S] +k_2[ES] +k_3[ES]$
 $d[ES]/dt = +k_1[E][S] -k_2[ES] -k_3[ES]$

Example of an enzymatic reaction

$$E+S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\Rightarrow} E+P$$

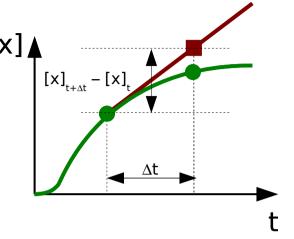
$$d[S]/dt = -k_1[E][S] + k_2[ES]$$
 $d[P]/dt = +k_3[ES]$
 $d[E]/dt = -k_1[E][S] + k_2[ES] + k_3[ES]$
 $d[ES]/dt = +k_1[E][S] - k_2[ES] - k_3[ES]$


Not feasible in general

Numerical integration

Numerical integration

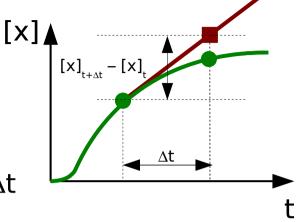
Euler method:


$$d[x]/dt \approx ([x]_{t+\Delta t} - [x]_{t}) / \Delta t$$
$$[x]_{t+\Delta t} \approx [x]_{t} + d[x]/dt . \Delta t$$

Numerical integration

Euler method:

$$\begin{split} d[x]/dt &\approx ([x]_{t+\Delta t} - [x]_{t}) / \Delta t \\ [x]_{t+\Delta t} &\approx [x]_{t} + d[x]/dt . \Delta t \\ [P]_{t+\Delta t} &= [P]_{t} + k_{3}[ES]_{t} . \Delta t \\ [E]_{t+\Delta t} &= [E]_{t} + ((k_{2} + k_{3})[ES]_{t} - k_{1}[E]_{t}[S]_{t}) . \Delta t \\ [S]_{t+\Delta t} &= [S]_{t} + (k_{2}[ES]_{t} - k_{1}[E]_{t}[S]_{t}) . \Delta t \\ [ES]_{t+\Delta t} &= [S]_{t} + (k_{1}[E]_{t}[S]_{t} - (k_{2} + k_{3})[ES]_{t}) . \Delta t \end{split}$$


Numerical integration

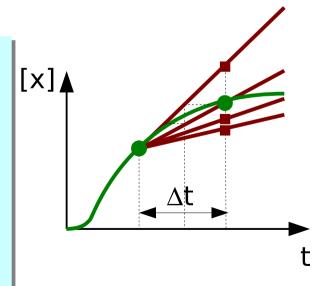
Euler method:

$$d[x]/dt \approx ([x]_{t+\Delta t} - [x]_t) / \Delta t$$

$$[x]_{t+\Delta t} \approx [x]_t + d[x]/dt . \Delta t$$

$$\begin{split} \left[P\right]_{t+\Delta t} &= \left[P\right]_{t} + k_{3} \left[ES\right]_{t} . \ \Delta t \\ \left[E\right]_{t+\Delta t} &= \left[E\right]_{t} + ((k_{2} + k_{3}) \left[ES\right]_{t} - k_{1} \left[E\right]_{t} \left[S\right]_{t}) . \ \Delta t \\ \left[S\right]_{t+\Delta t} &= \left[S\right]_{t} + (k_{2} \left[ES\right]_{t} - k_{1} \left[E\right]_{t} \left[S\right]_{t}) . \ \Delta t \\ \left[ES\right]_{t+\Delta t} &= \left[S\right]_{t} + (k_{1} \left[E\right]_{t} \left[S\right]_{t} - (k_{2} + k_{3}) \left[ES\right]_{t}) . \ \Delta t \end{split}$$

