

Principled annotation of quantitative models in Systems Biology

Nicolas Le Novère, EMBL-EBI

$$d[C2]/dt = k_6[M] - k_8[\sim P][C2] + k_9[CP]$$

$$d[CP]/dt = -k_3[CP][Y] + k_8[\sim P][C2] - k_9[CP]$$

$$d[pM]/dt = k_3[CP][Y] - [pM]F([M]) + k_5[\sim P][M]$$

$$d[M]/dt = [pM]F([M]) - k_5[\sim P][M] - k_6[M]$$

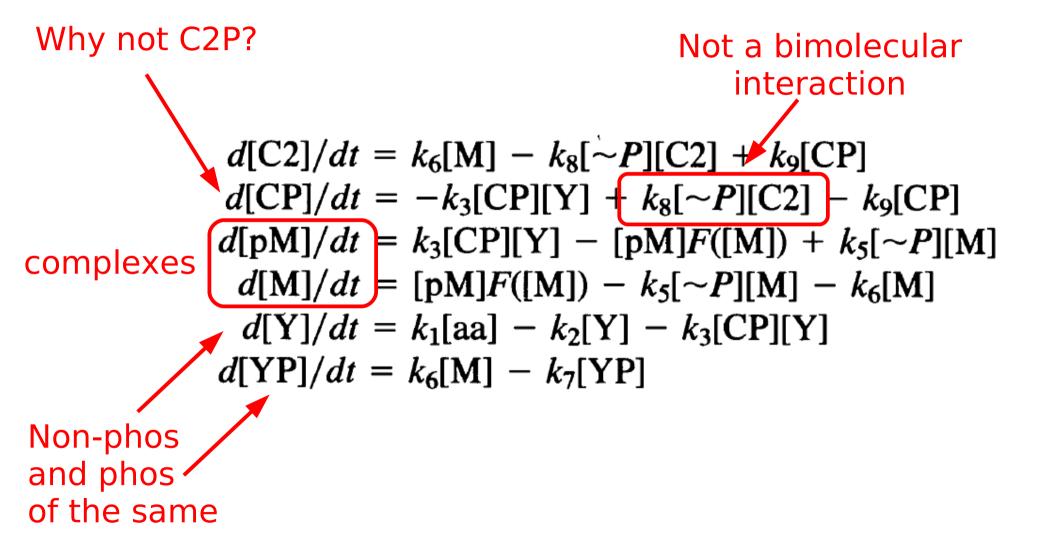
$$d[Y]/dt = k_1[aa] - k_2[Y] - k_3[CP][Y]$$

$$d[YP]/dt = k_6[M] - k_7[YP]$$


```
Not a bimolecular interaction d[C2]/dt = k_6[M] - k_8[\sim P][C2] + k_9[CP] d[CP]/dt = -k_3[CP][Y] + k_8[\sim P][C2] - k_9[CP] d[pM]/dt = k_3[CP][Y] - [pM]F([M]) + k_5[\sim P][M] d[M]/dt = [pM]F([M]) - k_5[\sim P][M] - k_6[M] d[Y]/dt = k_1[aa] - k_2[Y] - k_3[CP][Y] d[YP]/dt = k_6[M] - k_7[YP]
```



```
Not a bimolecular interaction d[\text{C2}]/dt = k_6[\text{M}] - k_8[\sim P][\text{C2}] + k_9[\text{CP}] d[\text{CP}]/dt = -k_3[\text{CP}][\text{Y}] + k_8[\sim P][\text{C2}] - k_9[\text{CP}] complexes \begin{cases} d[\text{pM}]/dt = k_3[\text{CP}][\text{Y}] - [\text{pM}]F([\text{M}]) + k_5[\sim P][\text{M}] \\ d[\text{M}]/dt = [\text{pM}]F([\text{M}]) - k_5[\sim P][\text{M}] - k_6[\text{M}] \\ d[\text{Y}]/dt = k_1[\text{aa}] - k_2[\text{Y}] - k_3[\text{CP}][\text{Y}] \\ d[\text{YP}]/dt = k_6[\text{M}] - k_7[\text{YP}] \end{cases}
```




```
Not a bimolecular
                                                         interaction
                d[C2]/dt = k_6[M] - k_8[\sim P][C2] + k_9[CP]
                d[CP]/dt = -k_3[CP][Y] + k_8[\sim P][C2] - k_9[CP]
               \frac{d[pM]/dt}{d[M]/dt} = k_3[CP][Y] - [pM]F([M]) + k_5[\sim P][M]d[M]/dt = [pM]F([M]) - k_5[\sim P][M] - k_6[M]
complexes
                 d[Y]/dt = k_1[aa] - k_2[Y] - k_3[CP][Y]
               d[YP]/dt = k_6[M] - k_7[YP]
Non-phos
and phos
of the same
```


