Quantitative
Pharmacology

Quantitative
Systems biochemica

Pharmacology modelling

High throughput
data generation

GSK, 26 May 2015




Drug discovery modelling: pharmacometrics
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Drug discovery modelling: pharmacometrics
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Drug discovery modelling: pharmacometrics

PK PD
A A
[drugA] effect
. .
tim
Effect of A+B?
A
[drugB] effect
. .
time [drugB]
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Systems modelling

diT] _
= —k1 x |T] x [D1]

[T]‘\
[ time
.

—— = —k2 x [T x [D2]
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@ |
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Systems modelling

= —kl x [T] x |[D1] — k2 x |[T] x |[D2]
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Drug discovery and pharmacometrics models
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Drug discovery and pharmacometrics models
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Drug discovery and omics
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Allosteric calcium sensors
in synaptic plasticity

Nicolas Le Novere, Babraham Institute
n.lenovere@gmail.com
http://lenoverelab.org
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Excitatory post-synaptic potential
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Bidirectional synaptic plasticity

I

e.g. high frequency stimulation
e.g. low frequency stimulation
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Calmodulin, the memory switch

L{,té"ée l Il AMPAR
i

NMDAR

Lisman (1989) \x\

PNAS, 86 9574-8

Calmodulln
low high
calcium calcium

Calcineurin (PPZB PP3) | CaMKII
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Structure of a Calmodulin Ca%* binding domain

X Y z -Y =X -2
20- K GDGTITTK - 31
56- A GNGTIDVFP - 67
93- K GNGYISAA -104
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Corresponding induced-fit model

K Binding to targets

C82++C8M<71’ CaCaM K

\ + CaZ*H% Ca,CaM k.
'{g FCate > Ca,CaM g

+Ca¥< > Ca,CaM




That does not work ...

dose-response normalised

[CaN]=[CamKII]=[CaM]/10 :
04 Kd_CaMKII = 1OXKd_CaN;
i Software COPASI

0.2 1

1e-05 0.0001 0.001
mol/l
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0.6 1
0.4 —

0.2 1

We knew it would not work

dose-response normalised

[CaN]=[CamKII]=[CaM]/10 ;
Kd CaMKIl = 10xKd_CaN;
Software COPASI

GSK, 26 May 2015

T I T T T T I
0.0001 0.001
mol/fl

Calmodulin can activate calcineurin with 3 Ca** (Kincaid and Vaughan
(1986). PNAS, 83: 1193-1197)

Calmodulin can bind CaMKII with 2 Ca?* (Shifman et al (2006). PNAS,
103: 13968-13973)

Calmodulin affinity for calcium increases once bound to CaMKIl
(Shifman et al (2006) [but many previous reports on other targets:
e.qg. Burger et al (1983). /BC, 258: 14733-14739 ;

Olwin et (1984). /JBC 259: 10949-10955])




Monod, Wyman, Changeux (1965)

On the nature of allosteric transitions:
a plausible model

J Mol Biol, 12: 88-118
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(1 Modulation of thermal equilibria # induced-fit

AG A Transition State
L]
[
[RG] .................................................................................................................
L > 1 = Equilibrium strongly biased‘ >
“Inactive”=T “active”=R
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(1 Modulation of thermal equilibria # induced-fit

AG A

o

_[T@] _KR
L_ﬂ C—F

c << 1 = ligand has strong effect ‘
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@ Concerted transitions # sequential model
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Monod-Wyman-Changeux model
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Monod- Kman-Changeux model
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Allosteric model of Calmodulin activation

APO

liganded

-100000 T4 = \

Stefan MI, Edelstein S, Le Novere N (2008) Proc Natl Acad Sci USA, 105:10768-10773
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII _722
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Allosteric model of Calmodulin activation
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Allosteric model of Calmodulin activation

APO

liganded




Allosteric model of Calmodulin activation
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Allosteric model of Calmodulin activation
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Allosteric model of Calmodulin activation
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Parameterisation using accurate measurements

e Ca®* binding in presence of targets: none, skMLCK, PhK5, CaATPase
« Ca?* dissociation constants for complete calmodulin and N and C term mutants

1 in 20000 active w/o Ca**

!