4th order Runge-Kutta:


$$[x]_{t+\Delta t} = [x]_t + (F_1 + 2F_2 + 2F_3 + F_4)/6 . \Delta t$$

with
$$F_1 = d[x]/dt = f([x], t)$$

$$F_{2} = f([x]_{t} + \Delta t/2 \cdot F_{1}, t + \Delta t/2)$$

$$F_3 = f([x]_t + \Delta t/2 \cdot F_2, t + \Delta t/2)$$

$$F_4 = f([x]_t + \Delta t \cdot F_3, t + \Delta t)$$

E+S
$$\stackrel{\text{kds}}{\longleftarrow}$$
 ES $\stackrel{\text{kcat}}{\longleftarrow}$ EP $\stackrel{\text{kap}}{\longleftarrow}$ E+P $\stackrel{\text{d[P]}}{\longrightarrow}$ = kdp[EP] - kap[E][P]

E+S
$$kds$$
 ES $kcat$ EP kap E+P $d[P]$ = $kdp[EP] - kap[E][P]$

E+S kds ES $kcat$ EP kap E+P kap Catalysis irreversible

E+S
$$\frac{kds}{kas}$$
 ES $\frac{kcat}{kcat'}$ EP $\frac{kap}{kdp}$ E+P $\frac{d[P]}{dt} = kdp[EP] - kap[E][P]$

E+S
$$\stackrel{\text{kds}}{\longleftarrow}$$
 ES $\stackrel{\text{kcat}}{\longleftarrow}$ EP $\stackrel{\text{kap}}{\longleftarrow}$ E+P catalysis irreversible

product is consumed before rebinding

E+S
$$\stackrel{\text{kds}}{\longleftarrow}$$
 ES $\stackrel{\text{kcat}}{\longleftarrow}$ EP $\stackrel{\text{kap}}{\longleftarrow}$ E+P $\stackrel{\text{d[P]}}{\longrightarrow}$ = kdp[EP] - kap[E][P]

$$E+S \xrightarrow{kds} ES \xrightarrow{kcat} EP \xrightarrow{kap} E+P$$
 catalysis irreversible

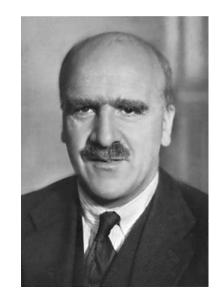
product is consumed before rebinding

$$S \xrightarrow{\mathsf{E}_{\blacktriangle}} \mathsf{P}$$
 steady-state

$$\frac{d[P]}{dt} = \frac{[E] \text{ kcat}}{Km}$$

$$1 + \frac{[S]}{[S]}$$

Enzyme kinetics


Victor Henri (1903) Lois Générales de l'Action des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die Kinetik der Invertinwirkung, Biochem. Z. 49:333-369

George Edward Briggs and John Burdon Sanderson Haldane (1925) A note on the kinetics of enzyme action, Biochem. J., 19: 338-339

Briggs-Haldane on Henri-Michaelis-Menten

$$E + S \underset{k_{-1}}{\overset{k^1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

$$[ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

$$[ES] = \frac{[E][S]}{K_m}$$

$$\frac{d[P]}{dt} = k_2[ES]$$

$$[E] = [E_0] - [ES]$$

$$[ES]\frac{K_m}{[S]} = [E_0] - [ES]$$

$$[ES](1 + \frac{K_m}{[S]}) = [E_0]$$

$$[ES] = [E_0] \frac{1}{1 + \frac{K_m}{[S]}}$$

$$\frac{d[P]}{dt} = k_2[E_0] \frac{[S]}{K_m + [S]} = V_{max} \frac{[S]}{K_m + [S]}$$

Briggs-Haldane on Henri-Michaelis-Menten

$$E + S \underset{k_{-1}}{\overset{k^1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

