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compneur group's themes and projects
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The brain
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The brain
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The brain
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The neuron
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The dendrite
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Bidirectional synaptic plasticity
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Calmodulin, the memory switch
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Structure of Calmodulin
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State transitions of calmodulin
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State transitions of calmodulin
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Calmodulin is ultra-sensitive
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Origins of cooperativity: Bohr
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Bohr C (1903) Theoretische behandlung der quantitativen verhaltnisse
bei der sauerstoff aufnahme des hamoglobins Zentralbl Physiol 17: 682
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iv PROCEEDINGS OF THE PHYSIOLOGICAL origins Of cooperatiVity: HiII

‘The possible effects of the aggregation of the molecules
of heemoglobin on its dissociation curves. By A. V. HiLL. Hill (1910)] PhySIOI 40: iv-Vii.

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hamoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb = 16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves a relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant results.

Our work led me to believe that the divergence between the results
of different observers was due to an aggregation of the h@moglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hamoglobin in solutions of
various salts, and with h@moglobin prepared by Bohr's methed.

The equation for the reaction would be

Hb + 0, === HbO,,
Hb, + n0, == Hb,0,,,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.
If there were in the solution only Hb and Hb, the dissociation
curve would be
H'g? K
y—lm+(lm—'ﬁ.)m ............... (A),

where A ¢/, is as Hb,, (100 — 1)"/, as Hb, K’ is the equilibrium constant
of the reaction Hb, 4+ 20, 22 Hb,0, and K that of Hb + O, =2 HbO,:
K has the value ‘125 (Barcroft and Roberts).
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM,

VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN.*
By G, 8. ADAIR.

Wite TaE CoLLaporaTion oF A. V. Bocg anp H. Fieun, Jr.

(From the Medical Laboratories of the Massachuseits General Hospital,
Boston.)

{Reeceived for publieation, January 7, 1925.)

This work gives the oxygen dissociation eurves of solutions
previously investigated in regard to their acid-binding and base-

Adair (1925) J Biol Chem 63: 529
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Origins of cooperativity: Adair-Klotz
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~Nt
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This work gives the oxygen dissociation curves of so
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1 Ki[z] + 2K5[2]* + 3K3[z]° + 4Ky[z]*
nl+ Kilz] + Kalz]? + Ks[z]? + Ky[x]* Loa ac

2

Y =

0.0 o5 1o
F1a. 2. Test of formula (6). Curve drawn from 6 experimental points
from Table IV,
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM.
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10g [Y/(1-Y)]

l K [CB] + 2K2[£B]2 + 3K3[CE]3 + 4K4[CE]4 -1t 4
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Y =

Imai (1973) Biochemistry 12: 798-808
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Adair-Klotz model applied to Calmodulin

Klotz (1946) The Application of the Law of Mass
Action to Binding by Proteins. Interactions with
Calcium. Arch Biochem, 9:109-117.
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Corresponding induced-fit model
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That does not work ...

|| Print save data.. Zoom out

dose-response

7e-06
6e-06 -
5e-06
4e-06 -
3e-06

26-06

IE_{IE_:
ﬂ_: ..........|||||II||||||||||HHH

I T I T T T T I
1e-05 0.0001 0.001
|~ [ca4_caM_Kil]|[cal_0 | [ca4_CaM_CaN]|[cal_0

IGBMC, Strasbourg, 23 February 2010 EMBL-EBI



That does not work ...

®m  Calmodulin bound to three calcium activates calcineurin
Kincaid and Vaughan (1986). PNAS, 83: 1193-1197

m  Calmodulin bound to two calcium can bind CaMKIl
Shifman et al (2006). PNAS, 103: 13968-13973

m  Calmodulin affinity for calcium increases once bound to CaMKI|

Shifman et al (2006) [but many previous reports on other targets: e.g.
Burger et al (1983). JBC, 258: 14733-14739 ;
Olwin et (1984). JBC 259: 10949-10955]

m  Calcium activates both LTP and LTD through calmodulin
Lisman (1989) PNAS, 86: 9574-9578
High [Ca* ] (high freq) = CaMKIl ; Low [Ca* ] (low freq) = Calcineurin
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Mistake: signals, activity flow and induction
if X1 then X2

if X2 then not X3

2
i_ if NOT X1 then NOT X2
X2
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Induction Vs Selection

®  |nduction = BAD
(Lamarck's first law, instructive theory of antibody formation,
directed axonal growth, induced-fit ...)

