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Systems Biology models # ODE models

— Reconstruction of state variable evolution
from process descriptions:

m  Processes can be combined in ODEs (for deterministic simulations);
transformed in propensities (for stochastic simulations)

m  Systems can be reconfigured quickly by adding or removing a process

substances are reaction R that substances
Aand B consumed produces P andQ

by
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Chemical kinetics and fluxes
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ATP is consumed by processes 1 and 3, and produced by processes 7 and 10
(for 1 reactions 1 and 3, there are 2 reactions 7 and 10)
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Statistical physics and chemical reaction
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time
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Statistical physics and chemical reaction

Probability to find an
object in a container
within an interval of time

P(reaction <) = P(s) x P(-reacts)
P(reaction «+¢) = P(¢) X P(s) x P(-reacts with *)
P(reaction«+-) = P(+) X P(+) x P(-reacts with )
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Law of Mass Action

Waage and Guldberg (1864)
activity
rate-constant l stoichiometry

R

v:k-Hai”i
Va i

velocity
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Law of Mass Action

Waage and Guldberg (1864)
activity
rate-constant l stoichiometry

R

v:k-Hain?‘
/ i

velocity
v==Fk- Hpini gas
1
v=%k- H [XZ]"% solution
1
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Evolution of a reactant

m  Velocity multiplied by stoichiometry
m negative if consumption, positive if production

. . k
= Example of a unimolecular reaction r — y
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Evolution of a reactant

m  Velocity multiplied by stoichiometry
m negative if consumption, positive if production

. . k
= Example of a unimolecular reaction r — y

d|x]
— =—1-v=-1-k-|x]
d[y]
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Evolution of a reactant

m  Velocity multiplied by stoichiometry
m negative if consumption, positive if production

. . k
= Example of a unimolecular reaction r — y
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Reversible reaction

5 1 2¢ — y;vl = k1 - [x]°
T =1 isequivalentto
2 ) y — 2x;02 = k2 - |y
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Reversible reaction

. 2x — y;vl = k1 - [x]?
2r =Y s equivalent to
k2 y — 2x;02 = k2 - [y]
d
% — 2. p142-02 = —2-k1-[2]242- k2 - [y]
d
% =+1-vl-1-v2=+1-kl-[z]°~1-k2-[y]
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Conformational equilibrium
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K<1 > | AG>0
Shift towards 'C
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Binding equilibrium
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How does a ligand activate its target?
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How does a ligand activate its target?

A

AG =-RTIn K1II/

- - ]

AG,=-RTInK|




How does a ligand activate its target?

AG1 =-RT In K1 II —/ b ]

J

o K T AG, = -RT In K4|
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AG1 + AGy = AGy + AGs
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Add energies
Multiply constants
+1 quantum energy = constant divided by 10

Explore constants exponentially:

23 -46 -69 92 -115 -13.8 -16.1
O O O O O O O

0.1 0.3 0.50.7---
02 040.6
[] ] B I [ [] ]

10"  10* 10° 10* 10° 10° 107

Parameter space
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Example of an enzymatic reaction

k
E+S§ES§E+P
2
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Example of an enzymatic reaction

E+S%ES§E+P
dE)/dt = —k[E|[S] +ka[FS] +hks[FS]
d[S]/dt = —ki[E][S] +ko[F5
dES)/dt = +ki[E|[S] —ka[ES] —ks[ES]
diPljdt = s [FS]
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Example of an enzymatic reaction

E+S%ES§E+P
diE)/dt = —k[E|[S] +koFS
d[S]/dt = —ki[E][S] ko[PS
dES)/dt = +ky[E|[S] —kaES
Pl jdt =

[X]
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—ks3[ 5]
e[ F6]

Not feasible in general
* =———pp- Numerical integration




Numerical integration

Euler method:
dlz]/dt ~ (|z]irar — [2]¢) /At
(x)ionr = |x]p + d|x]/dt - At
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Numerical integration

Euler method:
dlz]/dt ~ (|z]irar — [2]¢) /At
(x)ionr = |x]p + d|x]/dt - At

4 ) E— '
[X]t+At - ¢ !

>
Elivae = [Ele  + ((ka +k3)[ 5] — k1 |[E]¢]S]e) At t
[Slevne =[Sy + (k2| 2 5]e — k1| ETe]S]t) JAY;
STerae = BS54+ (ka[ETelS]e — (k2 + k3)[25])  -At

[Plivar = [Pl + ks /5] At
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Numerical integration

Euler method:
dlz]/dt ~ (|z]irar — [2]¢) /At
(x)ionr = |x]p + d|x]/dt - At

>
Elivae = [Ele  + ((ka +k3)[ 5] — k1 |[E]¢]S]e) At t
Slevar =[Sl + (ko[ 25 — k1| E]e[S]) JAY;
S Terae = [ESTe 4+ (ka[ELelS]e — (k2 + k3)[F5])  -At
Plivar = |[Ply + ks[/25] At

