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Excitatory post-synaptic potential
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Bidirectional synaptic plasticity
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Calmodulin, the memory switch
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Structure of Calmodulin

X Y z -Y =X -2
20- K GDGTITTK - 31
56- A GNGTIDVFP - 67
93- K GNGYISAA -104

I -140

GDGQVNYE

-~

EF hand

|IGC Lisbon 16 January 2012 EMBL-EBI



State transitions of calmodulin
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State transitions of calmodulin
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Calmodulin is ultra-sensitive
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Origins of cooperativity: Bohr
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iv PROCEEDINGS OF THE PHYSIOLOGICAL origins Of cooperatiVity: HiII

The possible effects of the aggregation of the molecules
of hemoglobin on its dissociation curves. By A. V. HiLL. Hill (1910)] PhySIOI 40: iv-Vil.

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to heemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant results.

Qur work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hamoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hzmoglobin in solutions of
various salts, and with he&moglobin prepared by Bohr's method,

The equation for the reaction would be

Hb +0, = HbO,,
Hb, + 0, == Hb, Oy,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

K'a? Ka
I-F_K_'Tnx'-l-(lm—”i-m ............... (A),

y=>x
where A%/, is as Hb,, (100 — 1)*/, as Hb, K" is the equilibrium constant
of the reaction Hb, + 20, 3 Hb,0, and K that of Hb + O, === HbO,:
K has the value 125 (Barcroft and Roberts).
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Hill Plot

1+ K[ X]n

Hill equation

Y =

Y
log v = nlog K + nlog|x] Hil plot A

<< nlogK

Effect increases in function of

the signal to the power of n: Slope =n —
n>1, ultra-sensitive

n<1, infra-sensitive o

BUT cooperativity of ligand,
not of binding sites: unique affinity
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM. B

VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOI Loa
By G. 8. ADAIR, 3

Wire tHE CoLrasoraTion or A, V. Boce ann H. Fiern, |

{From the Medical Laboratories of the Massarhuseits General Hos
Boston.)

- +
{Received for publication, January 7, 1925.) 0 L7

This work gives the oxygen dissociation curves of so

previously investigated in regard to their acid-hindig ang
Adair (1925) J Biol Chem 63: 529

1 Ki[z] + 2K5[2]* + 3K3[z]® + 4Ky[z]*
nl+ Kilz] + Kalz]? + Ks[z]? + Ky[x]* Loa ac

2

Y =

0.0 o5 1o
F1a. 2. Test of formula (6). Curve drawn from 6 experimental points
from Table IV,
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM.
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VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN.* 3F A
By G. 8. ADAIR, A
Wit tHE CoLrasoraTion or A, V. Boce anp H. FieLn, Jr.
(From the Medical Laborateries of the Massachusetts General Hospital, 2} -
Boston.)

{Reeceived for publieation, January 7, 1925.)
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~
This work gives the oxygen dissociation curves of solutions | ™ L 4
previously investigated in regard to their acid-binding and base- | =
S
Adair (1925) J Biol Chem 63: 529 2
20 J
S or
v 1 K4 [CB] —+ 2K2[£B]2 —+ 3K3[CE]3 —+ 4K4[CE]4 -1t 4

nl+ Ki[x] + Ko [x]? + K3[x]? + K4[x]*

Imai (1973) Biochemistry 12: 798-808
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Adair-Klotz model applied to Cailmodulin

Klotz (1946) The Application of the Law of Mass
Action to Binding by Proteins. Interactions with
Calcium. Arch Biochem, 9:109-117.
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Corresponding induced-fit model

K
1
Ca’*+CaM ® CaCaM K
2
+Ca*t > Ca,CaM K
3
+Catt > Ca,CaM K
/ 4
/ +Ca*t > Ca,CaM
/
/
/

Binding to targets
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That does not work ...
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We knew it would not work

