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Systems Biology models ODE models

 → Reconstruction of state variable evolution 
      from process descriptions:

 Processes can be combined in ODEs (for deterministic simulations); 
transformed in propensities (for stochastic simulations)

 Systems can be reconfigured quickly by adding or removing a process
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ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
(for 1 reactions 1 and 3, there are 2 reactions 7 and 10)
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Statistical physics and chemical reaction
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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P (reaction + ) = P ( )£ P ( )£ P ( reacts with )
P (reaction + ) = P ( )£ P ( )£ P ( reacts with )

P (reaction ) = P ( )£ P ( reacts)

Statistical physics and chemical reaction
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Law of Mass Action

Waage and Guldberg (1864)
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Law of Mass Action

Waage and Guldberg (1864)
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Evolution of a reactant

 Velocity multiplied by stoichiometry

 negative if consumption, positive if production

 Example of a unimolecular reaction 

 
       



Bioinformatics for the neuroscientist, 28 September 2015

 11

Evolution of a reactant

 Velocity multiplied by stoichiometry

 negative if consumption, positive if production

 Example of a unimolecular reaction 

 
       

d[x]

dt
= ¡1 ¢ v = ¡1 ¢ k ¢ [x]

d[y]

dt
= +1 ¢ v = +1 ¢ k ¢ [x]
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Evolution of a reactant

 Velocity multiplied by stoichiometry

 negative if consumption, positive if production

 Example of a unimolecular reaction 

 
       [x]0

[x]0/e

t1/k

d[x]

dt
= ¡1 ¢ v = ¡1 ¢ k ¢ [x]

d[y]

dt
= +1 ¢ v = +1 ¢ k ¢ [x]

ln2/k

[x]0/2
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Reversible reaction

                  is equivalent to   

      

2x! y; v1 = k1 ¢ [x]2

y ! 2x; v2 = k2 ¢ [y]
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Reversible reaction

                  is equivalent to   

      

2x! y; v1 = k1 ¢ [x]2

y ! 2x; v2 = k2 ¢ [y]

d[x]

dt
= ¡2 ¢ v1+2 ¢ v2 = ¡2 ¢ k1 ¢ [x]2+2 ¢ k2 ¢ [y]

d[y]

dt
= +1 ¢ v1¡1 ¢ v2 = +1 ¢ k1 ¢ [x]2¡1 ¢ k2 ¢ [y]
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Conformational equilibrium
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Binding equilibrium



Bioinformatics for the neuroscientist, 28 September 2015

 17

How does a ligand activate its target? 
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How does a ligand activate its target? 
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How does a ligand activate its target? 

hint: K
1
>1
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Add energies

Multiply constants

+1 quantum energy  = constant divided by 10

Explore constants exponentially:

Parameter space
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Example of an enzymatic reaction
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Example of an enzymatic reaction
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t

[x]

Not feasible in general

                   Numerical integration

Example of an enzymatic reaction
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Euler method:

Numerical integration
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Euler method:

Numerical integration
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Euler method:

Numerical integration
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 4th order Runge-Kutta:

    
with 
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Choose the right formalism
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Choose the right formalism

 irreversible catalysis
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding
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Choose the right formalism

 irreversible catalysis

product escapes before rebinding

quasi-steady-state
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Enzyme kinetics

Victor Henri (1903) Lois Générales de l'Action 
des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die 
Kinetik der Invertinwirkung, Biochem. Z. 49:333-
369

George Edward Briggs and John Burdon 
Sanderson Haldane (1925) A note on the 
kinetics of enzyme action, Biochem. J., 19: 338-
339
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Briggs-Haldane on Henri-Michaelis-Menten

[E]=[E
0
]-[ES]
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Briggs-Haldane on Henri-Michaelis-Menten

[E]=[E
0
]-[ES]

steady-state!!!
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Generalisation: activators

x y
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Generalisation: activators
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Generalisation: activators

d[y]/dt
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Phenomenological ultrasensitivity
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Origins of cooperativity: Hill

Hill (1910) J Physiol 40: iv-vii.
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Origins of cooperativity: Hill

Hill (1910) J Physiol 40: iv-vii.
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Generalisation: inhibitors

d[y]/dt

log[i]

v

50%v

Ki

x y

i

x y



Bioinformatics for the neuroscientist, 28 September 2015

 41

Generalisation: activators and inhibitors

log [a]log [i]
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absolute Vs relative activators

d[x]/dt
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absolute Vs relative activators
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?

Ø Øx
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?
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Homeostasis
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?
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Homeostasis

How can-we maintain 
a stable level with a 
dynamic system?
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Questions?