$$\frac{d[P]}{dt} = k_2[ES]$$

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

$$[E] = [E_0] - [ES]$$

steady-state!!! $[ES]\frac{K_m}{|S|} = [E_0] - [ES]$

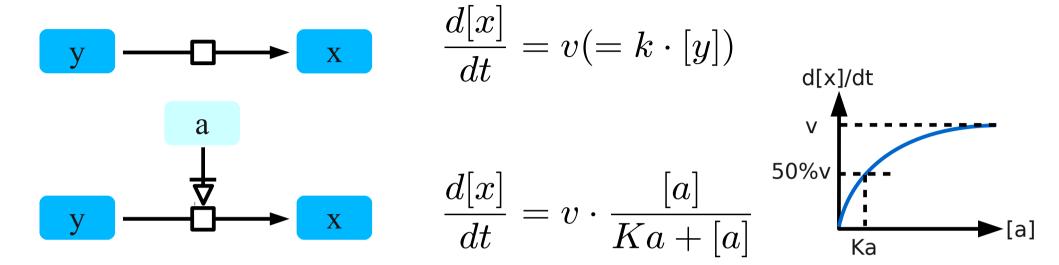
$$[ES]\frac{K_m}{[S]} = [E_0] - [ES]$$

$$[ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

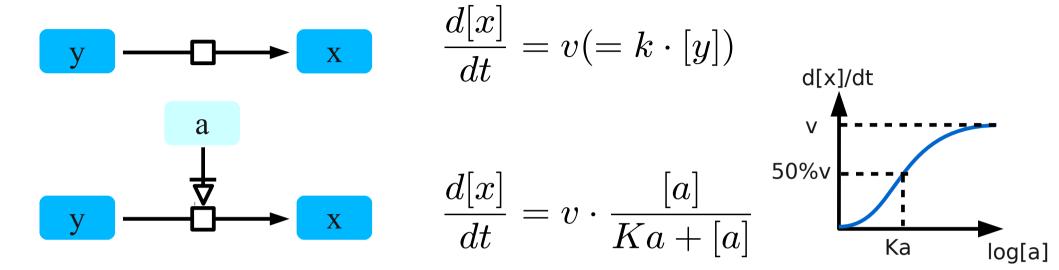
$$[ES](1 + \frac{K_m}{|S|}) = [E_0]$$

$$K_m = \frac{k_{-1} + k_2}{k_1}$$

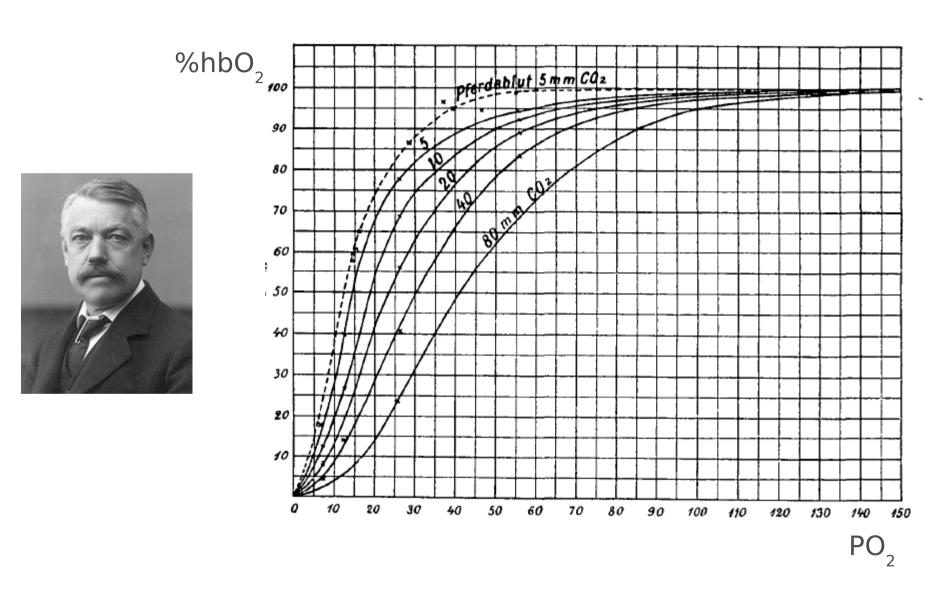
$$[ES] = [E_0] \frac{1}{1 + \frac{K_m}{[S]}}$$


$$[ES] = \frac{[E][S]}{K_m}$$

$$\frac{d[P]}{dt} = k_2[E_0] \frac{[S]}{K_m + [S]} = V_{max} \frac{[S]}{K_m + [S]}$$


Generalisation of modulation

y
$$\xrightarrow{\mathbf{x}}$$
 $\frac{d[x]}{dt} = v(=k \cdot [y])$


Generalisation: activators

Generalisation: activators

Origins of ultrasensitivity: Bohr

Bohr C (1903) Theoretische behandlung der quantitativen verhältnisse bei der sauerstoff aufnahme des hämoglobins *Zentralbl Physiol* 17: 682

The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. By A. V. Hill.

