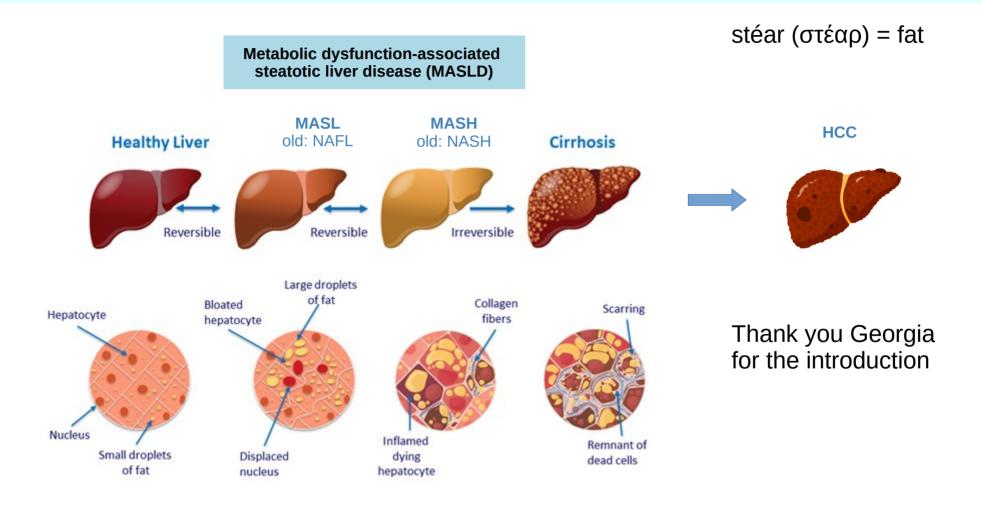
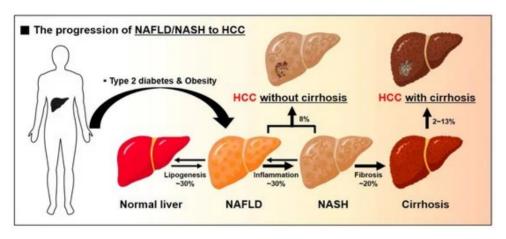


The spectrum of non-alcoholic steatotic liver disease (SLD)



MASLD prevalence is growing



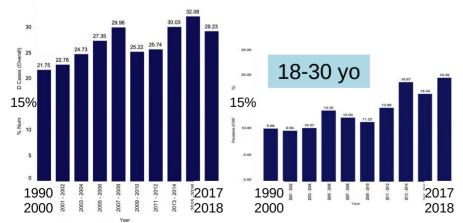
Prévalence en fonction de l'âge et du sexe



% Femmes II.4%

50
40
30
20
10
4% 6.8% 9.7% 19.3% 23%
0
0
88.71 88.73 88.61 88.75 88.61 88.78

Kim et al (2021) Int. J. Mol. Sci., 22(9): 4495



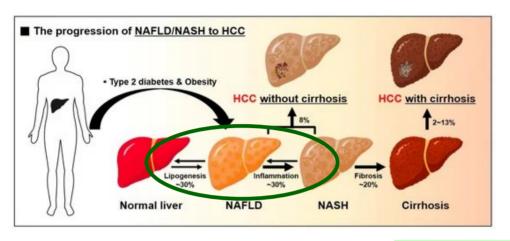
MASH

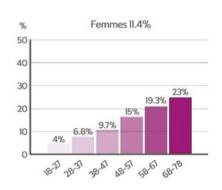
Paris Nash Meeting (11-12 juillet 2019)

Kim et al (2022) Met. Target Organ Damage, 2: 19

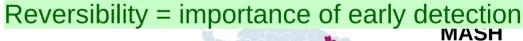
MASLD

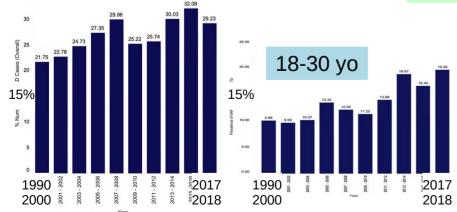
MASLD prevalence is growing





Kim et al (2021) Int. J. Mol. Sci., 22(9): 4495



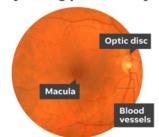


Kim et al (2022) Met. Target Organ Damage, 2: 19

Paris Nash Meeting (11-12 juillet 2019)

MASLD

Google AI can predict heart problems by taking pictures of your eye

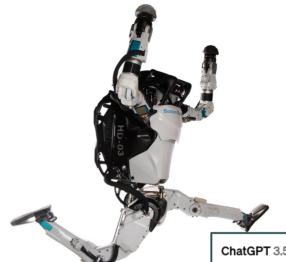


- ▶ Image of the back of the eve showing the macula (dark spot in the middle), optic disc (bright spot at the right), and blood vessels.
- ▶ Retinal image in gray. researchers can focus on blood vessels to determine the health risks associates with a patient's blood pressure.

Macula

▶ Images showed that each cardiovascular risk factor prediction uses a distinct pattern, such as blood vessels for blood pressure and optic disc for other predictions.

Source: Baig, Edward C. "Google Hopes AI Can Predict Heart Disease by Looking at Retinas." USA Today, Gannett Satellite Information Network, 19 Feb. 2018, www.usatoday.com/story/tech/2018/02/19/google-ai-can-predict-heart-disease-lookingpictures-retina/344547002/.



Optic disc

Blood pressure highlighted

ChatGPT 3.5 v

How did AI change biomedical research in 2 sentences at temperature 0.5

ChatGPT

Al has revolutionized biomedical research by accelerating drug discovery through virtual screening and predicting potential drug interactions. significantly reducing time and cost. Additionally, machine learning algorithms analyze vast biological datasets, uncovering hidden patterns and associations, leading to novel insights into diseases and personalized treatment strategies.

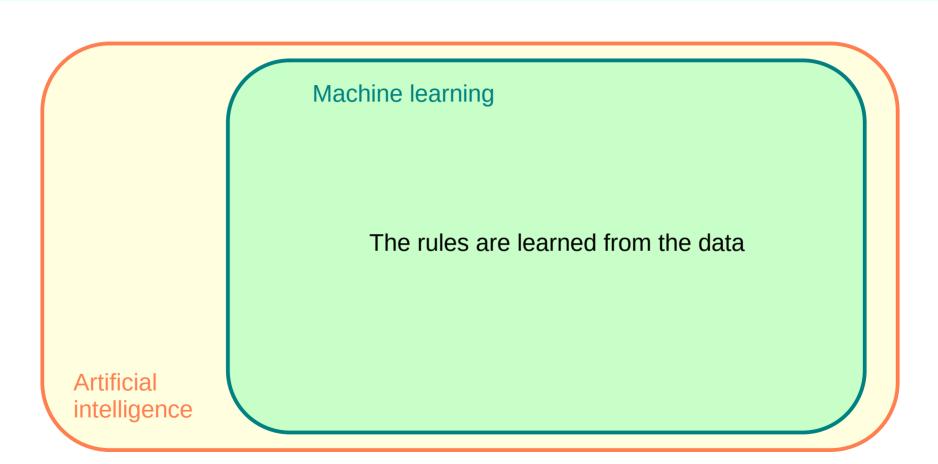
C 50 60 f1

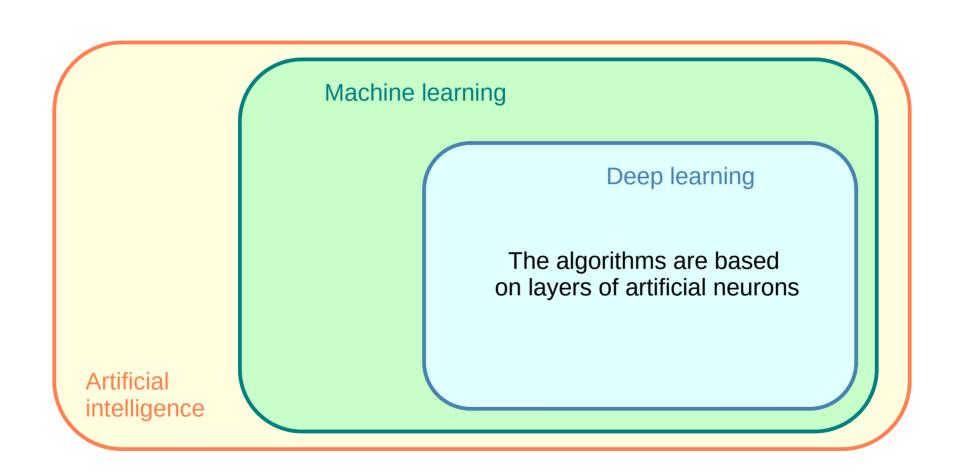
Message ChatGPT...

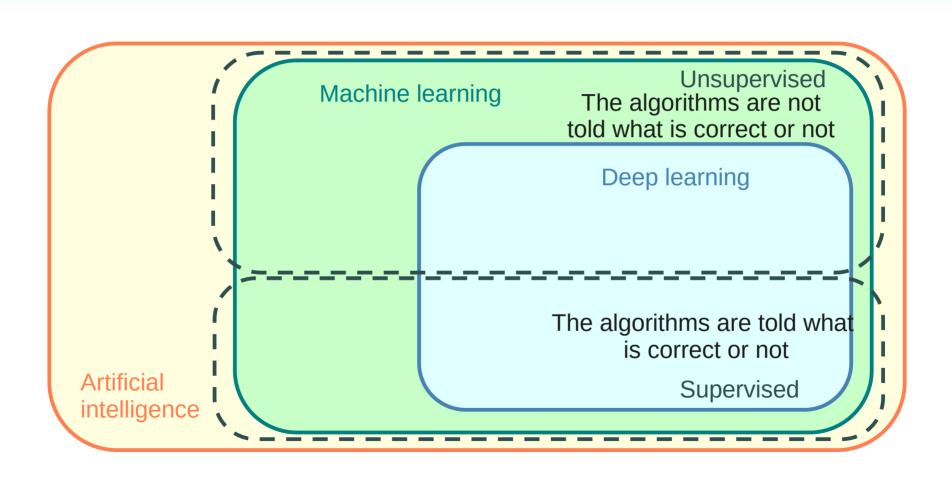
ChatGPT can make mistakes. Consider checking important information.

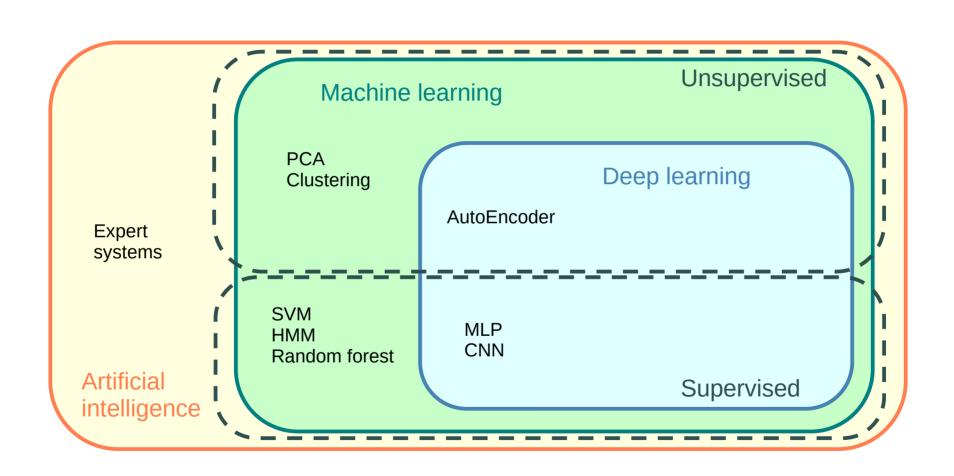
Assessments, evaluations, decisions, predictions made by software tools