Tyson JJ (1991)

Modeling the cell division cycle: cdc2 and cyclin interactions.

Proc. Natl. Acad. Sci. U.S.A. 88: 7328-7332

$$d[C2]/dt = k_{6}[M] - k_{8}[\sim P][C2] + k_{9}[CP]$$

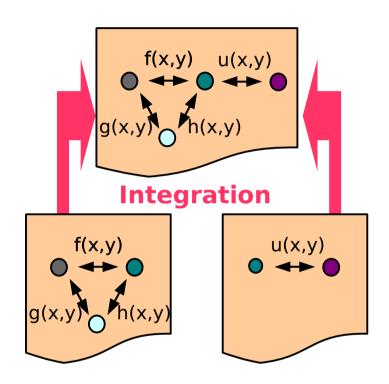
$$d[CP]/dt = -k_{3}[CP][Y] + k_{8}[\sim P][C2] - k_{9}[CP]$$

$$d[pM]/dt = k_{3}[CP][Y] - [pM]F([M]) + k_{5}[\sim P][M]$$

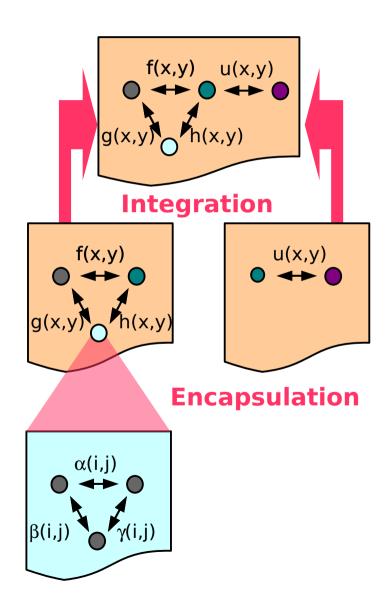
$$d[M]/dt = [pM]F([M]) - k_{5}[\sim P][M] - k_{6}[M]$$

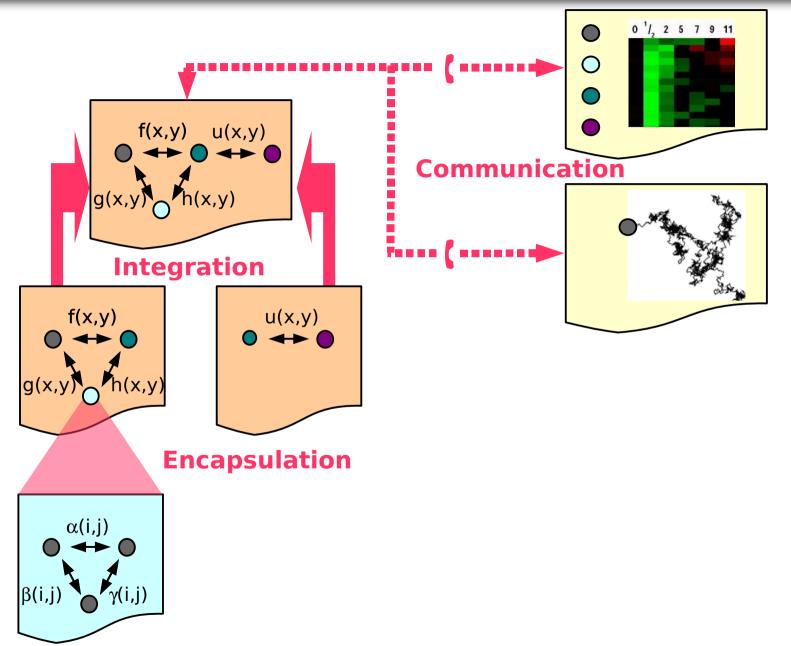
$$d[Y]/dt = k_{1}[aa] - k_{2}[Y] - k_{3}[CP][Y]$$