0670 KR =8.32 10°
KR =1.66 10°

C=3.96 107 KR =1.74 10°
; KR =1.45 10

Affinity of Ca** for “open
state” 250 times higher
than for “closed state”

GSK, 26 May 2015

2 high, 2 low, as expected




Comparison with experiments (binding function)

Ca?* bound
CaM

(]
|

LI Crouch data
¢ Porumb data
<> Peersen data

— COPASI simulation

{1
Tkl

{] L I— H | 1 1 1 1111 | | | 1 1111 || | o I o ] 1
le-08 le-07 le-06 le-03 le-04 le-03
[Ca] (M)

Crouch and Klee (1980) Biochemistry, 19: 3692-3698c
Porumb et al (1994) Anal Biochem 220: 227-237
Peersen et al (1997) Prot Sci 6: 794-807
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Activity of unsaturated calmodulin (state function)

Fractional activity depends on the number of calcium ions bound

Ry 1

T L2

R,/T, = 1/20000 (1/L)

R,/T, = 1/170
R,/T, = 0.69 === half-saturation = equi-probability

R,/T, = 10000
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Targets as allosteric effectors
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Peersen et al. (1997) Prot Sci, 6: 794-807
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Binding to target increases the affinity for Ca#

1A

0.5

- R state
== T state
=== NO target

+CaMKI|

1e 1e* 1e2

[Ca*’]
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Targets stabilises Ca* binding into the
physiological range

14 . :
B Physiological
Y range
ONE spike
0.5 (e —
== R state
= T state
=== NO target
+CaMKIl
0 -
1e® 1e* 1e?

[Ca*’]
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Bidirectional synaptic plasticity
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Bidirectional synaptic plasticity

half saturation of calmodulin: CaN half activated
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Bidirectional synaptic plasticity

LTD LTP
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Different binding to different targets

3.0

V ¥V Jiang 2010, N-lobe

X X Grabarek 2005, N-lobe
+ + Van Scyoc 2002, N-lobe
O O Chen 2011, N-lobe

¢ ¢ Zhou 2010, N-lobe

O O Evans2009, N-lobe

|V ¥ Jiang 2010, C-lobe

X X Tan 1996, C-lobe

+ + Van Scyoc 2002, C-lobe
L|{0O O Chen 2011, C-lobe

¢ ¢ Zhou 2010, C-lobe

O O Evans2009, C-lobe

25F

g
=)

=
wu

([Ca] bound) / [CaM]

Lai M, Brun D, Edelstein S}, Le Novere N (2015)
PloS Comput Biol, 11(1): e1004063
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Hemiconcerted model of calmodulin

o Ze Y Ze
KBT KDT
z
LC LC

O \ O O \

KD Zx., Ko Ak
LN

K, K, Kar K

4 N o4 \

Lai M, Brun D, Edelstein SJ, Le Novere N (2015) PloS Comput Biol, 10(1):e0116616 J
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Calcium binding to lobes and whole CaM

5 T T T 1 T
© o N-lobe saturation, exp.
o C-lobe saturation, exp. 0 ©
al| © © wtCaM saturation, exp. ~0.05
— N-lobe saturation, fit ‘
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s 2] = wtCaM saturation, fit
S
)
c
5
o 2F
M
=
1_
0 G a. B
10 108 10”7 10° 107 10™ 107

[free Ca] (M)



Stabilise R state
of both lobes

Stabilise R state —I al

of C lobe

GSK, 26 May 2015

Effect of R-stabilising targets

—l

[Ca bound] / [CaM]

1

i | L
® ® CaM alone, exp. (Bayley et al. 1996)
5H — CaM alone, simulation
® ® CaM + WFF, exp. (Bayley et al. 1996)
— CaM + WFF, simulation
® ® CaM + WF10, exp. (Bayley et al. 1996)
—— CaM + WF10, simulation

w

(9]

10® 10~ 10° 10° 10
[free Ca] (M)

10

3



Effect of R and T stabilising targets

30 . - T

® o TR2C alone (exp.)