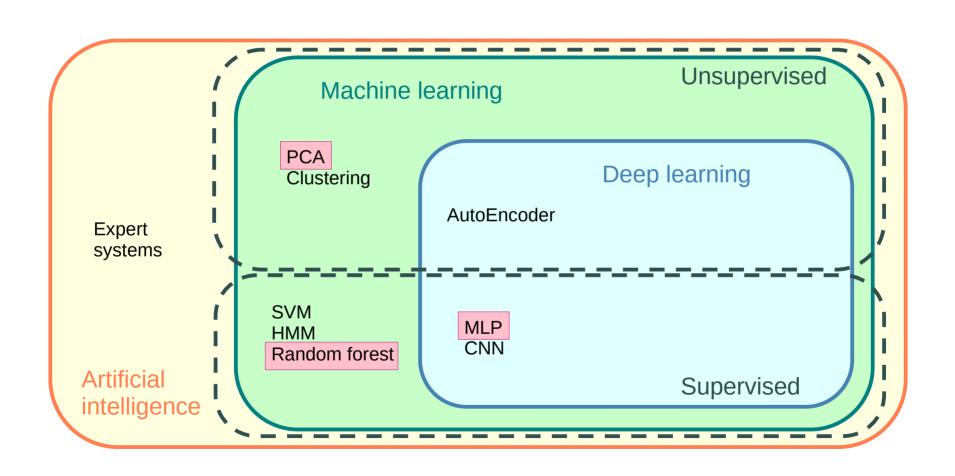
Artificial intelligence



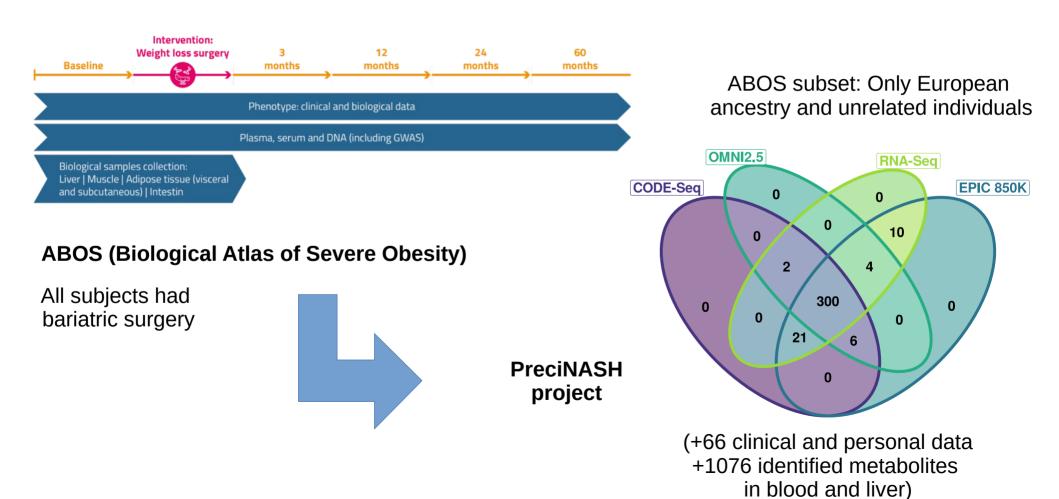








Cohort



Subject grouping

Scoring on liver biopsy with the method from Kleiner and Brunt 2005

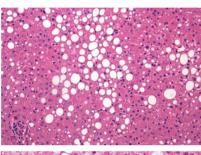
Steatosis

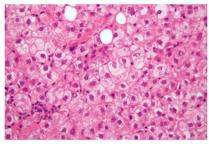
Categorical [0-3] from quantitative measurement

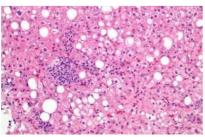
Categorical [0-2] = {none, some, much}

Inflammation

Categorical [0-3] from number of foci







Final score:

Healthy: S = 0, B = 0, I = 0 n = 80

NAFL: S > 1, B = 0, $l \ge 1$ n = 137

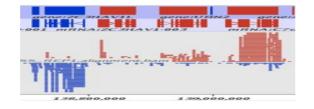
S > 1, B > 1, I = 0

NASH: S > 0, B > 0, I > 0 n = 83

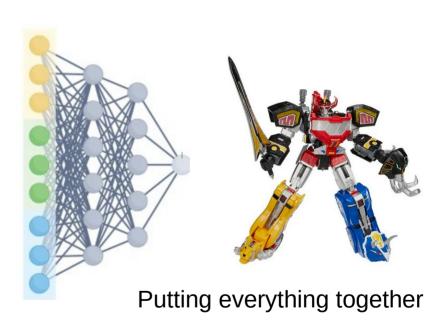
What are we going to talk about today?

Clinical data

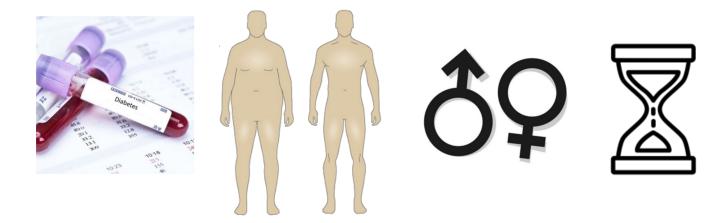
RNAseq



CpG Methylation



Clinical data



Clinical data available on PreciNASH subjects

Diagnosis Sex Age

Liver

BMI

Steatosis score
Inflammation score
Ballooning score
Brunt score
Total NAS score
Fibrose Kleiner score

Sang

I DI

Total cholesterol

α2 macroglobulin

Haptoglobin

lymphocytes

Triglycerides

Bilirubin

ASAT

ALAT

apoA1

platelets

CRP

γGT

Glycaemia: fasting ionograms, OGTT: fasting, 30 min, 120 min Insulin: fasting (mUI/L, pmol/L), 30 min, 120 min C peptide: fasting, 30 min, 120 min HOMA2 IR HbA1c HDL

Hypertension

Antihypertensive (name)
α-blocker
β-blocker
Ca blocker
Angiotensin inhibitor
Imidazoline
ACE inhibitors
Diuretics
Renin inhibitor

α–sympathomimetic

α1-adrenergic blocker

Diabetes

T2D status
antidiabetic treatments (number and name)
Insulin treatment
GLP1 treatment
Gliptine
α-glucoxidase inhibitor
Sulfonylureas
Biguanide
Glinide
Thiazolidinediones

Dislipidaemia

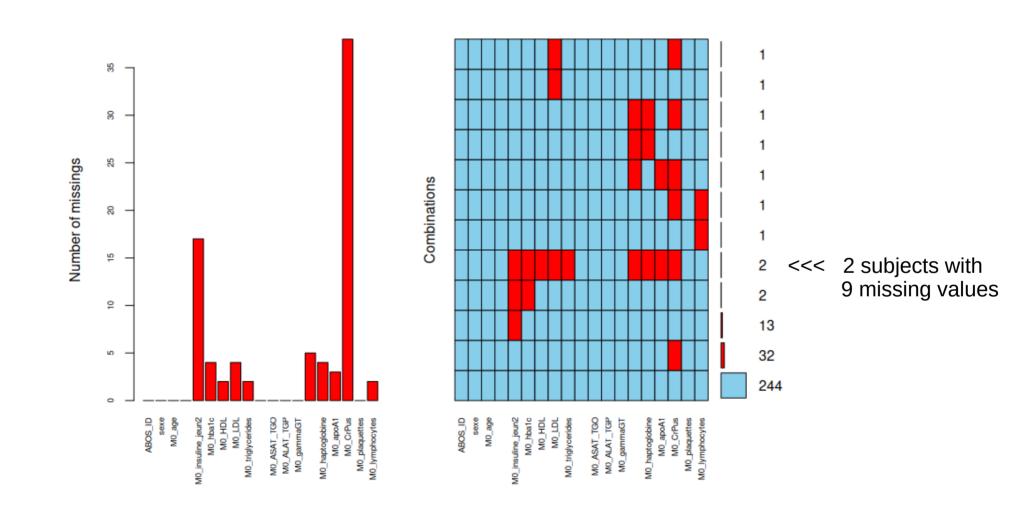
Hypolipemic treatment (use and name) Statins Fibrates Omega-3 Intestinal absoption inhibitor Bile acid sequestrant

Selection of clinical variables

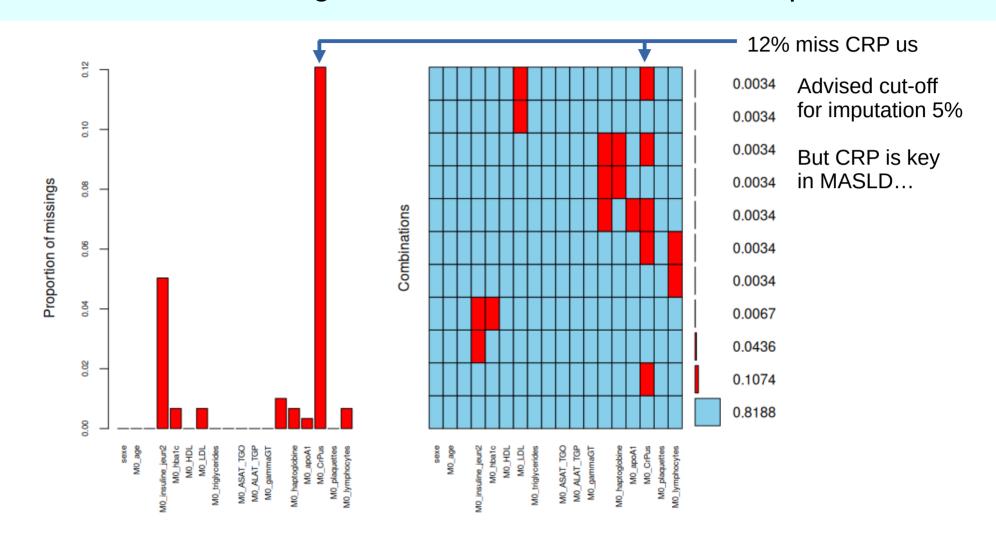
- Alternative versions: fasting insulin in mIU/L and in pm/L
- Composed variables: HDL, LDL, total cholesterol
- Derived variables:
 T2D status = {fast glyc, HbA1c, glycaemia, antidiabetic treatment}
 Averaged fasting glycaemia = mean(HPO glyc, IONO glyc)
 HOMA2 IR = {OGTT and insulin fasting}
- Treatments: ignored in this study that focuses on biology

retained 16 non-redundant clinical features + age + sex

Clinical data: Missing values; small dataset = need imputation

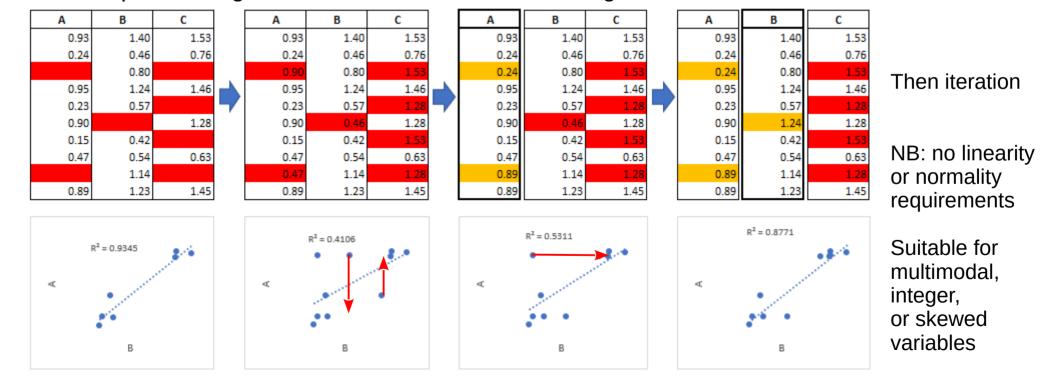


Clinical data: Missing values; small dataset = need imputation

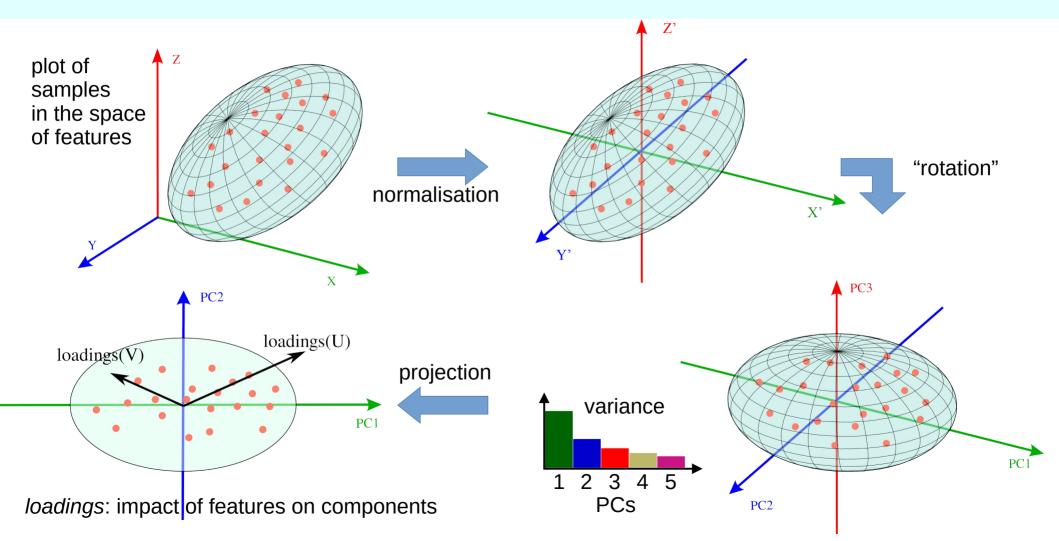


Imputation of missing values: MICE

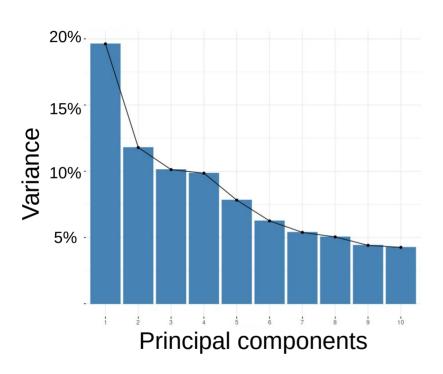
- General idea: subjects with close values for most variables would probably show similar values for the missing variables.
- Chosen approach is *Multivariate Imputation by Chained Equations* (R package *MICE*) Imputation algorithm is *Predictive mean matching*