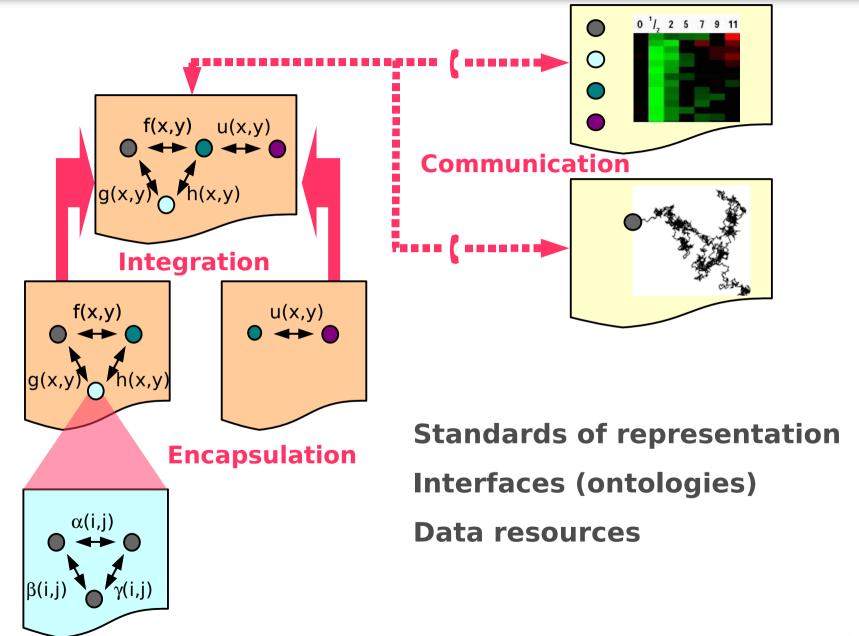
$$d[YP]/dt = k_{6}[M] - k_{7}[YP]$$


http://www.ebi.ac.uk/biomodels/

BIOMD000000005


What do-we want to do with it




What do-we want to do with it

What do-we want to do with it

The Systems Biology Markup Language

News Documents Downloads Forums Facilities Community Events About

The Systems Biology Markup Language (SBML) is a computer-readable format for representing models of biochemical reaction networks in software. It's applicable to models of metabolism, cell-signaling, and many others. SBML has been evolving since mid-2000 thanks to an international community of software developers and users. This website is the portal for the global SBML development effort; here you can find information about all aspects of SBML.

For the curious

What is SBML? Read our basic introduction and then perhaps browse the mailing lists to get a sense for what's currently going on in the world of SBML.

For modelers

Are you looking for ready-to-run software that supports SBML? Take a look at our SBML Software Guide. Are you instead looking for ready-to-use models? Visit the **BioModels Database** , where you can find hundreds of tried and tested models.

For software developers

Are you interested in developing SBML support for your software? Read our basic introduction and then the SBML specifications to understand how to use SBML. After that, you may want to look at libSBML, an API library supporting many programming languages.

Whether you use SBML as a modeler or a developer, we invite you to sign up for news updates either through our RSS feed or one of the mailing lists, and get involved with community efforts to help keep SBML improving.

None of this would be possible without the support of multiple agencies and organizations. Visit our acknowledgments page to learn about the visionary funding agencies that have backed SBML over the years.

SBML News

Old sbml.org failed

(2 Mar, '08) The old sbml.org server failed, so we had to unveil this new site even though some areas are unfinished.

LibSBML 3.1.1 released!

(25 Feb. '26) The latest version of LibSBML, an embeddable, portable API library for working with SBML content, is now available.

SBML Hackathon 2008

(19 Feb. '08) This year's SBML Hackathon will be April (6)-7-8 at Stellenbosh University &.

Older news ...

Community News

Cell Cycle supports SBML 🚱

(12 Feb. '08) The Cell Cycle Database of collects genes, proteins and models of the cell cycle and provides a user-friendly web interface. It supports SBML.