IGBMC, Strasbourg, 23 February 2010 EMBL-EBI



Induction Vs Selection

®  |nduction = BAD
(Lamarck's first law, instructive theory of antibody formation,

directed axonal growth, induced-fit ...)

m  Physically meaningless. Calcium has no inertia. Calcium cannot
“trigger” a conformational change
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Induction Vs Selection

®  |nduction = BAD
(Lamarck's first law, instructive theory of antibody formation,
directed axonal growth, induced-fit ...)

m  Physically meaningless. Calcium has no inertia. Calcium cannot
“trigger” a conformational change

m Selection = GOOD
(natural selection, clonal selection, synapse stabilisation,
conformation stabilisation ...)
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Allostery and state selection

=) Monod, Wyman, Changeux (1965). On the nature
of allosteric transitions: a plausible model.
J Mol Biol, 12: 88-118
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Modulation of thermal equilibria # induced-fit

AG A Transition State
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Concerted transitions # sequential model

o0 - HR
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Monod-Wyman-Changeux model
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Monod-Wyman-Changeux model
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Monod-Wyman-Changeux model
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“Hill” Plot for MWC model
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Concerted transition
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Zn?*-lpaded N-CaM Ca?*-free N-CaM (1CFD) Ca?*-loaded N-CaM (1CLL)y
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Warren et al. (2007).
J Mol Biol 374: 517-527
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Observation Vs. Prediction
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Full mechanistic thermodynamic model

LcaCsCcCp

320 reactions
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Extended MWC model necessary for Calmodulin

Based on Rubin and Changeux
(1966) J Mol Biol, 21: 265-274

1 1
a(1—|—a)”_1—|—L< +df0 1+ ey

ca(l + ca)™ 1
1+ 05 1+7> ( )

14+dB 1+ ey
1+06 1+~
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Extended MWC model necessary for Calmodulin
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Computing phenomenologic Adair-Klotz constants from microscopic MWC parameter

" Stefan M.l., Edelstein S.]., Le Novere N. ,‘
S.
. BMC Systems Biology (2009), 3: 68
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Simplification of the model for finding L and ¢

m Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: c is unique

= Additional simplification to determine L: affinities are

identical
I + ve

all + a) + L( )Crx(l + ca)’

I+ vy

I + e
4
(1 + ) +L(1+?

}_7:

){1 + ca)

EMBL-EBI
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Targets as allosteric effectors
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Simplification of the model for finding L and ¢

m Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: c is unique

m  Additional simplification to determine L: affinities are

identical
I + ve

all + a) + L( )Crx(l + ca)’

I+ vy

I + e
4
(1 + ) +L(1+?

}_7:

){1 + ca)

m  Model constraints for the determination of c and L

Ca binding in presence of target: none, skMLCK, PhKS5,
CaATPase (Peersen et al (1997) Prot Sci 6: 794-807).
Concentration at 50% saturation.

100 000 parameter sets plus least-square

13 identical minima. e for skMLCK is 10®, which can be taken
as skMLCK binding only to R state.
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Simplification of the model for finding L and ¢

m Hypothesis for the whole model: free energy of
conformational transition is evenly distributed: c is unique

= Additional simplification to determine L: affinities are

identical
; (] + ye 3
) a(l + a)” + L 1+ ?)Ca(l + ca) [=20670
Y= s (l+’}re | A
(14 e+ Ll )+ ca) c=3.96.103

m  Model constraints for the determination of c and L

Ca binding in presence of target: none, skMLCK, PhKS5,
CaATPase (Peersen et al (1997) Prot Sci 6: 794-807).
Concentration at 50% saturation.

100 000 parameter sets plus least-square

13 identical minima. e for skMLCK is 10®, which can be taken
as skMLCK binding only to R state.
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Relaxation of the model for finding Ki

m Determination of individual affinities:

2,; (af Hj (1 + t‘_l'j)) + L 2,; (C Q; ﬂj (1+ Cﬂtj))
[La+a)+L]L 1 +ca)

Y =0.25

IGBMC, Strasbourg, 23 February 2010 EMBL-EBI | &



Relaxation of the model for finding Ki

m Determination of individual affinities:

2,; (af Hj (1 + t‘_l'j)) + L 2,; (C Q; ﬂj (1+ Cﬂtj))
[La+a)+L]L 1 +ca)

Y =0.25

m Model constraints for calcium dissociation constants

Complete CaM (Bayley et al (1996) Prot Sci 5: 1215-1228)

N and C term Mutants (Shifman et al (2006) PNAS, 103: 13968-
13973)

R-only - skMLCK(Peersen et al (1997) Prot Sci 6: 794-807)
Concentration at 25% and 50% saturation.

Systematic logarithmic sampling of the affinity space (coarse-
grained, 50 values per affinity, then refined 66 values per
affinity) = 25 millions parameter sets
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Relaxation of the model for finding Ki

m Determination of individual affinities:

Zi (af Hj (1 + t‘_l'j)) + L 2,; (C Q; ﬂj (1 + Cﬂtj))

v Kf =8.32 10°

Y =0.25
H.,_- (1+EE.,)+L H:(l +CEEI-) KRZ=1.66 10.8
m  Model constraints for calcium dissociation constants KRC=1-74 10°

R 3
Complete CaM (Bayley et al (1996) Prot Sci 5: 1215-1228) K D 1.45 10

N and C term Mutants (Shifman et al (2006) PNAS, 103: 13968-
13973)

R-only - skMLCK(Peersen et al (1997) Prot Sci 6: 794-807)
Concentration at 25% and 50% saturation.