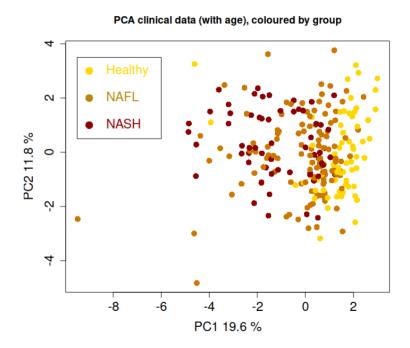


Principal component analysis (PCA)

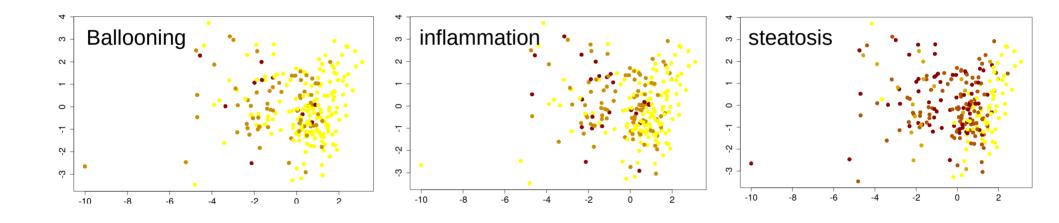


Clinical data PCA

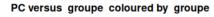


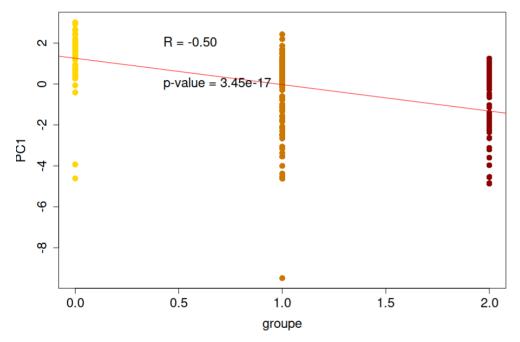


All clinical hallmarks align with PC1



What are the main loadings?

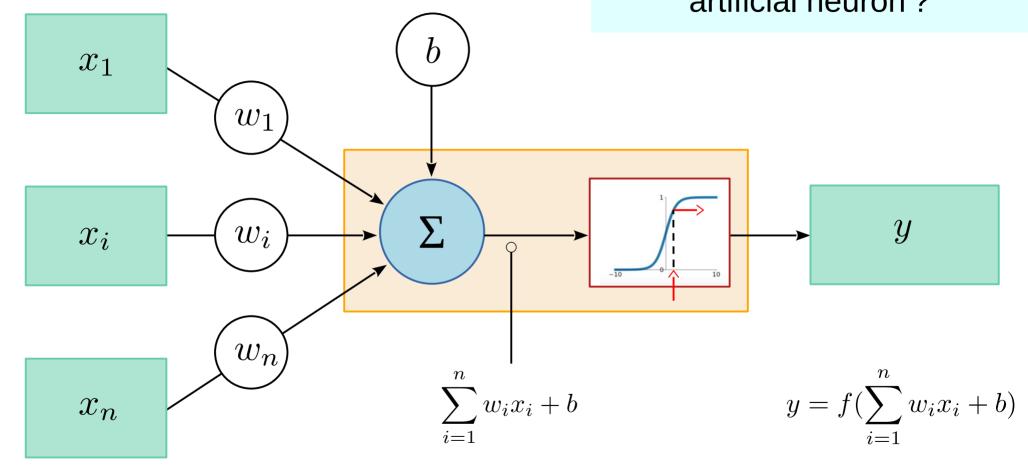


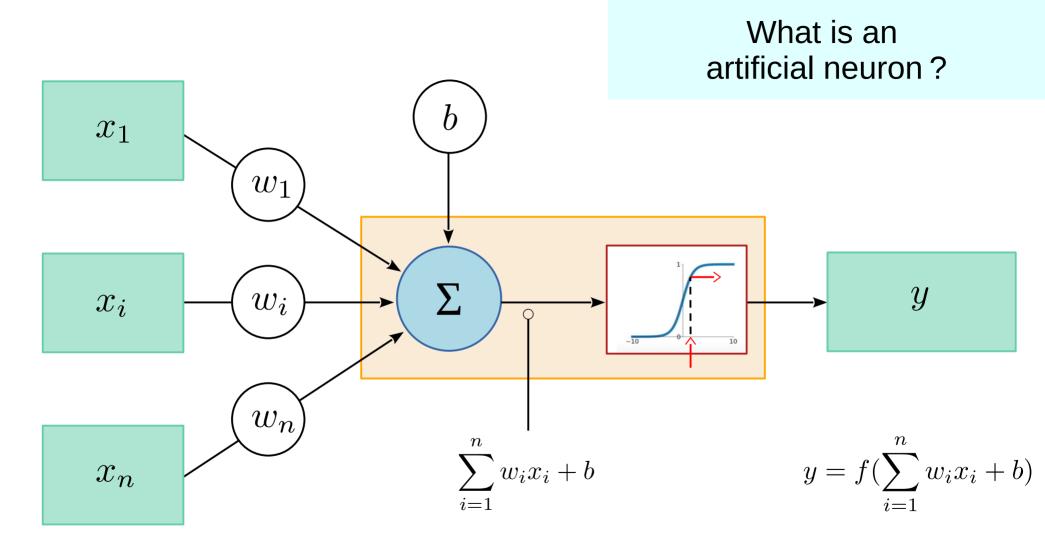


	PC1
M0_hba1c	-0.436
M0_glycemie_jeun_moy	-0.413
M0_gammaGT	-0.353
M0_triglycerides	-0.345
M0_ASAT_TGO	-0.306
M0_ALAT_TGP	-0.294
M0_age	-0.208
M0_insuline_jeun2	-0.168
M0_alpha2_macroglobuline	-0.136
M0_lymphocytes	-0.084
M0_bilirubine_totale	-0.053
M0_CrPus	0.007
M0_haptoglobine	0.032
sexe	0.074
M0_LDL	0.101
M0_apoA1	0.103
M0 plaquettes	0.195
M0 HDL	0.224
	SOLUTION STATE

Can we train artificial neural networks to recognise the presence of NAFL and NASH?

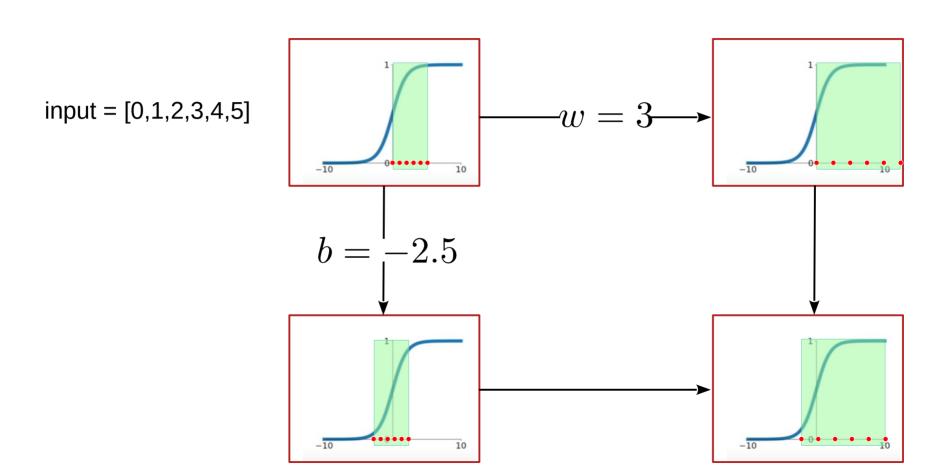
What is an artificial neuron?



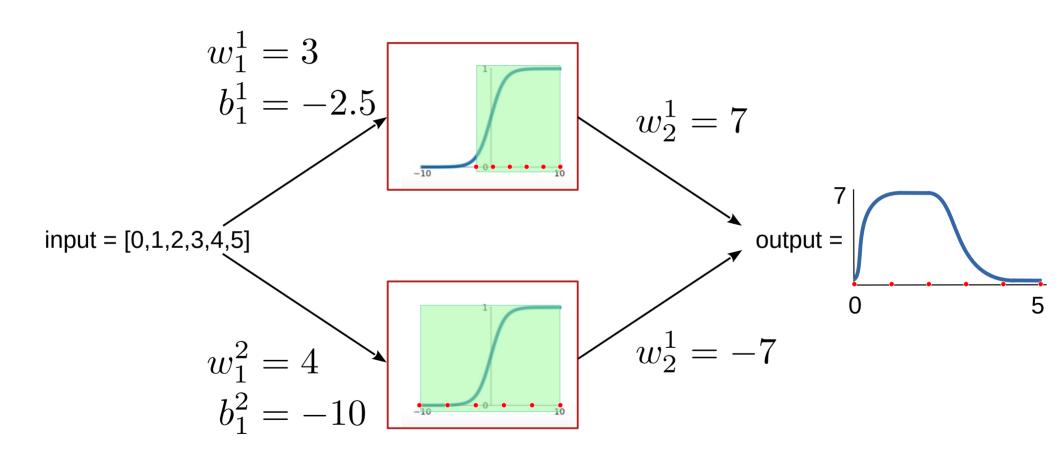


NB: when the activation function is logistic (sigmoid), this is actually a logistic regression...