PottersWheel 1.5 released @

(27 Jan. '08) PottersWheel № is a multi-experiment fitting toolbox that supports SBML. The new version includes identifiability analysis.

SBToolbox² released

(18 Jan. '08) The rewritten SBToolbox @ and companion add-on package (SBPD) offer powerful features for biological modeling in MATLAB.

===

Older news ...

Is SBML enough? What's missing?

- An SBML model lists participants, but does not identify them.
- An SBML model contains mathematical expressions, but does not tell-us what they "mean", and how they are derived.
- An SBML model constructed for a certain modelling approach cannot be used straight-away within another modelling framework.
 - ⇒ SBML models cannot be easily searched SBML models cannot be easily converted SBML models cannot be easily merged

- Proposed guidelines for curation of quantitative models
 - Specifically about encoding & annotation
 - Limited to models that can be simulated
- Effort arose from a meeting organized by Andrew Finney during ICSB 2004
- Not specific to SBML; applicable to any structured model format

_computation

PERSPECTIVE

Minimum information requested in the annotation of biochemical models (MIRIAM)

Nicolas Le Novère^{1,15}, Andrew Finney^{2,15}, Michael Hucka³, Upinder S Bhalla⁴, Fabien Campagne⁵, Julio Collado-Vides⁶, Edmund J Crampin⁷, Matt Halstead⁷, Edda Klipp⁸, Pedro Mendes⁹, Poul Nielsen⁷, Herbert Sauro¹⁰, Bruce Shapiro¹¹, Jacky L Snoep¹², Hugh D Spence¹³ & Barry L Wanner¹⁴

Most of the published quantitative models in biology are lost for the community because they are either not made available or they are insufficiently characterized to allow them to be reused. The lack of a standard description format. lack of stringent reviewing and authors' carelessness are the main causes for incomplete model descriptions. With today's increased interest in detailed biochemical models. it is necessary to define a minimum quality standard for the encoding of those models. We propose a set of rules for curating quantitative models of biological systems. These rules define procedures for encoding and annotating models represented in machine-readable form. We believe their application will enable users to (i) have confidence that curated models are an accurate reflection of their associated reference descriptions, (ii) search collections of curated models with precision, (iii) quickly identify the biological phenomena that a given curated model or model constituent represents and (iv) facilitate model reuse and composition into large subcellular models.

European Bioinformatics Institute, Hindton, CB10 LSD, UK.

Physiomics PLC, Magdalen Cartine, Oxford Science Park, Oxford,
OX4 40A, K. "Control and Dynamical Systems, California Institute of
Enchnology, Pasadona, California 1912b, USA. "National Control for Biological
Sciences, TiPR, USA-GRVK Campus, Bangalore 560065, India. "Institute
or Computational Biomedicine, Well Medical College of Cornal University,
New York, New York 10021, USA. "Center for Genomic Sciences, Universidad
Accional Authorian de México, N. Universidad Sci., Cuamwaca, Morrolos,
62100, Mexico. "Pilosopinaering Institute and Department of Engineering
Science, The University of Auctional, Private Bag 29019, Auctional, New
Zaaland, "Max.-Planck Institute for Molecular Genetics, Berlin Center for
Genome based Bioinformatics (BGS), Innestr. 73, 14195 Berlin, Germany,
Pinginia 2406-10477, USA. "Vileck Graduate Institute, 535 Weston Drive,
Claremont, California 91711, USA. "Light Propulsion Laboratory, California
Institute of Technology, Pasadone, California 1917-19, USA. "Titple-J Group
for Molecular Cell Physiology, Department of Biochemistry, Stalienbosch
University, Private Bag XI, Maidland 7602, South Arica. "Topastment of
Scientific Computing & Mathematical Modeling, Glassofinthkiline Research
Roux, Betwange, Harts, 561 ZMY, UK. "Purduse University, Department of
Biological Science, Lilly Hall of Life Sciences, 915 W. State Strak, West
Laftyyetta, Indiana 47907-2054, USA. "Threes authors have contributed
aquality to the work. Correspondence should be addressed to N.L.N.