. — TR2C alone, (simul.)
Peptide from 251l ® ® TR2C + WFF (exp.)
skMLCK — R I —  TR2C + WFF (simul.)
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Nav1i2 - T 'C:‘
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Conclusions of part 1

Allosteric model of Calmodulin, with only two states for
the EF hands, binding calcium with different affinities, and
concerted transitions of the EF hands. Parameters
estimated from experimental data-sets.

Model fits independent experimental datasets.
Affinity for calcium increases upon binding of the target.
CaM significantly “active” with less than 4 Ca** bound.

CaM bind its targets with less than 4 Ca** bounds.

The model displays an activation of the sole CaN at low
concentration of calcium, while high concentrations
activate both CaN and CaMKII.
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Digression: on ligand depletion
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Allosteric model of Calmodulin function

2 —_
1.0 —

i obtained with

25 uM CaM

0.5 - /

i [l Crouch data

& Porumb data
- 5 <» Peersen data
el — (COPASI simulation
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Calcium dose-response on 25 1M Calmodulin

Y =) opasi Plot: ' dose-response — Zi
Print Sawve Image Save Data Zoom out Show All Hide all
dose-response
1.0 — L]
0.8 -
T 0.6 —
0.4 —
0.2
i ++++++++
O Q 1 1 1 o= H—o—H—!—H"‘M
. T T — T T — T T — T T —
ﬁ'ﬂg le-07 le-0& 1e-05 0.0001 0001
mol/l
I + Walues[ybarl|[ca]_0 — VWalues[Rbar]|[ca]_0

Numerical simulation with COPASI (http://www.copasi.org)
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Calcium dose-response on 0.1 uM Calmodulin

Y

0.5 -

0. Qﬂ-ﬂﬁ |

=) opasrt Plot: dose-response —— 0 ﬁ
Print Sawe Image Sawve Data Zoom out Show All Hide all
dose-response
1 —_
+++++++M
L
0.8 —
0.6 —
0.4 —
0.2 —
_++++++*"‘+++++++++
D dorid
| . — . —— . . — |
Te-07 Te-06 le-05 0. 0001 0001
mol/l
| + Values[ybar]|[ca]_0 — Values[Rbar]|[ca]_0

Edelstein S.J., Stefan M.I, Le Novere N. Ligand depletion in vivo modulates the dynamic
range and cooperativity of signal transduction. PLoS One (2010), 5(1): e8449

GSK, 26 May 2015
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What is ligand depletion?
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What is ligand depletion?
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What is ligand depletion?

Chemistry (mass-action law)

= f( )

free ligand
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What is ligand depletion?

Chemistry (mass-action law)

= f( )

free ligand

Cellular signalling
= f + )

total signal

GSK, 26 May 2015



What is ligand depletion?

Chemistry (mass-action law)




What is ligand depletion?

Chemistry (mass-action law)

This is generally not the case in signalling:
Concentrations of sensors are in micromolar
range, as are the dissociation constants.

free ligand

If

GSK, 26 May 2015



Dose-response depends on Calmodulin concentration

[CaM]= 13.8 x 10° M

[CaM]= 1.8 x 10° M

[CaM]= 10" M

no ligand depletion

R&Y Fractional
occupancy

Fractional 0.4
activation

0.2 1

b0 s "y
[Ca® Jtot
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Dose-response depends on Calmodulin concentration

[CaM]= 1.8 x 10°® M [CaM]= 13.8 x 10° M

bovine hypothalamus

rat spleen

[CaM]= 10" M

no ligand depletion

R&Y Fractional

occupancy
Fractional 0.4+
activation
024l 1 .
HF R oublished dose-
fosie” response experiments
0.0 4 , |
OeO 5e-5 1e-4