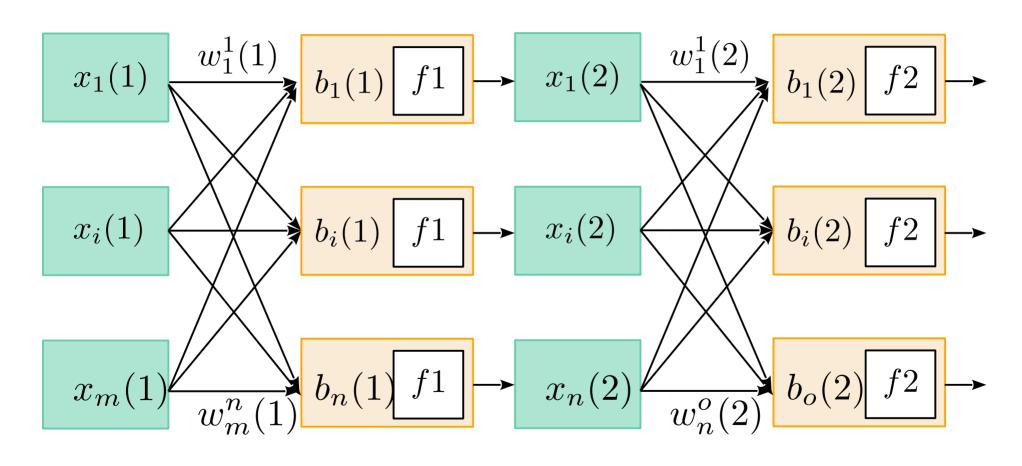
Impact of the weights and the bias



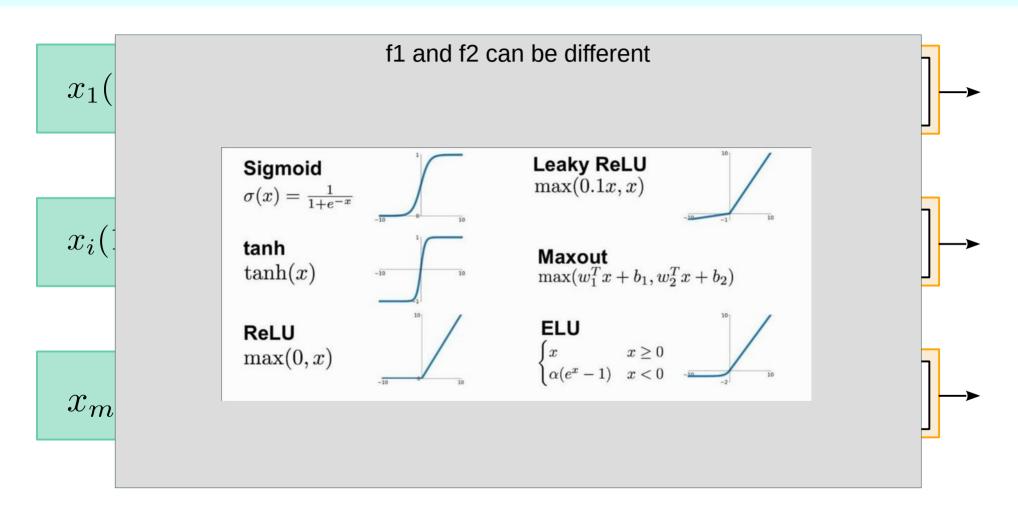
The magic happens with several neurons

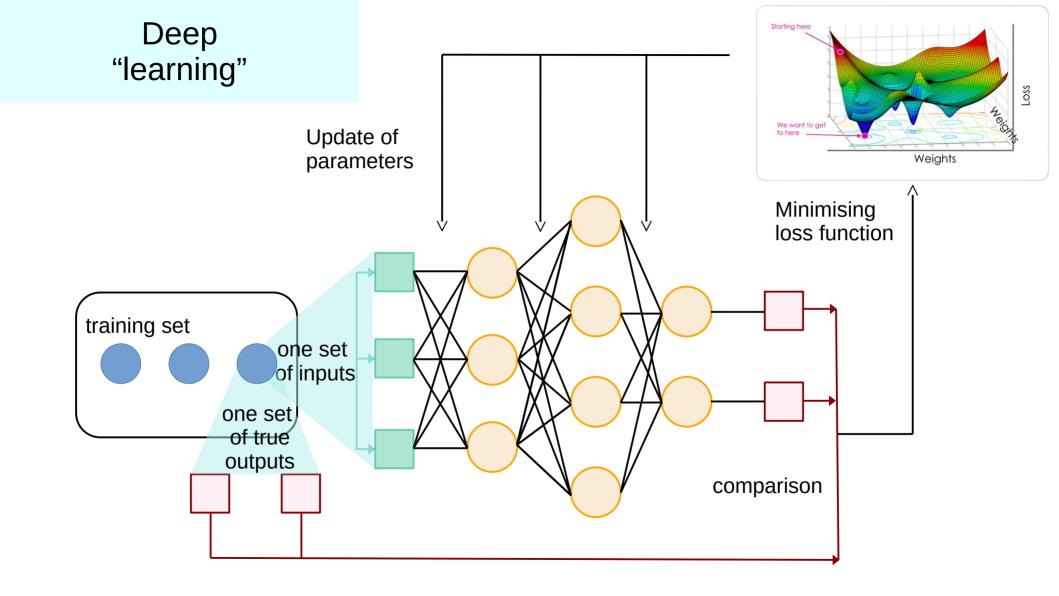


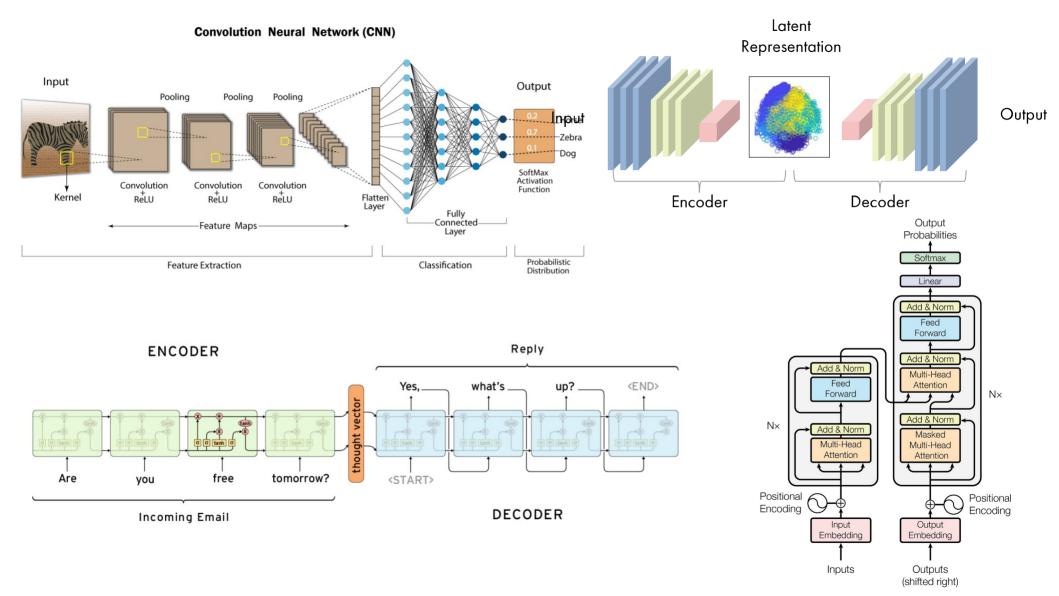
And then we add layers (the "Deep")



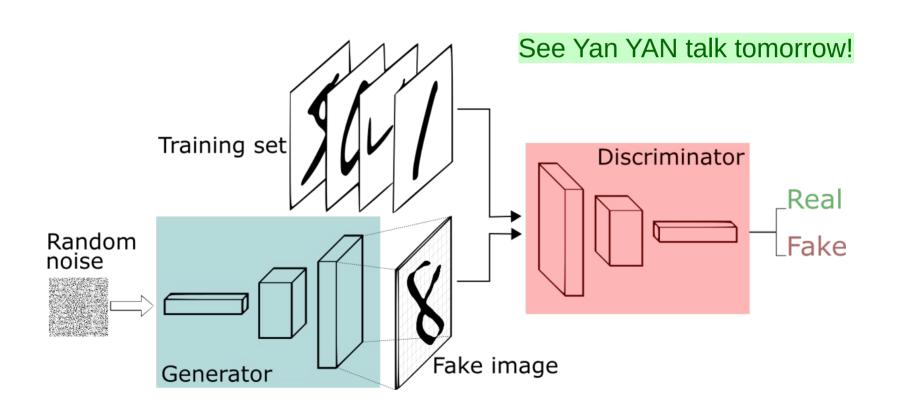
Many different activation functions



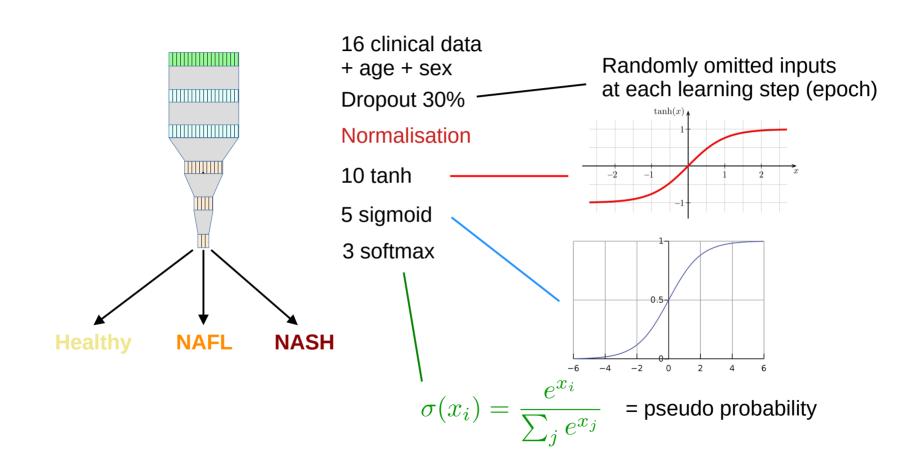




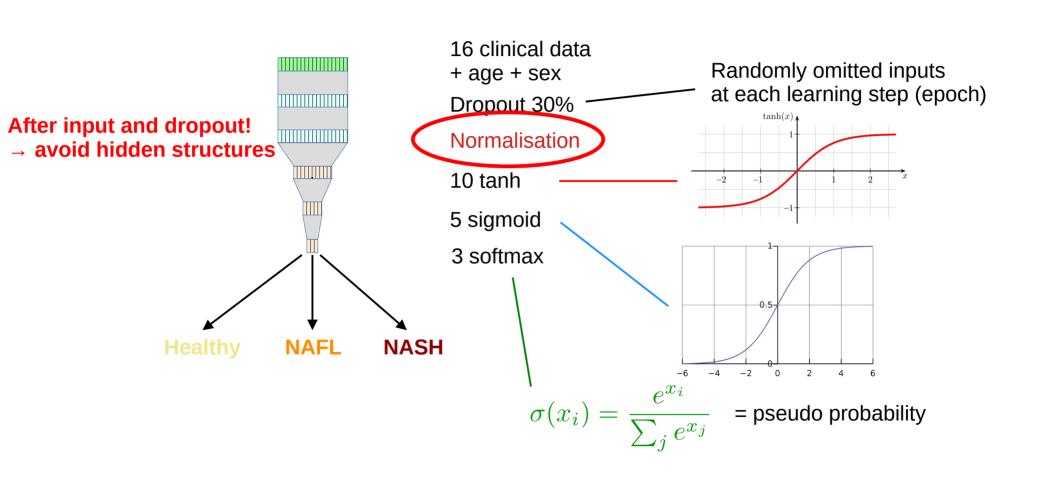
Learning by trying to trick itself: Generative Adversarial Network (GAN)



Multi-Layer Perceptron trained on clinical data

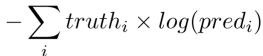


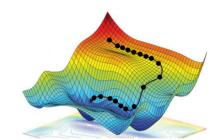
Multi-Layer Perceptron trained on clinical data

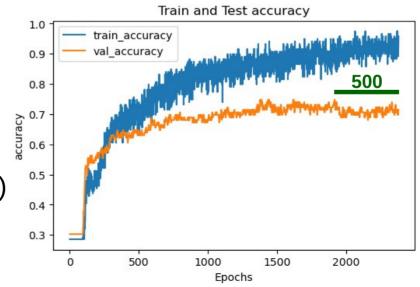


Hyperparameters (fancy word for settings)

- Evaluation
 - Loss function: categorical cross-entropy
 - Optimizer: Adam (learning rate = 0.001)
- Training duration
 - Epochs = 10000
 - Batch size = 16
- Early stop:
 - min delta = 0.001,
 - patience = 500 (1000)







Training procedure

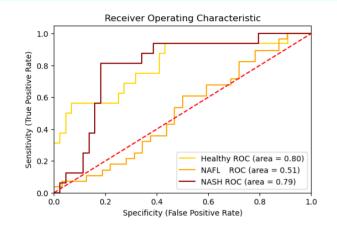
5 independently trained models

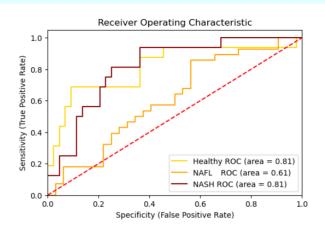
Validation (never seen): 60 subjects Same for all model instances