Published online 6 December 2005; doi:10.1038/nbt1156

During the genomic era we have witnessed a vast increase in availability of large amounts of quantitative data. This is motivating a shift in the focus of molecular and cellular research from qualitative descriptions of biochemical interactions towards the quantification of such interactions and their dynamics. One of the tenets of systems biology is the use of quantitative models (see Box 1 for definitions) as a mechanism for capturing precise hypotheses and making predictions ^{1,2}. Many specialized models exist that attempt to explain aspects of the cellular machinery. However, as has happened with other types of biological information, such as sequences, macromolecular structures or

Box 1 Glossary

Some terms are used in a very specific way throughout the article. We provide here a precise definition of each one.

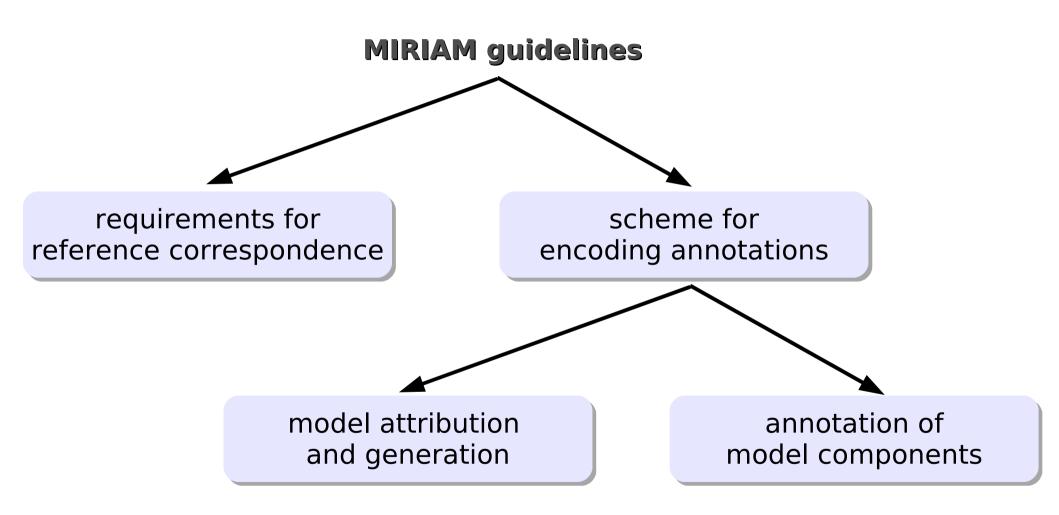
Quantitative blochemical model. A formal model of a biological system, based on the mathematical description of its molecular and cellular components, and the interactions between those components.

Encoded model. A mathematical model written in a formal machine-readable language, such that it can be systematically parsed and employed by simulation and analysis software without further human translation.

MIRIAM-compilant model. A model that passes all the tests and fulfills all the conditions listed in MIRIAM.

Reference description. A unique document that describes, or references the description of the model, the structure of the model, the numerical values necessary to instantiate a simulation from the model, or to perform a mathematical analysis of the model, and the results one expects from such a simulation or analysis.

Curation process. The process by which the compliance of an encoded model with MIRIAM is achieved and/or verified. The curation process may encompass some or all of the following tasks: encoding of the model, verification of the reference correspondence and annotation of the model.


Reference correspondence. The fact that the structure of a model and the results of a simulation or an analysis match the information present in the reference description.