[Caz+ ]tot
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Ligand-depletion modifies sensitivity

[CaM]= 1.8 x 10° M

rat spleen \
~1 uM to 45 uM 0

[CaM]= 10" M

no ligand depletion

~100nM to 25 uM

0.4 1

0.2 1

0.0
0el

R

[CaM]= 28 x 10° M
bovine caudate nucleus

~5 uM to 120 uM

1e-4

[Ca’" Jtot
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Ligand-depletion decreases effective cooperativity

2.5 1
& Saliva (human)
¢ Spleen (rat)
2.0 - White matter (bovine)
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How general is a dose-response?

8

% Response
58 8

B

?

/3
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A “dose-response” cannot be reused directly!

8

g

 Response
¢ 8
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End of digression
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Wait a minute!
Signal transduction is not at equilibrium!

AMPAR post-synaptic potential: 5 ms
Calcium spike: 50 ms
Half saturation calmodulin (kon=1.5e6, koff=100): 5 ms

Relaxation between calmodulin states: 1 ms

autophosphorylation of CaMKIl (kon=6): 100 ms




Ca_buffS o Dynamic of calcium

slow Main input INn the Splne
Ca_buftM _moder Ca_CaN
Ca Li L, Stefan MI, Le Novere N
y (2012) PL0S ONE, 7(9): e43810
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Calcium/calmodulin kinase |l

CaM binding siteS

Calmodulin trapping is

an apparent increase of
affinity of CaMKII for CaM
when T286 is phosphorylated

T286P causes
constitutive activity

Stefan MI, Marshall D, Le Novere N (2012) PLoS ONE, 7(1): e29406 ]




Calcium/calmodulin kinase |l

CaM binding siteS

T286P causes
constitutive activity
Dodecamer;

Trans-phosphorylation of T286

by neighbouring subunits

/3

Babraham )
Institute
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Repeat 1000 times

P A given fraction of activated CaMKll monomers, Calculate the probabilities of having an active neighbour
on one specific side (indicated by the arrow) of the activated monomer of
+ interest (blue outline) (since only the asymmetrical situation is
considered), The possible positions of activated monomers are listed as

Randomly allocate activated monomers to CaMKIl hexamers. the following, with corresponding probabilities:

—= Record the number of hexamers containing different numbers of active

monomers (in red) as the following:

5

o Lo 18 ¢

B e 8
oP oy e ®

Repeat for every 1% increase
of CaMEKll active monomers

&

S

3

Calculate the average population for each number of
active mongmers per hexamer,

Multiply average populations of each number of active monomers
per hexamer by their corresponding probabilities of having an
active neighbour,

-—

a8

r,

The sum of these six numbers is a coefficient that can be used to
adjust CaMKIl autophosphorylation rate.

Y

Fit these 100 coefficients into a polynomial function of activated CaMEI
monamers, and embed this function in the model.

o

315
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Validation of CaMKII kinetics

Frac
T286P

simulation result
0 ! : : Bradshaw 2002 fit  +

0 10 20 30 40 50
time (s)

Bradshaw M, Kubota Y, Meyer T, Schulman H (2003). PNAS 100: 10512-10517.
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Validation of CaM kinetics

Frac
Ca2+ _
released 5|

simulation result
Black 2007 experimental points

+

0 250

time (ms)

Black DJ, Selfridge JE, Persechini A (2007). Biochemistry 46: 13415-13424.