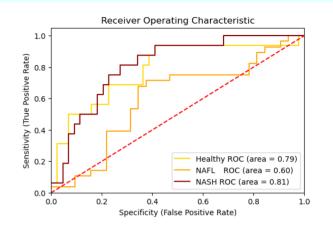
Training set: 178 subjects

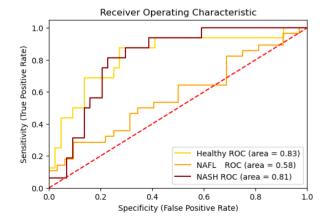
Test set (for training): 60 subjects Different for each model instance

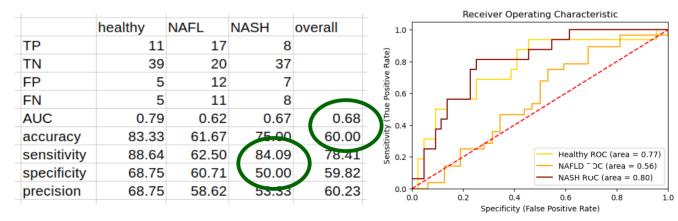
Clinical data predictivity on the independent dataset



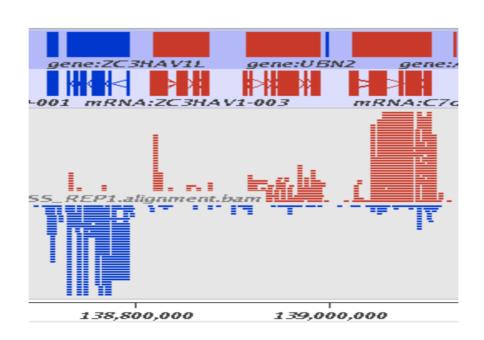




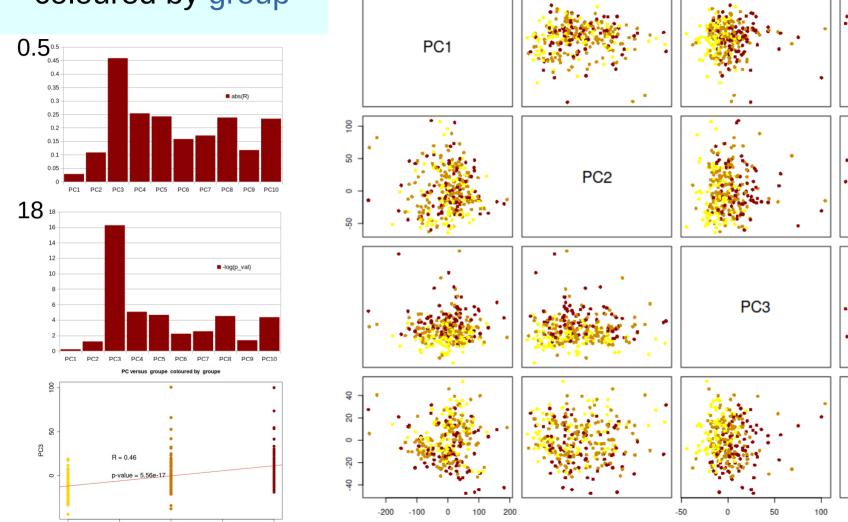




Transcriptomics

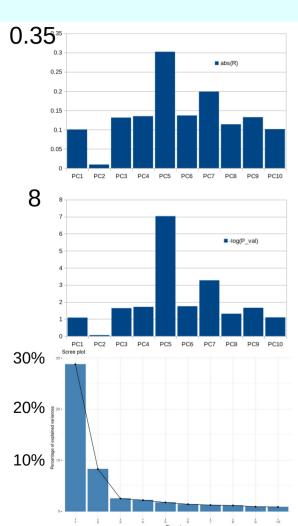


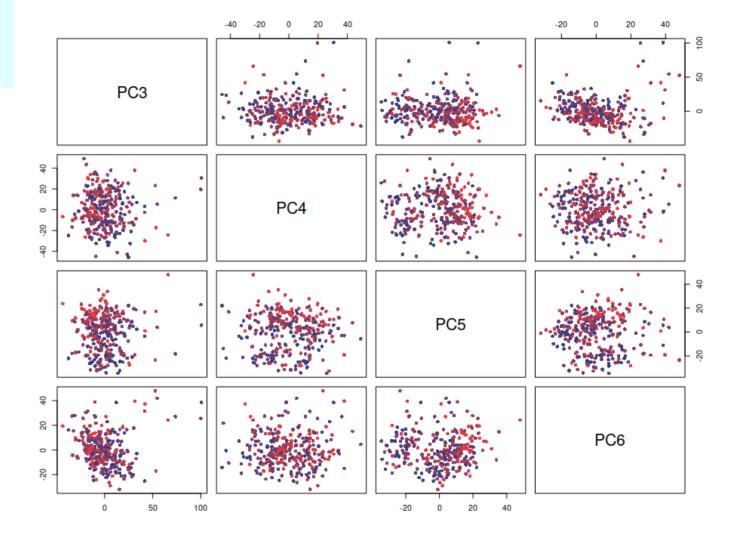
PCA RNAseq coloured by group



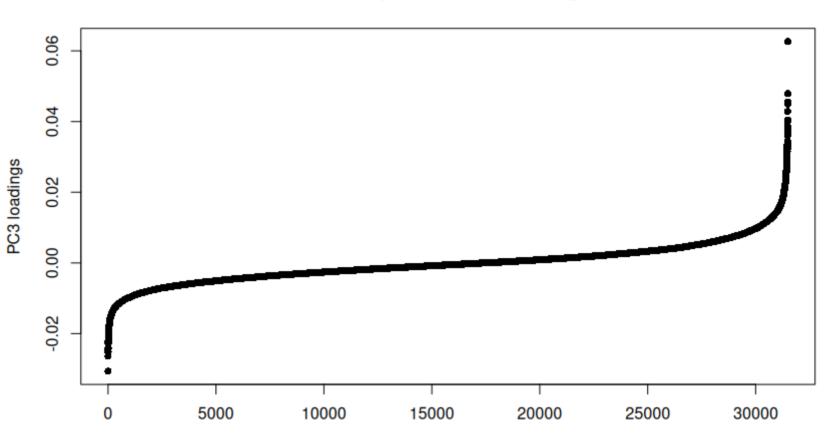
PC4

PCA RNAseq coloured by age

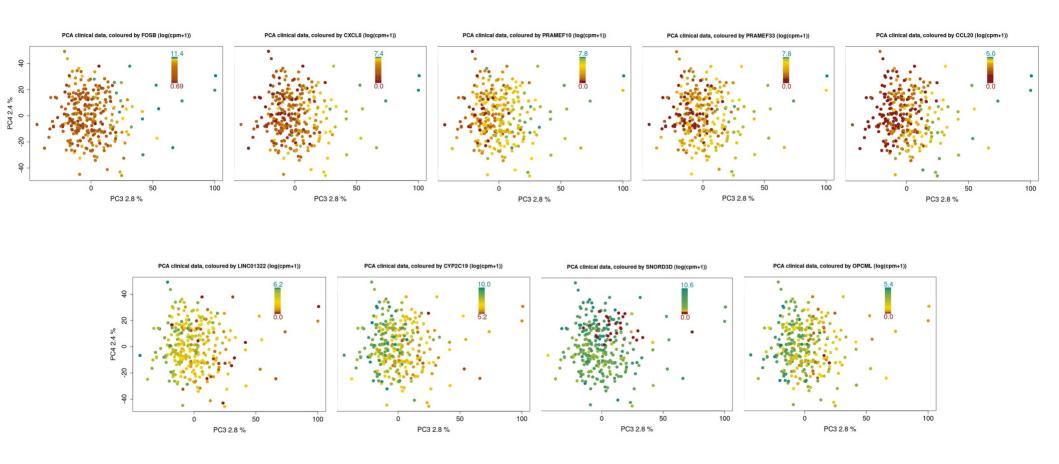




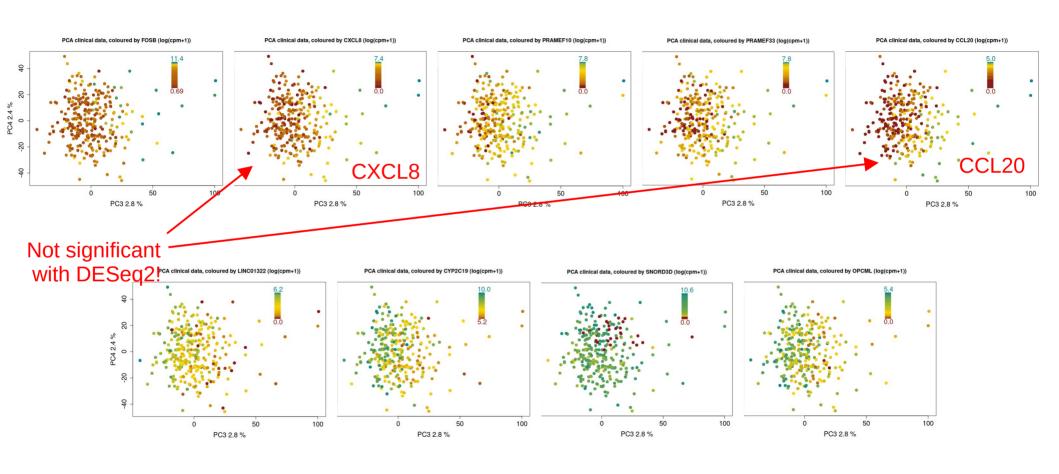
Alignment along PC3 controlled by few genes



Main loadings (coloured by log[expression])



Main loadings (coloured by log[expression])

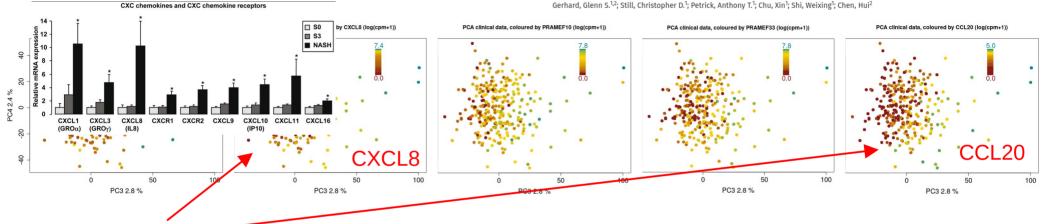


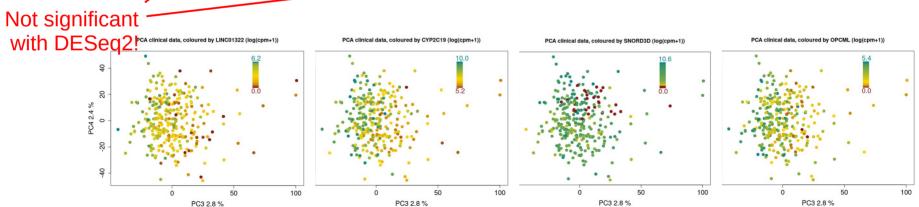
Hepatic Expression Patterns of Inflammatory and Immune Response Genes Associated with Obesity and NASH in Morbidly Obese Patients

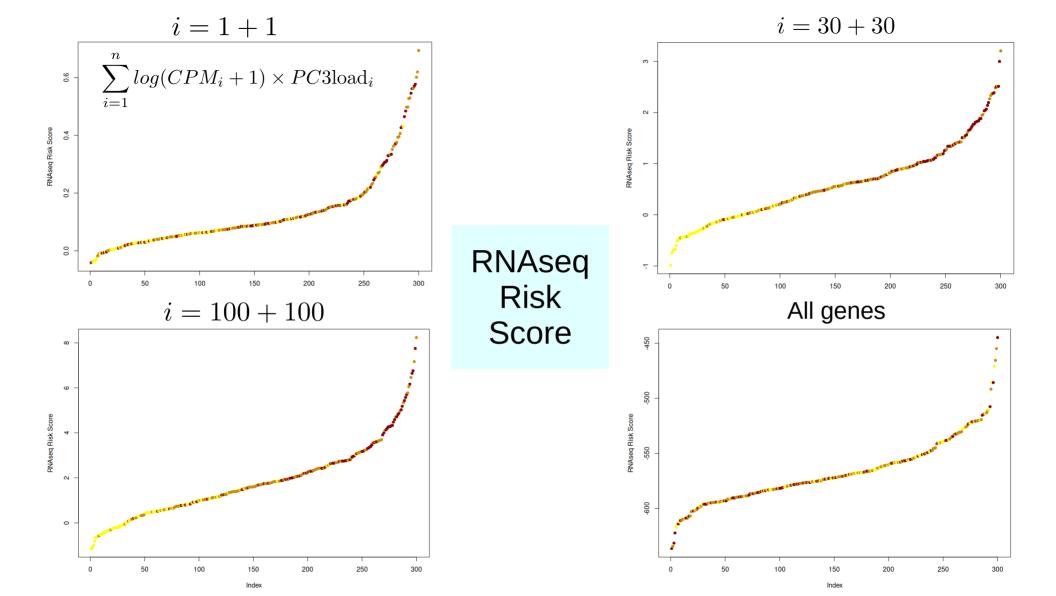
Adeline Bertola, Stéphanie Bonnafous, Rodolphe Anty, Stéphanie Patouraux, Marie-Christine Saint-Paul, Antonio Iannelli, Jean Gugenheim, Jonathan Barr, José M. Mato, Yannick Le Marchand-Brustel, Albert Tran, Philippe Gual