In a previous communication Barcroft and I gave evidence which seemed to us to prove conclusively that dialysed hæmoglobin consists simply of molecules containing each one atom of iron. The molecular weight is therefore Hb = 16,660. These experiments have not been published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hüfner and Gansser) working on different solutions have obtained divergent results. The method used by all of them was the direct estimation of the osmotic pressure, by means of a membrane permeable to salts, but not to hæmoglobin. The method involves a relatively large error, because the quantity measured is small. It is doubtful however whether this can explain the discordant results.

Our work led me to believe that the divergence between the results of different observers was due to an aggregation of the hæmoglobin molecules by the salts present in the solution, a consequent lowering of the number of molecules, and an increase in the average molecular weight as observed by the osmotic pressure method. To test this hypothesis I have applied it to several of the dissociation curves obtained by Barcroft and Camis with hæmoglobin in solutions of various salts, and with hæmoglobin prepared by Bohr's method.

The equation for the reaction would be

$$Hb + O_2 \rightleftharpoons HbO_2$$
,
 $Hb_n + nO_2 \rightleftharpoons Hb_nO_{2n}$,

where Hb_n represents the aggregate of n molecules of Hb . I have supposed that in every solution there are many different sized aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb₂ the dissociation curve would be

$$y = \lambda \frac{K'x^2}{1 + K'x^2} + (100 - \lambda) \frac{Kx}{1 + Kx}$$
(A),

where $\lambda^{0}/_{0}$ is as Hb₂, $(100 - \lambda)^{0}/_{0}$ as Hb, K' is the equilibrium constant of the reaction Hb₂ + 2O₂ \Longrightarrow Hb₂O₄ and K that of Hb + O₂ \Longrightarrow HbO₂: K has the value 125 (Barcroft and Roberts).

Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. *J Physiol* 40: iv-vii.

The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. By A. V. Hill.

In a previous communication Barcroft and I gave ev seemed to us to prove conclusively that dialysed hæmogl simply of molecules containing each one atom of iron. I published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hüfner and Gansser different solutions have obtained divergent results. The by all of them was the direct estimation of the osmotic means of a membrane permeable to salts, but not to hæmo method involves a relatively large error, because the quant would satisfy the observations. is small. It is doubtful however whether this can expian cordant results.

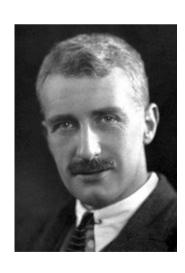
Our work led me to believe that the divergence between the results of different observers was due to an aggregation of the hæmoglobin molecules by the salts present in the solution, a consequent lowering of the number of molecules, and an increase in the average molecular weight as observed by the osmotic pressure method. To test this hypothesis I have applied it to several of the dissociation curves obtained by Barcroft and Camis with hæmoglobin in solutions of various salts, and with hæmoglobin prepared by Bohr's method.

The equation for the reaction would be

$$Hb + O_2 \rightleftharpoons HbO_2$$
,
 $Hb_n + nO_2 \rightleftharpoons Hb_nO_{2n}$,

where Hb_n represents the aggregate of n molecules of Hb. I have supposed that in every solution there are many different sized aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb₂ the dissociation curve would be


$$y = \lambda \frac{K'x^2}{1 + K'x^2} + (100 - \lambda) \frac{Kx}{1 + Kx}$$
(A),

where $\lambda^{0}/_{0}$ is as Hb₂, $(100 - \lambda)^{0}/_{0}$ as Hb, K' is the equilibrium constant of the reaction $Hb_2 + 2O_2 \rightleftharpoons Hb_2O_4$ and K that of $Hb + O_2 \rightleftharpoons HbO_2$: K has the value 125 (Barcroft and Roberts).

Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. I Physiol 40: iv-vii.

Now it is unlikely that in either of these cases there is only Hb and Hb2: and as the calculation of the constants in these weight is therefore Hb = 16,660. These experiments h equations is very tedious I decided to try whether the equation

$$y = 100 \frac{Kx^n}{1 + Kx^n}$$
(B)

The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. By A. V. Hill.