GSK, 26 May 2015
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Validation of calcium-activation of CaN

1.1 }

1 E_ — T ‘

0.9 - +

08 £

£ 3 5
S 07
S 06
£ 05¢
2 04 3 _
= 03¢
& E ;
0.2

0 ' simulation result -

0.1 F Quintana 2005 fit - :

0.2 ., Quintana 2005 experimental points ——

0.1 1 10 100 1000
CaM initial [nM]
Quintana AR, Wang D, Forbes JE, Waxham MN (2005). BBRC 334: 674-680.
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Calmodulin
activation

CaM without targets. Low
frequencies do not activate
calmodulin (binding events
without conformational changes)




Calmodulin
[caMHFEGaM activation

0.8
0.6
0.4
0.2

0
200
100

CaM without targets. Low
frequencies do not activate
calmodulin (binding events
without conformational changes)

L time (s)
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0.8
0.6
0.4
0.2

0
200
100

At high frequency, effects of
calcium signals last much
longer than the signal itself

CaM with targets. Binding to
CaN and CaMKII stabilises
R state, with higher affinity.
Positive feedback loop

=¥ bistability

time (g)
[CaMg)/[CaM,,z]
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Temporal activation

1 ¢ 1
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Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events
prop to integral of the activation curve
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kinase (CaMHKll} - phosphatase (PP2B,PP1) activities

GSK, 26 May 2015

30 ¢
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10 L

Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events
prop to integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas™*catalytic activities

kinase aclivity < phosphalase activity ——
kinase activity » phosphatase activity —s—
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Bidirectional plasticity

Constant catalytic rates of active enzyme
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Effect of calcium duration and amount

10 spikes
20 spikes —=—
30 spikes —=—
40 spikes —=—
50 spikes
60 spikes
70 spikes ——
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| o Em m W m oW oW omom I:_I‘:_ 150 SDH‘iES
k. i 160 spikes ——
170 spikes —e—
180 spikes —a—

calcineurin / CaMKll activated area

0.4 1 ) “100 200
Freguency (Hz)

180 spikes 10 spikes
=3 Hz =70 Hz

Prolonged or intense signals

decrease ®m: It is not an
intrinsic property of the synapse
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Effect of intrinsic system perturbations

st | | 'd_ thSBmﬁ%EE s R CaMKII not constitutively active
increased inhibition on —_— .
: No CaM trapping

s Never any positive plasticity
Giese et al (1998) Science, 279:870-873

N‘ 07 <4 Lower deactivation of CaMKI|

0.1 100 200 ' ' CaM]=30 uM ——
1.3Hz 4.3 Hz 45 | {CgM%ﬂStM —_——
[CaM]=60 uM —=— |

01 ¢

calcineurin / CaMKII activated area

0.01

Competition for CaM, and CaN wins g

(Pi, Otmakhov, Lemelin, De Koninck, Lisman.
(2010) Autonomous CaMKIIl can promote

either long-term potentiation or long-term
depression, depending on the state of

T305/T306 phosphorylation. J Neurosci,30:8704-9

Proposed some direct interactions |
between CaN and CaMKII. lry

They got it completely wrong! 0.5 Hz
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Summary of part 2

Allosteric stabilisation by targets triggers bistable CaM
response to calcium. Above a certain frequency, CaM
activation lasts longer than the initial signal.

Calcium signals do not choose between CaN and CaMKIll,
BOTH enzymes are activated at ALL frequencies. The
ratio of activity changes.

The frequency at which a synapse switches from a
depression to a potentiation mode is not an intrinsic
property of the synapse, but a dynamical one that
depends on the length and amplitude of stimulations.

Modifications of topology, parameters and initial
conditions affect both response intensity and threshold
frequency. Some mutants can't have positive plasticity
for any stimulation. [CaM] decides of the balance CaN/KIl

GSK, 26 May 2015
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Calmodulin is ultra-sensitive
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Origins of cooperativity: Bohr
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Bohr C (1903) Theoretische behandlung der quantitativen verhaltnisse
bei der sauerstoff aufnahme des hamoglobins Zentralbl Physiol 17: 682
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Oriains of cooperativity: Hill

iv PROCEEDINGS OF THE PHYSIOLOGICAL

Hill (1910) J Physiol 40: iv-vii.

The possible effects of the aggregation of the molecules
of hemoglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidence which
seemed to us to prove conclusively that dialysed hmmoglobin consists
simply of molecules containing each one atom of iron. The molecular
weight is therefore Hb=16,660. These experiments have not been
published yet, but I shall assume the results.