CCL20 IS A SENSITIVE AND SPECIFIC BIOMARKER FOR FIBROSIS RELATED TO NON-ALCOHOLIC STEATOHEPATITIS IN THE MORBIDLY OBESE 1016

Gerhard, Glenn S.^{1,2}; Still, Christopher D.¹; Petrick, Anthony T.¹; Chu, Xin¹; Shi, Weixing¹; Chen, Hui²

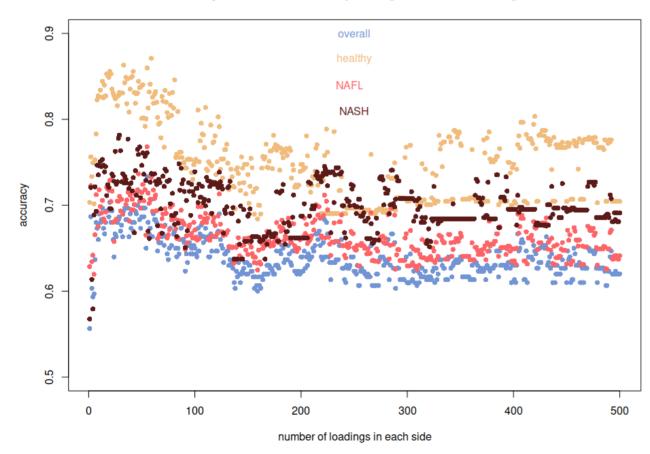






Are PC3 loadings predictive?

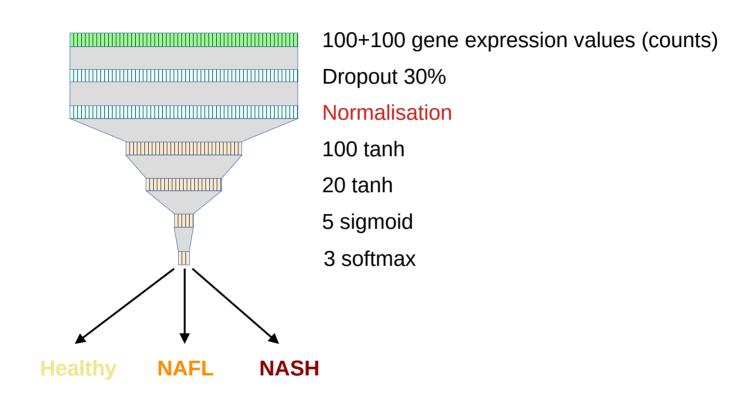
accuracy of the RNAscore depending on the number of genes



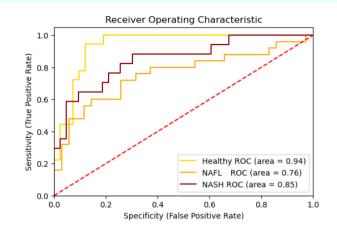
Random Forest to choose cut-offs between classes

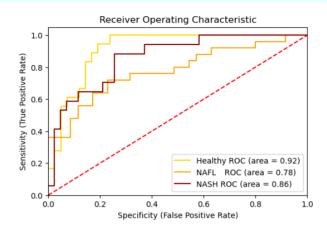
Accuracy of the classification made on varying number of loadings from each side

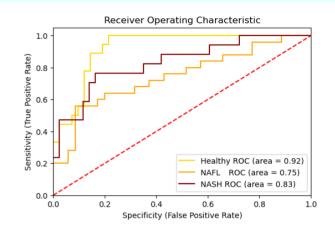
Multi-Layer Perceptron trained on RNAseq data

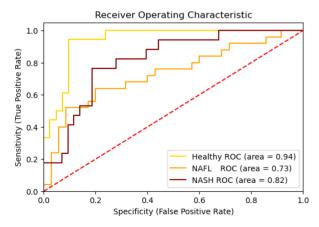


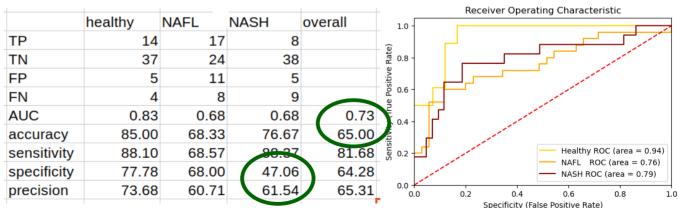
RNAseq data predictivity on the independent dataset









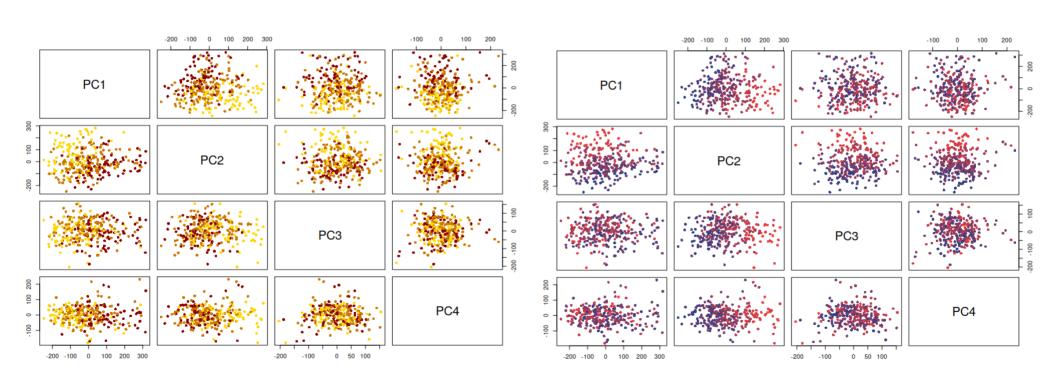


DNA Methylation

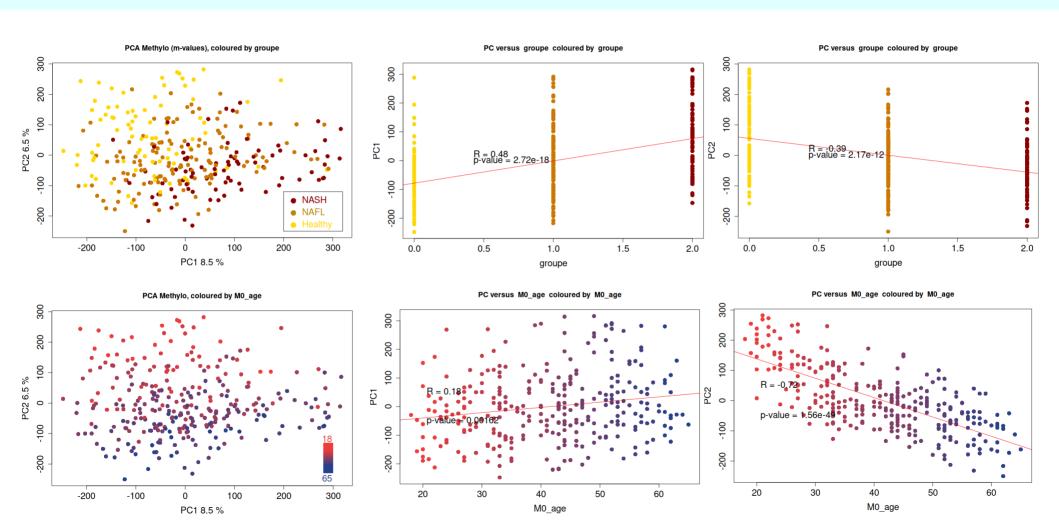
Severity and age both contribute to the main PCs

Coloured by severity

Coloured by age



Correlation with PC1 and PC2



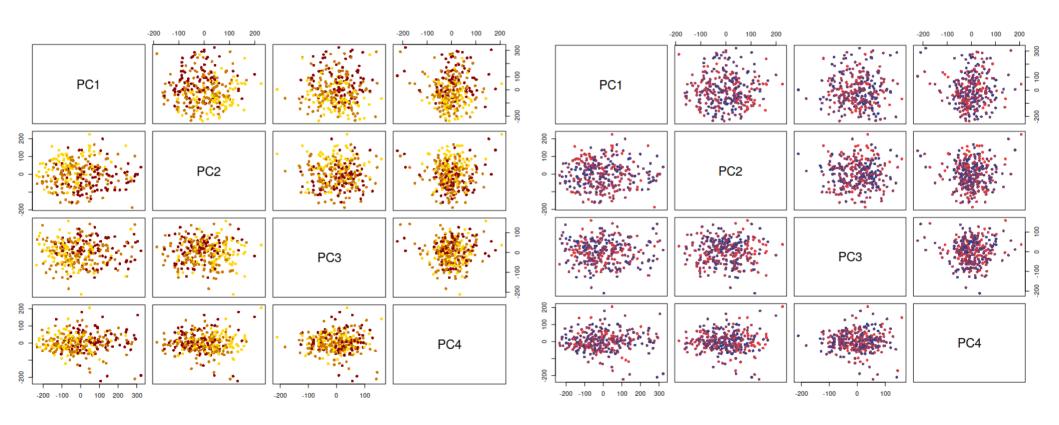
Removal of age component

For each CpG $\,i\,$

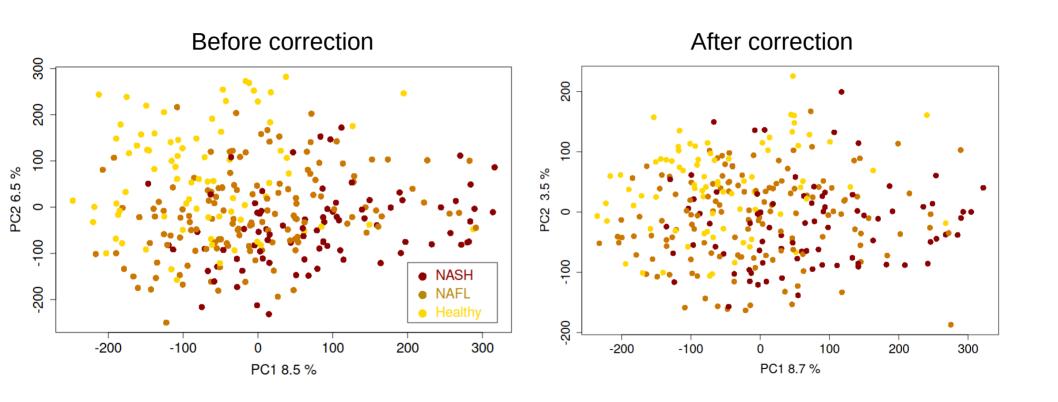
$$\hat{M}_i = a_0 + a_1 \times age_i + \varepsilon_i$$

Keep the residuals

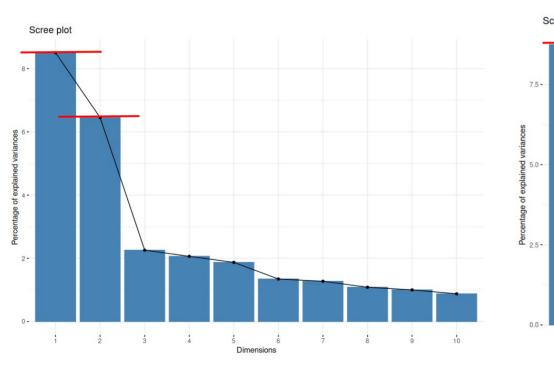
Bam! The age component is gone... but not (all of) the severity