®m  Calmodulin bound to three calcium activates calcineurin
Kincaid and Vaughan (1986). PNAS, 83: 1193-1197

m  Calmodulin bound to two calcium can bind CaMKI|
Shifman et al (2006). PNAS, 103: 13968-13973

m  Calmodulin affinity for calcium increases once bound to CaMKII

Shifman et al (2006) [but many previous reports on other targets: e.q.
Burger et al (1983). /JBC, 258: 14733-14739 ;
Olwin et (1984). JBC 259: 10949-10955]

m  Calcium activates both LTP and LTD through calmodulin
Lisman (1989) PNAS, 86: 9574-9578
High [Ca®*] (high freq) OCaMKIl ; Low [Ca**] (low freq) OCalcineurin
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Allostery and state selection

=) Monod, Wyman, Changeux (1965). On the nature
of allosteric transitions: a plausible model.
J Mol Biol, 12: 88-118
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Modulation of thermal equilibria # induced-fit
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Concerted transitions # sequential model
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Monod-Wyman-Changeux model
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Monod-Wyman-Changeux model
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- = N Monod-Wyman-Changeux model
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“Hill” Plot for MWC model
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Concerted transition
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Stefan MI, Edelstein S), Le Novere N (2008) An allosteric model of calmodulin explains
differential activation of PP2B and CaMKIIl. Proc Nat/ Acad Sci USA, 105:10768-10773
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Concerted transition
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Observation Vs. Prediction
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Warren et al. (2007).
J Mol Biol 374: 517-527
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Observation Vs. Prediction
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Extended MWC model necessary for Calmodulin

1+ exk
v 1 2 (ﬂ'é [0+ ﬂj)) L1 ( 1+ 9% 2i (Cm‘i 11+ Ej&j))
o 1+ epi
L1+ o) + LT (5552 ) T+ o
_ = ai = [ligandl/K"
Any number of different Ha
sites per protomer. = vk =[modulatorl/K?
Several protomers can '
be carried by one subunit m G = KRi,.ig/ KT,-,”g
— R T
Based on Rubin and Changeux m ek = K e/ K e

(1966) J Mol Biol, 21: 265-274

Stefan M.l., Edelstein S.]., Le Novere N. Computing phenomenologic Adair-Klotz
constants from microscopic MWC parameters. BMC Systems Biology (2009), 3: 68

|IGC Lisbon 16 January 2012 EMBL-EBI



Simplification of the model for finding L and ¢

m Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: c is unique

m  Additional simplification to determine L: affinities are

identical
I + ve

all + a) + L( )Cﬂ(l + ca)?

_ 1 +
Y= S
)4 (1+*y€

EMBL-EBI
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Targets as allosteric effectors
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Peersen et al. (1997) Prot Sci, 6: 794-807
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Simplification of the model for finding L and ¢

m Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: ¢ is unique

= Additional simplification to determine L: affinities are

identical
I + ve

all + a) + L( )Cﬂ(l + ca)?

1+

Y =

m  Model constraints for the determination of c and L

Ca binding in presence of target: none, skMLCK, PhK5,
CaATPase (Peersen et al (1997) Prot Sci 6: 794-807).
Concentration at 50% saturation.

100 000 parameter sets plus least-square

13 identical minima. e for skMLCK is 10'*, which can be taken
as skMLCK binding only to R state.
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Simplification of the model for finding L and ¢

m Hypothesis for the whole model: free energy of
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; (1+’}f€ 3
) a(l + o) +L\1+T)Cﬂi(1 + car) [=20670
Y= s (’l+’}f€ | A
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Relaxation of the model for finding Ki

m Determination of individual affinities:

2:‘ (af Hj (1+ rxj)) + L E,; (C Q; Hj (1+ Cr_:tj))
[La+a)+L]L 0O +ca

Y =0.25
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Relaxation of the model for finding Ki

m Determination of individual affinities:

2:‘ (af Hj (1+ rxj)) + L E,; (C Q; Hj (1+ Cr_:tj))
[La+a)+L]L 0O +ca

Y =0.25

B Model constraints for calcium dissociation constants

Complete CaM (Bayley et al (1996) Prot Sci 5: 1215-1228)

N and C term Mutants (Shifman et al (2006) PNAS, 103: 13968-
13973)

R-only — skMLCK (Peersen et al (1997) Prot Sci 6: 794-807)
Concentration at 25% and 50% saturation.