In a previous communication Barcroft and I gave ev seemed to us to prove conclusively that dialysed hæmogl simply of molecules containing each one atom of iron. I published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hüfner and Gansser different solutions have obtained divergent results. The by all of them was the direct estimation of the osmotic means of a membrane permeable to salts, but not to hæmo method involves a relatively large error, because the quant would satisfy the observations. is small. It is doubtful however whether this can expi cordant results.

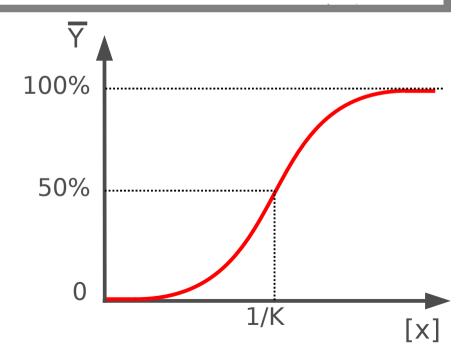
Our work led me to believe that the divergence between the results of different observers was due to an aggregation of the hæmoglobin molecules by the salts present in the solution, a consequent lowering of the number of molecules, and an increase in the average molecular weight as observed by the osmotic pressure method. To test this hypothesis I have applied it to several of the dissociation curves obtained by Barcroft and Camis with hæmoglobin in solutions of various salts, and with hæmoglobin prepared by Bohr's method.

The equation for the reaction would be

$$Hb + O_2 \rightleftharpoons HbO_2$$
,
 $Hb_n + nO_2 \rightleftharpoons Hb_nO_{2n}$,

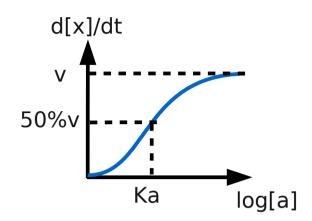
where Hb_n represents the aggregate of n molecules of Hb. I have supposed that in every solution there are many different sized aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb₂ the dissociation curve would be


$$y = \lambda \frac{K'x^2}{1 + K'x^2} + (100 - \lambda) \frac{Kx}{1 + Kx}$$
(A),

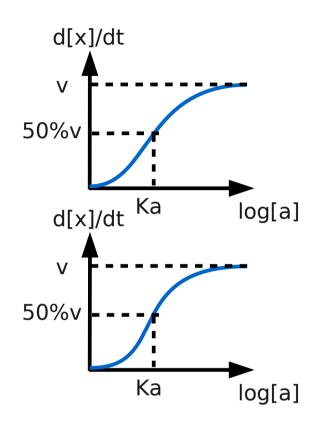
where $\lambda^{0}/_{0}$ is as Hb₂, $(100 - \lambda)^{0}/_{0}$ as Hb, K' is the equilibrium constant of the reaction $Hb_2 + 2O_2 \rightleftharpoons Hb_2O_4$ and K that of $Hb + O_2 \rightleftharpoons HbO_2$: K has the value 125 (Barcroft and Roberts).

Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. I Physiol 40: iv-vii.


Now it is unlikely that in either of these cases there is only Hb and Hb₂: and as the calculation of the constants in these weight is therefore Hb = 16,660. These experiments h equations is very tedious I decided to try whether the equation

$$y = 100 \frac{Kx^n}{1 + Kx^n}$$
(B)

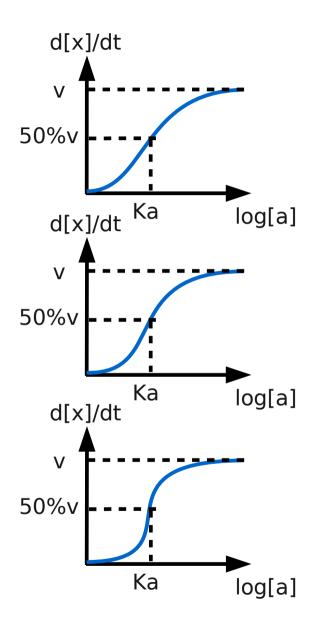
Phenomenological ultrasensitivity


$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

Phenomenological ultrasensitivity

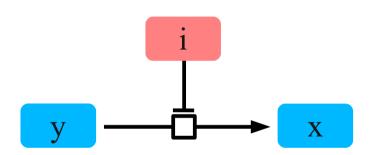
$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