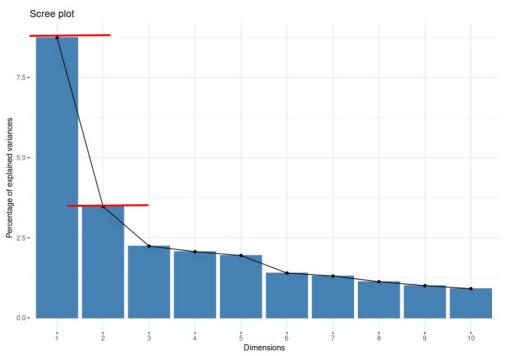


Bam! The age component is gone... but not (all of) the severity

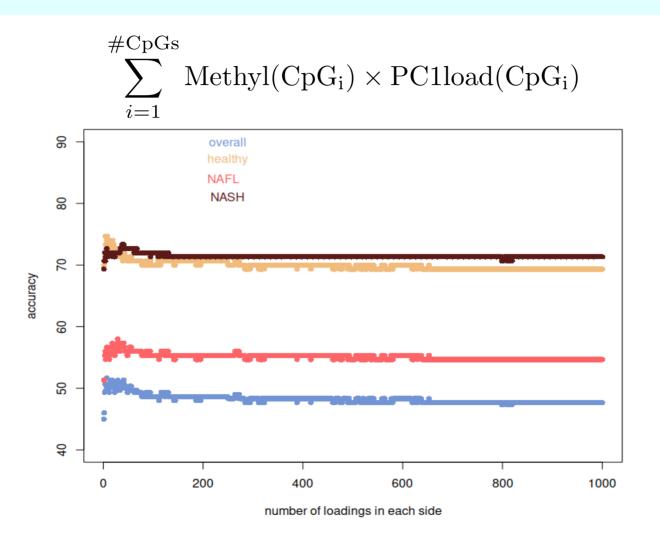


Transfer of variance from PC2 to PC1

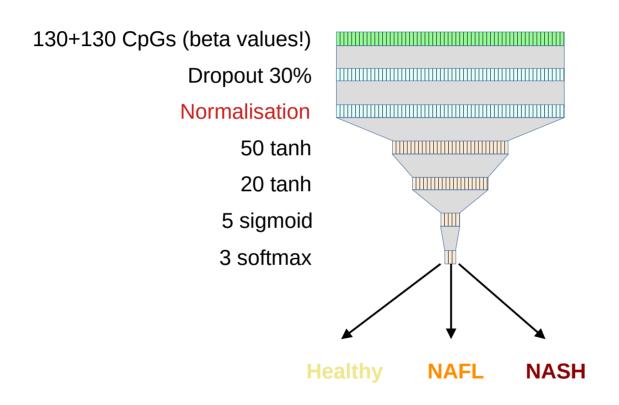




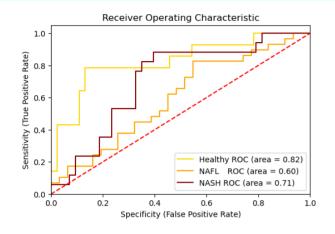
Methyloscore

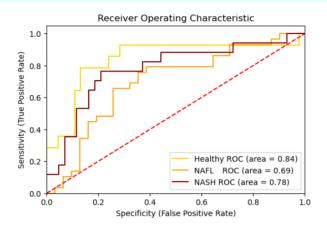


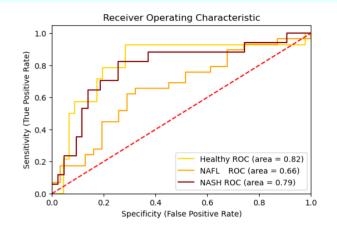
Multi-Layer Perceptron trained on CpG methylation

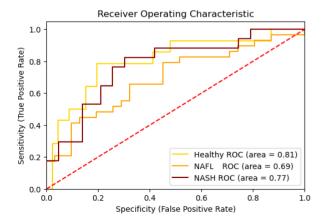


Methylation data predictivity on the independent dataset

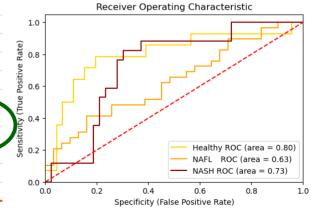






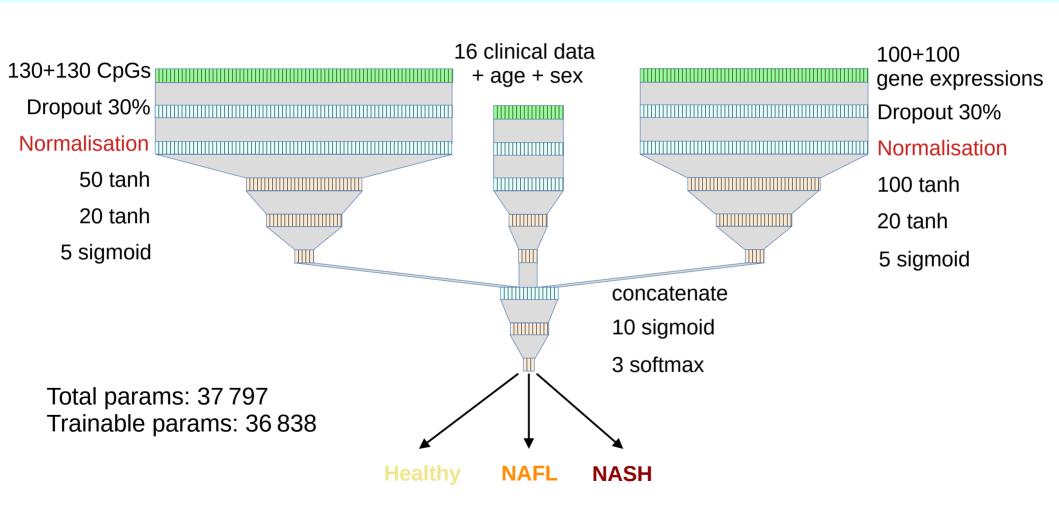


	healthy	NAFL	NASH	overall
TP	11	12	10	
TN	34	22	37	
FP	13	6	8	
FN	2	20	5	
AUC	0.78	0.58	0.74	0.67
accuracy	75.00	56.67	78.33	55.00
sensitivity	72.34	78 57	82.22	77.71
specificity	84.62	37.50	66.67	62.93
precision	45.83	00.07	55.56	56.02

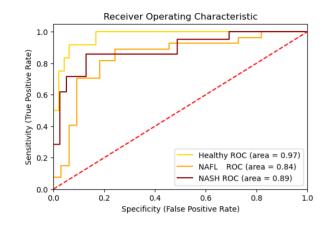


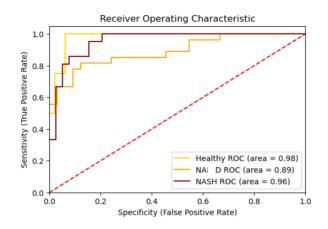
Supercharge predictions by putting everything together

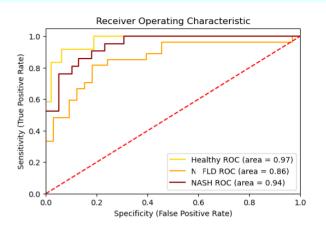
Methylation+ClinDat+RNAseq data

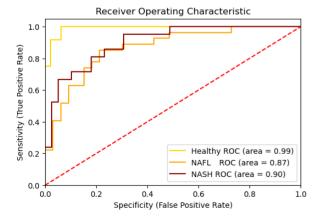


Predictivity of the MLP trained on 3 types of data

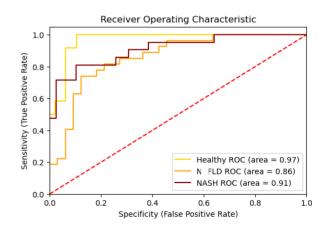








	healthy	NAFL	NASH	overall
TP	12	24	17	
TN	45	30	38	
FP	3	3	1	
FN	0	3	4	
AUC	0.97	0.90	0.89	0.91
accuracy	95.00	90.00	91.67	88.33
sensitivity	93.75	90.91	97.44	94.03
specificity	100.00	88.89	80.95	89.95
precision	80.00	88.89	94.44	87.78



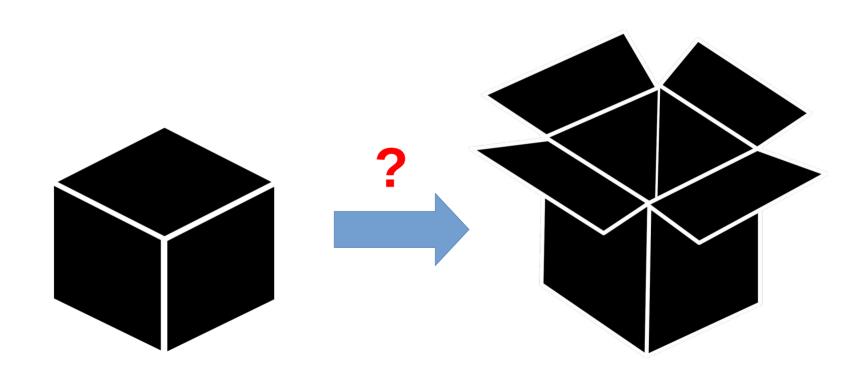
Comparison with some prior tools

Tanwar et al (2013). Procollagen III terminal peptide. AUC Healthy from NAFLD **0.88** (here **0.97**); AUC NASH from NAFL **0.79** (here **0.89**)

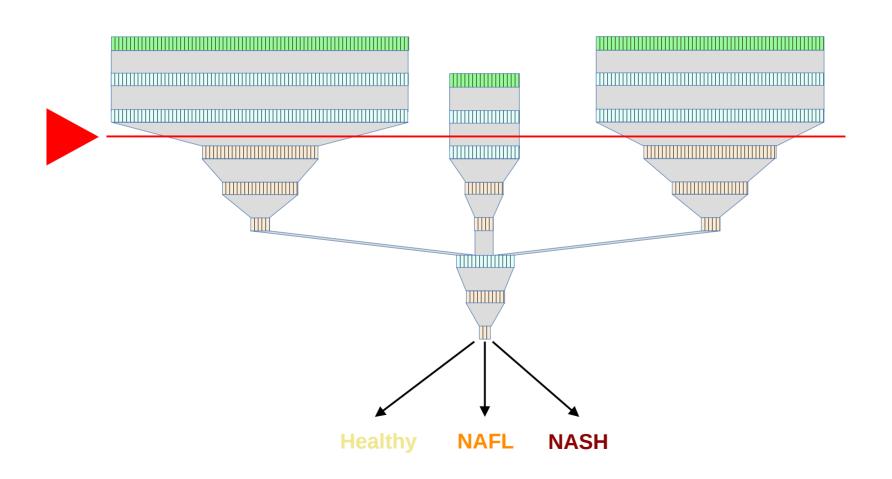
Sanyal et al (2018). miR-34a, α2-macroglobulin, YKL-40, HbA1c. AUC NASH from non-NASH 0.81 (here 0.89), accuracy of **72**% (here **91.67**%)

Park et al (2023). Carefully hand-picked 10 genes. Only distinguish NASH from NAFL. Accuracy of NASH prediction on an independent cohort is **80.5%** (here **91.67%**) 6 of their genes are not in our set (CDC6, TTK, HASPIN, MCM10, SLC7A1, MAD2L1)

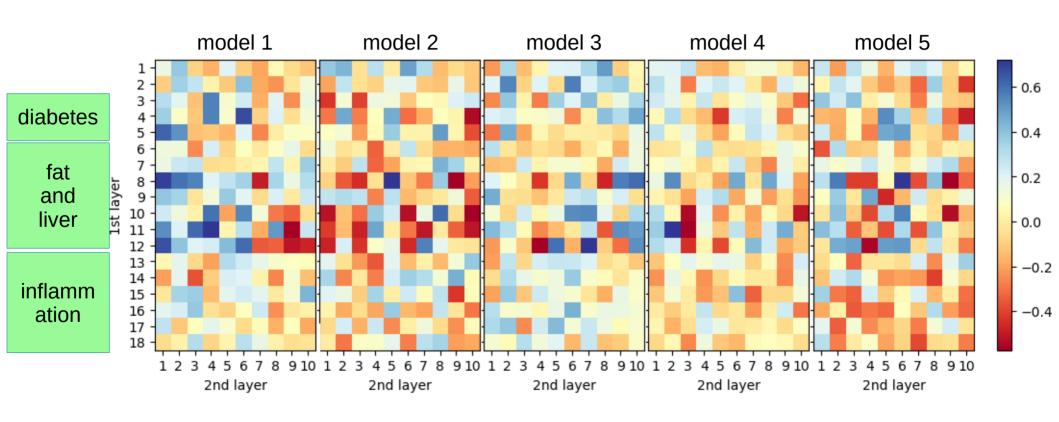
Can we explain how a model decides?