Other observers (Reid, Roaf, Hiifner and Gansser) working on
different solutions have obtained divergent results. The method used
by all of them was the direct estimation of the osmotic pressure, by
means of a membrane permeable to salts, but not to hemoglobin. The
method involves & relatively large error, because the quantity measured
is small. It is doubtful however whether this can explain the dis-
cordant resulta.

Qur work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hzmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with hemoglobin in solutions of
various salts, and with hamoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb +0, .T_"' Hbo:n

Hb, + n0, == Hb, Oy,
where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

K'a® K
y—lm+(lw—l)m ............... (A),
where A ¢/, is as Hb,, (100 — 1)*/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20,2 Hb,0, and K that of Hb + O, == HbO,:
K has the value ‘125 (Barcroft and Roberts),

/3

Babraham’)
Institute

GSK, 26 May 2015




Oriains of cooperativity: Hill

iv PROCEEDINGS OF THE PHYSIOLOGICAL

Hill (1910) J Physiol 40: iv-vii.
The possible effects of the aggregation of the molecules
of h@moglobin on its dissociation curves. By A. V. HiLL

In a previous communication Barcroft and I gave evidenc Now 1t 18 unlikely that in eit,her of t,hege cases t,here 18 O[]ly
seemed to us to prove conclusively that dialysed hamoglobin

simply of molecules containing each one atom of iron. Them: Hb and Hb,: and as the calculation of the constants in these

weight is therefore Hb = 16,660. These experiments have m * : : : :

published yet, but 1 shall assume the results, equations|is very tedious |[I decided to try whether the equation
Other observers (Reid, Roaf, Hiifner and Gansser) worl

different solutions have obtained divergent results. The meth K a™ B

by all of them was the direct estimation of the osmotic press : y= 1001+K n """""'”“'"""'"“( }

means of 2 membrane permeable to salts, but not to heemoglobir
method involves a relatively large error, because the quantity m
is small. It is doubtful however whether this can exzplain t
cordant resulta

Qur work led me to believe that the divergence between the results
of different observers was due to an aggregation of the hzmoglobin
molecules by the salts present in the solution, a consequent lowering of
the number of molecules, and an increase in the average molecular
weight as observed by the osmotic pressure method. To test this
hypothesis I have applied it to several of the dissociation curves
obtained by Barcroft and Camis with h@moglobin in solutions of
various salts, and with hemoglobin prepared by Bohr's method.

The equation for the reaction would be

Hb +0, == HbO,,
Hb, + 70, == Hb, 04y,

where Hb, represents the aggregate of n molecules of Hb. I have
supposed that in every solution there are many different sized
aggregates, corresponding to many values of n.

If there were in the solution only Hb and Hb, the dissociation
curve would be

would satisfy the observations.

Kz
y=Mrgst (100 1)1+Ka= ............... (A),

where 1%/, is as Hb,, (100 — 1)*/, as Hb, K’ is the equilibrium constant
of the reaction Hb, + 20,5 Hb,0, and K that of Hb + 0, == HbO,:
K has the value 125 (Barcroft and Robaerts).
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Hill equation can be linearised

n n
}7 — B [X] Hill equation
1+ K" X|n
Y
log T - nlog K 4+ nloglx| Hill plot A

Effect increases in function of

the signal to the power of n: Slope =n —

n>1, ultra-sensitive

n<1, infra-sensitive - >
BUT cooperativity of ligand, _log K

not of binding sites: unique affinity
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM. -

V1. THE OXYGEN DISSOCIATION CURVE OF HEMOGLO} Loa

By G. 8. ADAIR. _l;}_

Wit THE CoLraBoraTiON OF A, V. Bock ann H. Fieup, .

(From the Medical Laboratories of the Massarhuseits General Hos
Boston.)