$$\frac{d[x]}{dt} = v \cdot \frac{[a]^2}{Ka^2 + [a]^2}$$



Phenomenological ultrasensitivity

$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

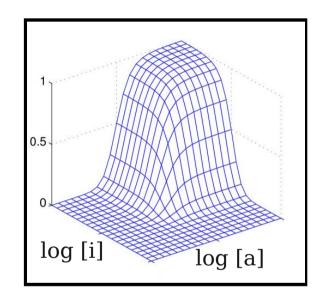

$$\frac{d[x]}{dt} = v \cdot \frac{[a]^2}{Ka^2 + [a]^2}$$

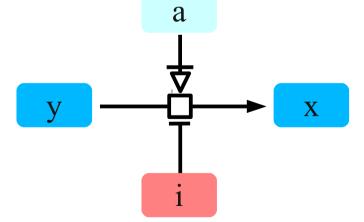
$$\frac{d[x]}{dt} = v \cdot \frac{[a]^n}{Ka^n + [a]^n}$$

Generalisation: inhibitors

$$\frac{d[x]}{dt} = v(=k \cdot [y])$$

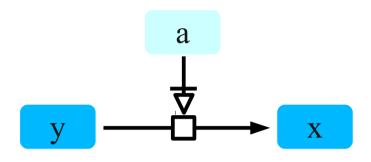
$$\frac{d[x]}{dt} = v \cdot \frac{Ki^m}{Ki^m + [i]^m} \text{ 50\%v}$$

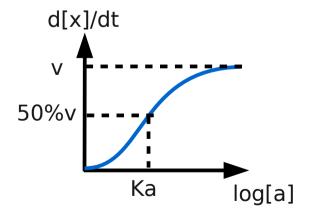

d[x]/dt


Ki

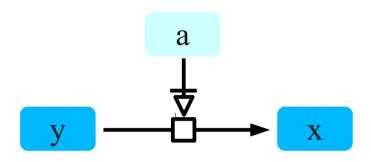
log[i]

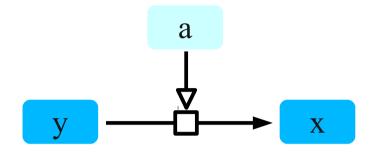
Generalisation: activators and inhibitors


$$\frac{d[x]}{dt} = v(=k \cdot [y])$$

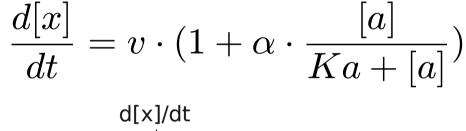


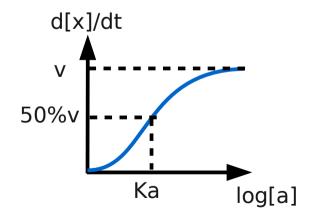
$$\frac{d[x]}{dt} = v \cdot \frac{[a]^n}{Ka^n + [a]^n} \cdot \frac{Ki^m}{Ki^m + [i]^m}$$

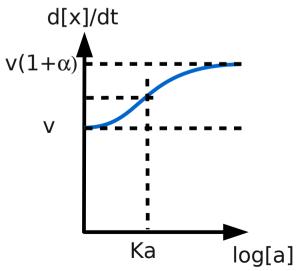

absolute Vs relative activators

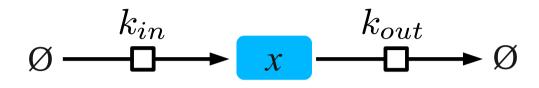


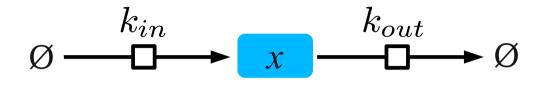
$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