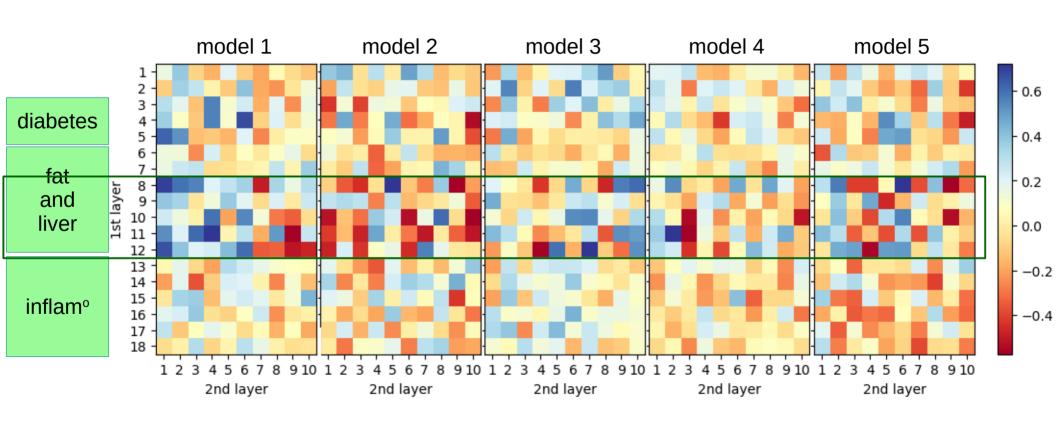
Importance of inputs



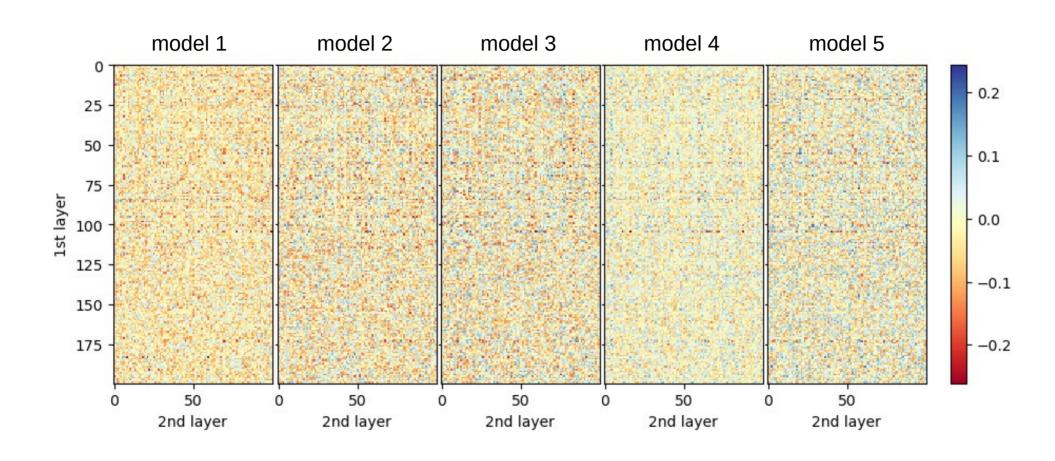
Clinical data module weights, inputs



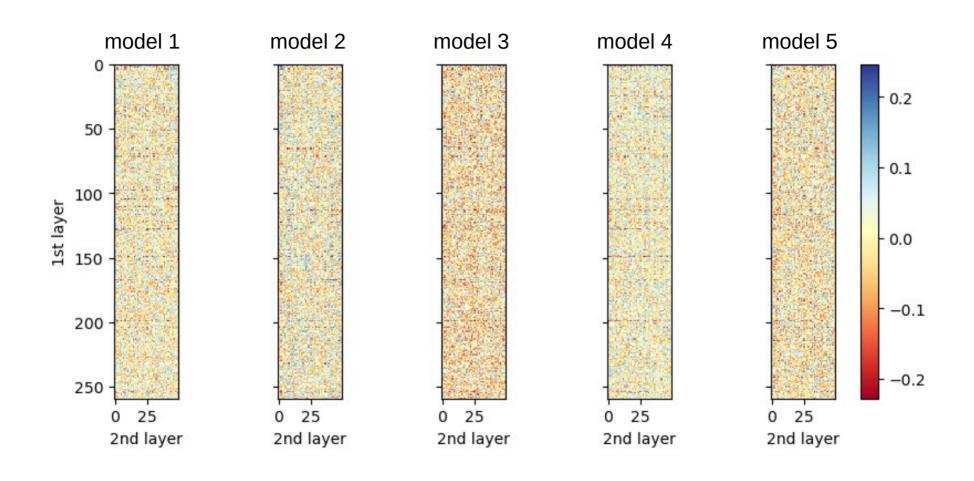
Clinical data module weights, inputs



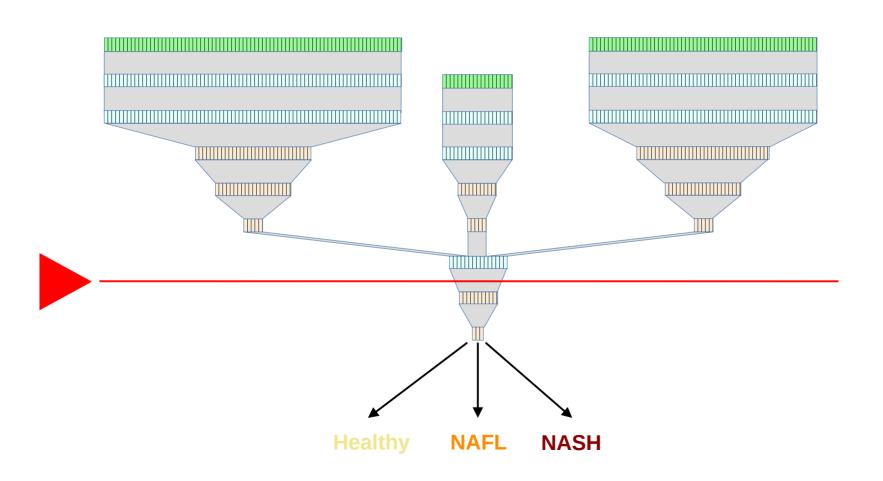
RNAseq module weights, inputs



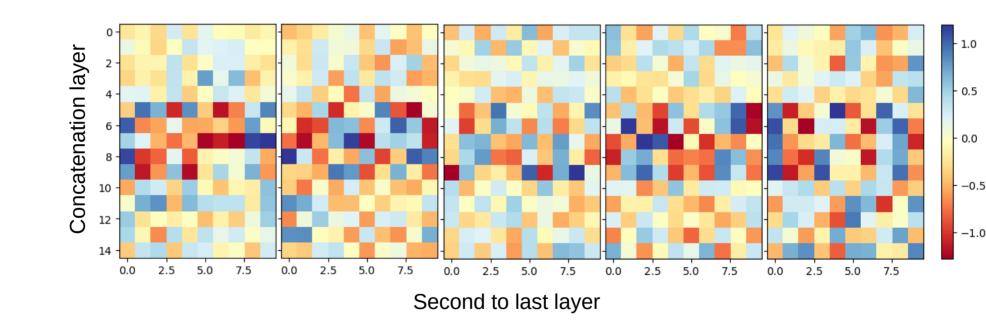
Methylation module weights, inputs



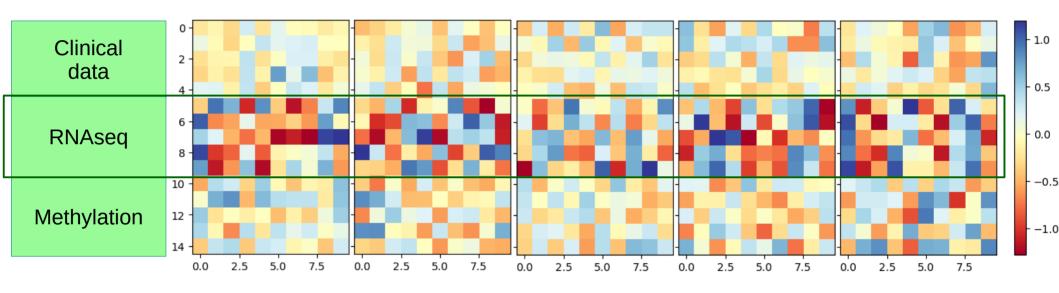
Importance of modules



Impact of the different modules after concatenation

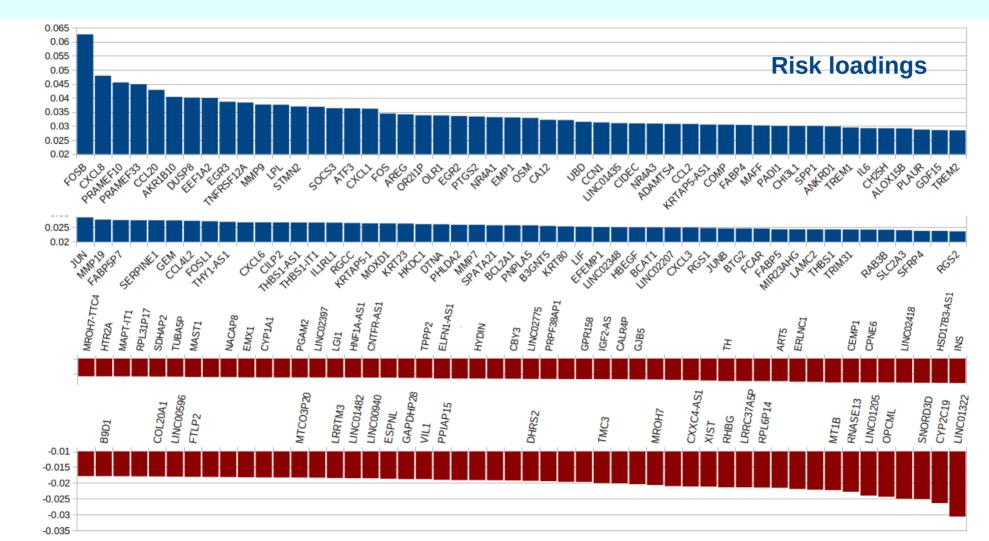


Impact of the different modules after concatenation



In all five models, the RNAseq module has the main impact

100 protection and risk loadings on PC3



What now? This project

Making the tools more useful:

We need to incorporate metabolomics and genotypes.
The latter will require more complex architectures
(one-hot encodings+CNN, genome-informed local structures, etc.)

We need tools using blood molecular phenotypes as input:

1) non-invasive, 2) with a liver biopsy, we do not need molecular phenotypes...

Understanding the basis of the decisions, and the relationships between inputs:

What happened to PreciNASH subjects? NASH FP became TP? HCC?

Analyse the data generated during model training (loadings for RNAseq and methylation, age-corrected methylation, etc.)

Interpretable AI approaches, including perturbation (e.g., ablation) and addition of attention structures.

What now? EGID and PreciDIAB

Nobody can ignore AI; Nobody should ignore AI

Al is part of a PreciDIAB workpackage (and of almost any recent project currently ongoing or submitted by UMR 1283/8199)

We need more deep learning approaches to learn from different data types (genotypes, ATAC-seq, chromosome capture, socioeconomic and psychological data, etc.): e.g., prior knowledge embeddings, LLMs, multi-omics attention, Vision Transformers

Al as a tool for discovery and explanation, on par with estimation, prediction, and clustering

This requires scaling up → money, but more importantly brains.

Acknowledgements

Philippe Froguel Amélie Bonnefond

Mathilde Boissel Lijiao Ning Emma Henriques ShuangShuang Geng

Anne-Sophie Ledoux Vincent Massy

Amna Khamis Stefan Gaget Mehdi Derhourhi

Hélène de Gavre Mélanie Hocquet François Pattou (PreciNASH)

R package developers (VIM, MICE, DESEq2, ChAMP)

Python package developers (Tensorflow/Keras, Numpy, Pandas, Scikit-learn)

Marie Le Novère