Systematic logarithmic sampling of the affinity space (coarse-
grained, 50 values per affinity, then refined 66 values per
affinity) = 25 millions parameter sets
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Relaxation of the model for finding Ki

m Determination of individual affinities:

2:‘ (af Hj (1+ rxj)) + L E,; (C o; Hj (1 + Cr_:tj))

v Kf =8.32 10°

Y =0.25
l_L- (1 +EE.,_-}+L ﬂr(l +CEE5) KRZ=1.66 10_8
m  Model constraints for calcium dissociation constants KRC=1-74 107

R -8
Complete CaM (Bayley et al (1996) Prot Sci 5: 1215-1228) K D—1-45 10

N and C term Mutants (Shifman et al (2006) PNAS, 103: 13968-
13973)

R-only — skMLCK (Peersen et al (1997) Prot Sci 6: 794-807)
Concentration at 25% and 50% saturation.

Systematic logarithmic sampling of the affinity space (coarse-
grained, 50 values per affinity, then refined 66 values per
affinity) = 25 millions parameter sets
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Comparison with experiments
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Crouch and Klee (1980) Biochemistry, 19: 3692-3698c
Porumb et al (1994) Anal Biochem 220: 227-237

Peersen et al (1997) Prot Sci 6: 794-807
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Full mechanistic thermodynamic model

LcaCsCcCp

320 reactions
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Binding to target increases the affinity for Ca?%*

i

<
=)
I

fractional occupancy
e
=9
| |

- R state
- T state
. no target

+CaMKII

[Ca]

le-04
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Activity of unsaturated calmodulin

®  Fractional activity depends on the number of calcium ions
bound. E.qg.:

Ro 1

T,  L-c2

= R/T,= 1/20000 (1/L)

= R/T, =1/170

= R/T,=0.69 ===p half-saturation = equi-probability
= R/T, =80

= R,/T,=10000
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But ... we're out of the physiological range?

|| PrintPrint-A=tmage Save data Zoom out
. : dose-response
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Targets stabilises Ca” + binding: This is Systems Biology!
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Bidirectional synaptic plasticity
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Bidirectional synaptic plasticity

half saturation of calmodulin
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activity (normalised)

Bidirectional synaptic plasticity
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Conclusions

= We designed an allosteric model of Calmodulin, based on only
two states for the EF hands, both binding calcium with different
affinities, and a concerted transition for all 4 EF hands. We
parametrised the model with experimental data-sets.

The model fits independent experimental datasets.

The affinitity of CaM for calcium increases upon binding of the
target.

CaM can be significantly in the open state even with less than
4 calcium bounds.

CaM can bind its targets even when with less than 4 calcium
bounds.

= The model displays an activation of the sole PP2B at low

concentration of calcium, while high concentrations activate both
PP2B and CaMKIl.
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Allosteric model of Calmodulin function
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Calcium dose-response on 25 uM Calmodulin
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Calcium dose-response on 0.1 uM Calmodulin
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What is ligand depletion?
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What is ligand depletion?
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What is ligand depletion?

Chemistry (mass-action law)

= f( )

free ligand
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What is ligand depletion?

Chemistry (mass-action law)

= f( )

free ligand

Cellular signalling

total signal
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What is ligand depletion?

Chemistry (mass-action law)
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What is ligand depletion?

Chemistry (mass-action law)

This is generally not the case in signalling:
Concentrations of sensors are in micromolar — \
range, as are the dissociation constants. -

free ligand
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Dose-response depends on Calmodulin concentration
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Dose-response depends on Calmodulin concentration
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Ligand-depletion modifies sensitivity
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But we cannot build a large [Ca**] in neurons ...
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Ligand-depletion decreases effective cooperativity
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How general is a dose-response?
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A “dose-response” cannot be reused directly!
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Conclusions

m Dose-responses are the basic characterisations of
“systems”, but also at the core of pharmacological
treatments. Here we show that:

A “dose-response”cannot be reused directly in
models of signalling systems. Instead one needs to
build “mechanistic” models and run parameter-
fitting approaches.

Ligand depletion decreases the effective
cooperativity of transducers in situ

Ligand depletion increases the dynamic range

= Modifying the concentration of the sensor may be a
powerful way to quickly adapt to a new environment,

and switch from a measurement mode to a detection
mode.
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