Systematic logarithmic sampling of the affinity space (coarse-
grained, 50 values per affinity, then refined 66 values per
affinity) = 25 millions parameter sets
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Comparison with experiments
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— (COPASI simulation
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le-08 le-07 le-06 le-05 le-04 le-03

[Ca] (M)
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Comparison with experiments
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Comparison with experiments

[Ca_bound]/[calm_total]

L= L Crouch data
¢ Porumb data
B 5 <> Peersen data
g — (COPASI simulation
ﬂ L — "f\..! H ; | |||||||| | | ||||||| | 1 1 1 1111
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[Ca] (M)

IGBMC, Strasbourg, 23 February 2010 EMBL-EBI




Binding to target increases the affinity for Ca#*
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Activity of unsaturated calmodulin

®m  Fractional activity depends on the number of calcium ions
bound. E.qg.:

Ro 1

T,  L-c2

= R/T,= 1/20000 (1/L)

= R/T, =1/170

= R/T,=0.69 ===p half-saturation = equi-probability
= R/T, =80

= R,/T,=10000
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But ... we're out of the physiological range?

|| Print; Print A= image Save data Zoom out

dose-response

Rhysiological
Jrange
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| }arw//

0.4 —

0.2 /
D —
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5e06 le-05 15e-05 2e-05

mol/I
— Values[ybar]|[cal_0 I — Values[Rbar]|[cal 0

Al <l
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This Is Systems Biology!

|| Print; Print = image Save data Zoom out
. . dose-response
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Bidirectional synaptic plasticity
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Bidirectional synaptic plasticity

half saturation of calmodulin
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Bidirectional synaptic plasticity

LTD LTP
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Conclusions

= We designed an allosteric model of Calmodulin, based on only
two states for the EF hands, both binding calcium with different
affinities, and a concerted transition for all 4 EF hands. We
parametrised the model with experimental data-sets.

The model fits independent experimental datasets.

The affinitity of CaM for calcium increases upon binding of the
target.

CaM can be significantly in the open state even with less than
4 calcium bounds.

CaM can bind its targets even when with less than 4 calcium
bounds.

= The model displays an activation of the sole PP2B at low

concentration of calcium, while high concentrations activate both
PP2N and CaMKIl.
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Allosteric model of Calmodulin function

fraction of
occupied 1.0
binding sites
(Y)
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Calcium dose-response on 25 uM Calmodulin

dose-response
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Calcium dose-response on 0.1 uM Calmodulin
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Calcium dose-response on 0.1 uM Calmodulin

| dose-response
. Print Sawve Image Sawve Data Zoom out Show All Hide all
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/Edelstein S.J., Stefan M.I, Le Novere N. Ligand depletion in vivo modulates the dynamic
- range and cooperativity of signal transduction. PLoS One (2010), 5(1): e8449
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What is ligand depletion?
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What is ligand depletion?

Chemistry (mass-action law)

= f( \ 4 )

free ligand
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What is ligand depletion?

Chemistry (mass-action law)

= f( \ 4 )

free ligand

Cellular signalling

& &~

total signal
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What is ligand depletion?

Chemistry (mass-action law)

Y
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What is ligand depletion?

Chemistry (mass-action law)

= f( A 4 )

free ligand

if ‘+‘ << Kd

This is generally not the case in signalling:
Concentrations of sensors are in micromolar
range, as are the dissociation constants.

V‘v ‘
$'0'®

\ 4

\ 4
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Dose-response depends on Calmodulin concentration

[CaM]= 13.8 x 10° M

[CaM]= 1.8 x 10° M

CaM]= 10" M '
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no ligand depletion

Fractional
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Fractional
activation

5e-5 le-4
[Ca2+]tot
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Dose-response depends on Calmodulin concentration

[CaM]= 1.8 x 10° M [CaM]= 13.8 x 10° M
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rat spleen
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Ligand-depletion modifies sensitivity
[CaM]= 28 x 10° M

[CaM]= 1.8 x 10° M bovine caudate nucleus
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0.2 1

0.0 - . :
Oel b5e-5 1e-4

IGBMC, Strasbourg, 23 February 2010 EMBL-EBI



But we cannot build a large [Ca* ] in neurons ...

[CaM]= 1.8 x 10° M [CaM]= 13.8 x 10° M
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Ligand-depletion decreases effective cooperativity
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How general is a dose-response?

8
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A “dose-response” cannot be reused directly!
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Conclusions

m Dose-responses are the basic characterisations of
“systems”, but also at the core of pharmacological
treatments. Here we show that:

A “dose-response”cannot be reused directly in
models of signalling systems. Instead one needs to
build “mechanistic” models and run parameter-
fitting approaches.

Ligand depletion decreases the effective
cooperativity of transducers in situ

Ligand depletion increases the dynamic range

= Modifying the concentration of the sensor may be a
powerful way to quickly adapt to a new environment,

and switch from a measurement mode to a detection
mode.
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