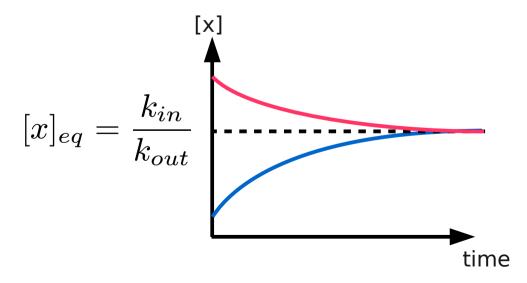


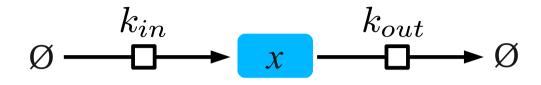

absolute Vs relative activators



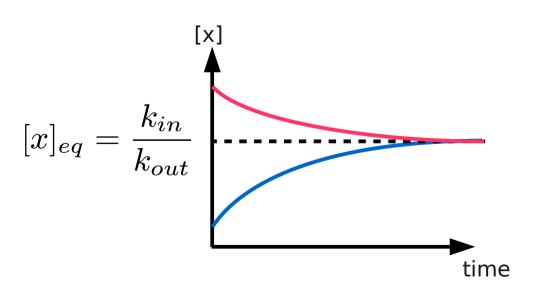

$$\frac{d[x]}{dt} = v \cdot \frac{[a]}{Ka + [a]}$$

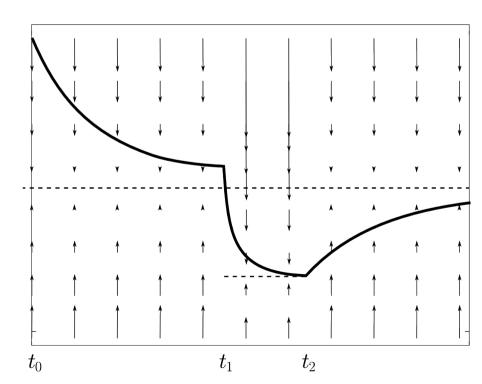


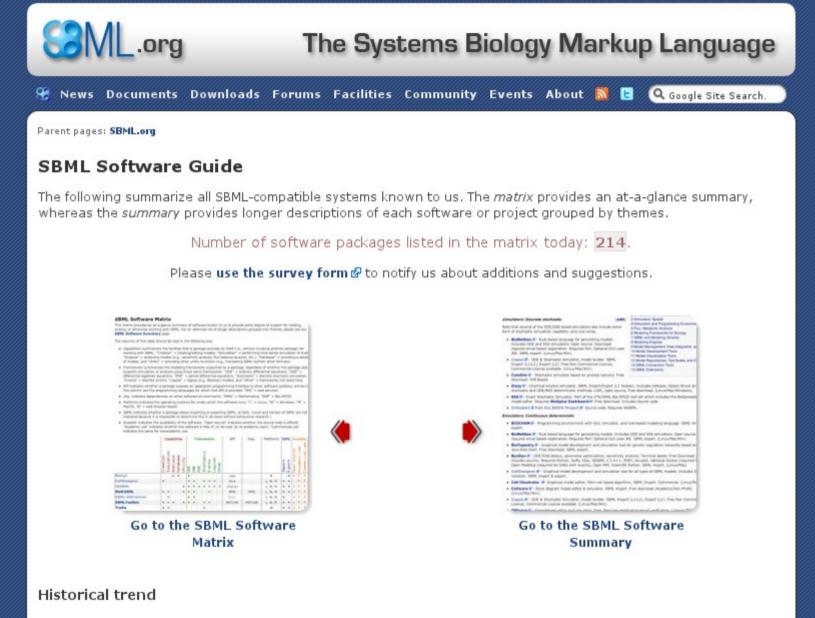




$$\frac{d[x]}{dt} = k_{in} - k_{out} \cdot [x]$$




$$\frac{d[x]}{dt} = k_{in} - k_{out} \cdot [x]$$



$$\frac{d[x]}{dt} = k_{in} - k_{out} \cdot [x]$$

Many many software exist

The following graph shows the total number of known SPML compatible software naskages each year as counted by

Your turn!

