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What is the goal of using mathematical models?
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What is a mathematical model?

Wikipedia (October 14t 2013): “A mathematical model is a description of a
system using mathematical concepts and language.”
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What is a mathematical model?

Wikipedia (May 31st 2018): “A mathematical model is a description of a
system using mathematical concepts and language.”

variables

[X]
Vmax

Kd

EC

50

length

1/2

What we want to know
or compare with experiments
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What is a mathematical model?

Wikipedia (May 31st 2018): “A mathematical model is a description of a
system using mathematical concepts and language.”

variables relationships
[X] _ [A]-[B]
Ka= [AB]
Vmax
d[X]/dt =k - [Y]?
Kd
cc. DXL~ Fi(t) = 0
length k(t) ~ N(k, 02)

If mass; > threshold

12 then mass; 1 a; = 0.5 - mass

What we already know
or want to test
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What is a mathematical model?

Wikipedia (May 31st 2018): “A mathematical model is a description of a
system using mathematical concepts and language.”

variables relationships constraints
[X] _ [A]-1B] x]=0
Ka="4p i’
Vmax Energy conservation
dX]/dt =k -[Y]?
Kd Boundary conditions
Z[X]i —F(t) =0 (v < upper limit)
EC50 (
Objective functions
length k(t) ~ N(k, 02) (maximise ATP)
If mass; > threshold Initial conditions

12 then mass;a; = 0.5 - mass

The context or what
we want to ignore
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Computer simulations Vs. mathematical models
[ 37 ]

" THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.
Such a system, although it may originally be quite homogeneous, may later develop a pattern
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such reaction-diffusion systems are considered in some detail in the case
of an isolated ring of cells, a mathematically convenient, though biologically unusual system.
The investigation is chiefly concerned with the onset of instability. It is found that there are six
essentially different forms which this may take. In the most interesting form stationary waves
appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns

on Hydra and for whorled leaves. A system of reactions and diffusion on a sphere is also con-
tered  Sic] ‘ Lot A riet] . .
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Computer simulations Vs. mathematical models
[ 37 ]

 THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. Unwersity of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and
diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

One would like to be able to follow this more general process
mathematically also. The difficulties are, however, such that one
cannot hope to have any very embracing theory of such processes,
beyond the statement of the equations. It might be possible,
however, to treat a few particular cases in detail with the aid of a
digital computer. This method has the advantage that it is not so
necessary to make simplifying assumptions as it is when doing a
more theoretical type of analysis.
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Birth of Computational Systems Biology

The Mechanism of Catalase Action. !
II. Electric Analog Computer Studies

Britton Chance, David S. Greenstein, Joseph Higgins and C. C. Yang

From the Johnson Research Foundation, University of Pennsylvania,
Philadelphia, Pennsylvania

Received October 26, 1951

INTRODUCTION

In early studies of enzyme reactions only the disappearance of sub-
strate could be measured and only the steady-state operation of the
enzyme could be studied. We can now study directly the formation
and disappearance of compounds of enzyme and substrate by sensit
spectrophotometric methods. Thus not only the steady-state but s
the transient portions of the enzyme action are revealed. And th
transient portions are very sensitive indicators of the mechanism
which the enzyme acts.

Differential equations representing the transient formation 4
disappearance of an enzyme-substrate complex can readily be set

for enzyme reactions that follow the law of mass action, and solutic
nf thoeo sntiatinng are raadilv nhtained far the sneecial and onften 1n
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Birth of Computational Systems Biology

J. Physiol. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGKIN anp A. F. HUXLEY
From the Physiological Laboratory, Unwversity of Cambridge
(Recerved 10 March 1952)

‘icle concludes a series of papers concerned with the flowys
through the surface membrane of a giant nerve fibre |
d % Katz, 1952; Hodgkin & Huxley, 1952 a—). Its general ¢
the results of the preceding papers (Part I), to put t |
atical form (Part II) and to show that they will accom

and excitation in quantitative terms (Part ITI).
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The Computational Systems Biology loop
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Variable granularity

Single particles Discrete populations
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Variable granularity

Single particles
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Continuous populations
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Stochasticity

Ensemble models (distributions)

0.25

Deterministic simulation

n’bj 0.15 . .
— E o | | X. Initial conditions
n'LJ k] 1 N Parameter values

Stochastic differential equations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 7~

i = f(X)+ ) g;(@i)n; (t) =Sk [T

Stochastic simulations -
(SSA, “Gillespie”) Probabilistic models

8000

0.1846 07802 0.1791

 —
—_—
0.1497
T l 00513 0 712
00357

0.0311
>

<—
0.7564

70001

6000}

5000}

4000}

#Proteins

3000}

2000+

1000

0.1456 ©0.1923

0 200 400 600 800 1000
Time, min

In Silico Systems Biology, EMBL-EBI, 03-08 June 2018




Stochasticity

Ensemble models (distributions)
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Logic versus numeric
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Many other types of models

Matrix models /’_F
AN
@ G2 '@ @

e Nk e
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Multi-agents models (cellular potts)

é Axial Resistence

Cable approximation
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