4% order Runge-Kutta:
Tligae = |x]y + (F1 + 2F5 + 2F3 + Fy) /6 - At

with  Fy = dlz]/dt = f(|z]¢, 1) [X] A
Fy = f([z]; + At/2- Fy, t + At/2)
Fy, = f([CC]t + At - F3,t+ At)
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Choose the right formalism

kas kcats kdp
FE+S—FEFS——FEFP——FE+P
kds kcatp kap
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Choose the right formalism

kas kcats k p d P

Bis e pg fees pp Fes pp AP Pk [P
kds kcatp kap

E+ S Mé ES Feats s pp bé E+P irreversible catalysis
kds ka,p
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Choose the right formalism

d[P]

kas kcats kdp
F+S—FEFS——FP—=—F+P i

kds kcatp kap

= kap[EP) — kap [ EI[P)

E+S— Kas ES —=catsy Feats EP — Ldp E+ P irreversible catalysis

kds ka,p
E+ S = Fas ES —<atsy Keats E+ P product escapes before rebinding
kds
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Choose the right formalism

d|P]

kas kcats kdp
F4+S—FES—FEFP—F+P T

kds kcatp kap

= kap| EP] = Kap|E][P]

E+ 58— Fas E S =catsy Keats EP N E+ P irreversible catalysis

kds ka,p
F+ 5= Fas | S —cats Feats E+ P product escapes before rebinding
kds
g Feats Kcats p quasi-steady-state
d[P] 5]

W — [E]kcat Km i [S]
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Enzyme Kkinetics

Victor Henri (1903) Lois Générales de I'Action
des Diastases. Paris, Hermann.

Leonor Michaelis, Maud Menten (1913). Die
Kinetik der Invertinwirkung, Biochem. Z. 49:333-
369

George Edward Briggs and John Burdon
Sanderson Haldane (1925) A note on the
kinetics of enzyme action, Biochem. J., 19: 338-
339
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Briggs-Haldane on Henri-Michaelis-Menten

E+S 2 EsBELp 5 = klES]

k_1

[E]=[E_]-[ES]

A28 hlBlS) ~ k(B8] - kES] =0
|ES) %"* — [E] - [ES]
5 [E)[S]
[ES] = ,
s ESI+ 72 = [E
K, = = ;_ k2 1
. £5)= Bl
[E)S]
[ES] = == d[P] S ., 5]
Ko dt k?[E”]fer[S] mer e+ [9]
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Briggs-Haldane on Henri-Michaelis-Menten

F+S2 ps®Bpip Pl _ kies

k_1

[E=IE, -[ES)
A5 _ hiEns) - ke [ES]I@,[,D
.

steady-state!!! [ESlg =Bl - [ES]
ki [E][S)
[ES] = E_y + ks .
ES)(1+ 7gp) = [Ei]
K, = kot t+ ks 1
m ky [ES] [En]l n %u].\.
[E][S)
T E 4P s |, s
K, ?_kE[ED]fm—I—[S]_ mes o 5]
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Generalisation: activators
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Generalisation: activators

dlyl/dt

50%V | =£ -

Ka »a]

dly] al
ot Y Kata)
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Generalisation: activators

dlyl/dt

50%V | =£ -

Pp[a]

dly] al
ot Y Kata)

Ka log[a]
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Phenomenological ultrasensitivity

dly|
dt

dly|
dt

dly]
dt
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. ld
Ka + |a]

_[a?
Ka? + |a]?

a]”

dlyl/dt

Kam + [a]”
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Origins of cooperativity: Hill

iv PROCEEDINGS OF THE PHYSIOLOGICAL
Hill (1910) J Physiol 40: iv-vii.

The possible effects of the aggregation of the molecules
of heemoglobin on its dissociation curves. By A. V. HiLL.

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to heemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant results.

Our work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hzmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hzmoglobin in solutions of
various salts, and with hemoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb +0, 3= HbO,,

Hb, + n0, == Hb, Oy,
where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

Kz Kz
y—lm+(lm—k)‘1—m ............... (A-),

where A ¢/, is as Hb,, (100 — )%/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20, 3 Hb,0, and K that of Hb + O, == HbO,:
K has the value '125 (Barcroft and Roberts),
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Origins of cooperativity: Hill

iv PROCEEDINGS OF THE PHYSIOLOGICAL
Hill (1910) J Physiol 40: iv-vii.

The possible effects of the aggregation of the molecules
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Generalisation: inhibitors

dly]/dt

1 dy) . Ki"
X it Kt ]
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Generalisation: activators and inhibitors

X D (= k- [

S
CESCSTS oSS

@ log [i === loa]
By W,

CKa® + [a]* Ki™ + [i|™
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absolute Vs relative activators

dy __ld
dt

d[x]/dt

Ka log[a]
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absolute Vs relative activators

dy] _ . ld dly] _ a]

i " Ka+tld g U Ute o)
dlv/dt dlyl/dt
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Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>— — ()

dynamic system?
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Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>—

dynamic system?
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Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>

dynamic system?

Y, — kzn — kout . [CB]

d|z]
dt

time
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Homeostasis

How can-we maintain kin
a stable level with a ) — —>

dynamic system?

., kzn — kout . [CE] :

d|z]
dt

scHooLoF ¢ Bioinformatics for the neuroscientist, 28 September 2015



Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>

dynamic system?

., kzn — kout . [CC] — kpert . [33]

d|z]
dt
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Homeostasis

How can-we maintain kin kout

a stable level with a ) — —>

dynamic system?

d|z]
W — kzn — kout . [CC] — kpert . [33]
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Questions?
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