{Reeceived for publieation, January 7, 1925.) 0

This work gives the oxygen dissociation curves of so

previously investigated in regard to their acid-bindinﬁ anc
Adair (1925) J Biol Chem 63: 529

~Nt

1 Ki[z] + 2K>2[z]? + 3K3[z]3 + 4K4[z]*

V= n 1+ Kiz] + Ka[z]2 + K3[x]3 + Ka[x]4

Loa ac

Q.0 o

0

Fia. 2. Test of formula (6). Curve drawn from 6 experimental points
from Table IV,

GSK, 26 May 2015
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Origins of cooperativity: Adair-Klotz

THE HEMOGLOBIN SYSTEM.

VI. THE OXYGEN DISSOCIATION CURVE OF HEMOGLOBIN.* 3F h

By G. 8. ADAIR. A

Wit THE CoLraBoraTiON OF A, V. Bock ann H. Fieup, Jg.

(From the Medical Laboratories of the Massachusetts General Hospital, 2
Boston.)

{Reeceived for publieation, January 7, 1925.)

This work gives the oxygen dissociation curves of solutions
previously investigated in regard to their acid-binding and base-

Adair (1925) J Biol Chem 63: 529

10g [Y/(1-Y)]

1 Ki|x] —|—2K2[x]2—|—3K3[:C]3—|—4K4[£C]4 -1+ 4

V= n 1+ Kiz] + K>[z]2 + K3[x]3 + Ka[x]4

Imai (1973) Biochemistry 12: 798-808
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Adair-Klotz model applied to Calmodulin

Klotz (1946) The Application of the Law of Mass 1% calcium
Action to Binding by Proteins. Interactions with " salci
Calcium. Arch Biochem, 9:109-117. 2™ calcium

vV — 1 K1|Cal + 2K1K;[Ca)? + 3K1K>2K3[Ca)? + 4K1 K2 K3K4[Cal?
" nl+ K1[Cd] + K1K>[Cal?2 + K1K,K3[Cal? + K1 K>K3K4][Cal?

Crouch and Klee (1980)
Biochemistry, 19: 3692-3698b

MOLES BOUND Ca’*/MOLE PROTEIN




Monod-W;«man-Changeux model
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“Hill” Plot for MWC model

/

log K,

/

1log [Y/( I'Y)]

log K_
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Observation Vs. Prediction
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Observation Vs. Prediction
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Zn?*-loaded N-CaM Ca?*-free N-CaM (1CFD) Ca?*-loaded N-CaM (1GLL)y
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Warren et al. (2007).
J Mol Biol 374: 517-527
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Are those spikes realistic?
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Relative uncertainty increases when
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5 ms — denarite  difference in dynamics.
i A Sabatini et al (2002)
Fluorescence Free calcium Neuron 33: 439-452.

GSK, 26 May 2015 E%g




KT
To
L o LcycaCaCy
! 1:‘““-1‘_‘___1&
RABD‘—-——_____
L d FY Y ﬁ
R .
Igh Rufl:p"" -“.HAMD
[ EPCD
R a v < K?
Keamknl Kecamip R —— Ranc -C;aM&l camian| [caminp
|
L ] ""h--._h‘__'
thgn -CciMK !'___‘___'
R-CaMKil ' Rl,eco-CaMKIl
0 4 MKl icg-%HMK ‘MCD
. -CaMKII % Raco -GaMKII R
Keeh |l R-caMikloke-to. R.ec -CaMKlip Kean
]
r H"‘“n...
/RABD‘CaMK IR___‘_
" £ V. X -CaMKIl
R,CaMKllp 1“‘“*—\_¢R —CarMK P apco -3 p
ACD
D—CaMKIIp Racn'caMK”D

/3

Babraham )
Institute

GSK, 26 May 2015




Axial Resistence

Axial Rasistence

W

=227+ 1504 spines

4761 compartments /
16362 channels '
Mattioni M, Cohen U, Le Novere N (2012) ' NEURON
Frontiers Neuroinfo, 6:20

Mattioni M, Le Novere N (2013)

PLoS ONE, 8(7): e66811
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