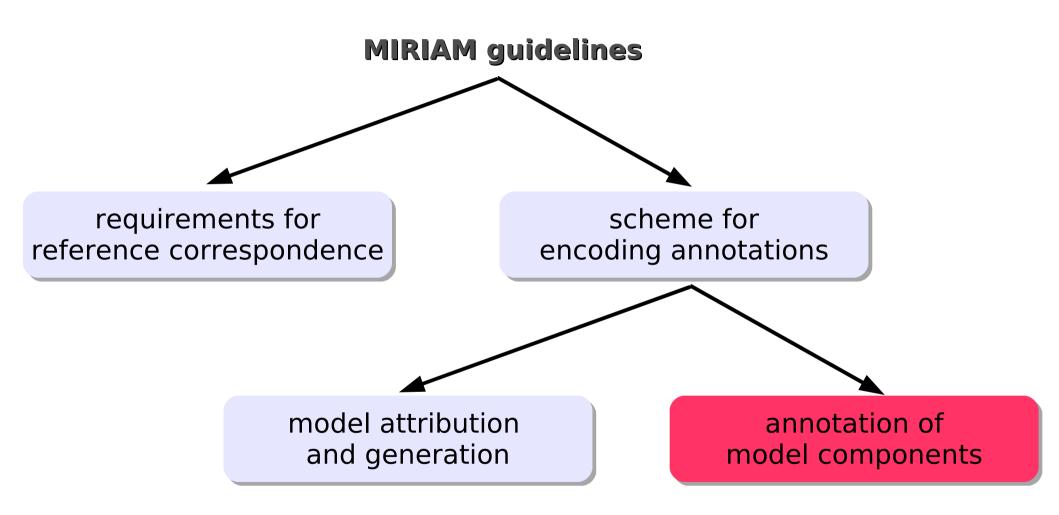
NATURE BIOTECHNOLOGY VOLUME 23 NUMBER 12 DECEMBER 2005

1509

Minimum Information for Biological and Biomedical Investigations

MIBBI Search

News 2007/12/05


The Portal | The Foundry | Related Resources | About Us

- Download a registration form for the MIBBI Portal (please return to chris.taylor[@]ebi.ac.uk)
- Download a summary spreadsheet of all registered projects
- Download the latest MIMI XML Schema
- Try the beta version of MICat the searchable version of the MIBBI Portal

Dogiotorod	l projecto /	120 1:-41 -	5 2007 44 22	
Redistered	Droiects i	zu iistea a	as of 2007-11-22	

CIMR	Core Information for Metabolomics Reporting		External Link
MIACA	Minimal Information About a Cellular Assay	<u>Details</u>	External Link
MIAME	Minimum Information About a Microarray Experiment		External Link
MIAME/Env	MIAME / Environmental transcriptomic experiment	<u>Details</u>	External Link
MIAME/Nutr	MIAME / Nutrigenomics	<u>Details</u>	External Link
MIAME/Plant	MIAME / Plant transcriptomics	<u>Details</u>	External Link
MIAME/Tox	MIAME / Toxicogenomics	<u>Details</u>	External Link
MIAPA	Minimum Information About a Phylogenetic Analysis	<u>Details</u>	External Link
MIAPE	Minimum Information About a Proteomics Experiment	<u>Details</u>	External Link
MIARE	Minimum Information About a RNAi Experiment	<u>Details</u>	External Link
MIFlowCyt	Minimum Information for a Flow Cytometry Experiment	<u>Details</u>	External Link
MIGen	Minimum Information about a Genotyping Experiment	<u>Details</u>	External Link
MIGS	Minimum Information about a Genome Sequence	<u>Details</u>	External Link
MIMIX	Minimum Information about a Molecular Interaction Experiment	<u>Details</u>	External Link
MIMPP	Minimal Information for Mouse Phenotyping Procedures	<u>Details</u>	External Link
MINI	Minimum Information about a Neuroscience Investigation	<u>Details</u>	External Link
MIQAS	Minimal Information for QTLs and Association Studies	<u>Details</u>	External Link
MIRIAM	Minimal Information Required In the Annotation of biochemical Models	<u>Details</u>	External Link
MISFISHIE	Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments	<u>Details</u>	External Link
STRENDA	Standards for Reporting Enzymology Data	<u>Details</u>	External Link

Characteristics of a useful identifier

Unique

an identifier must never be assigned to two different objects;

Perennial

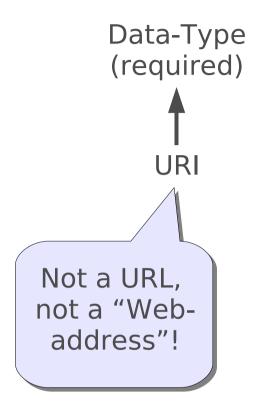
the identifier is constant and its lifetime is permanent;

Standards compliant

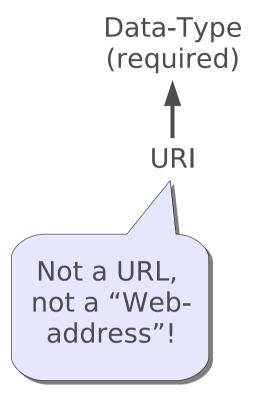
must conform on existing standards, such as URI;

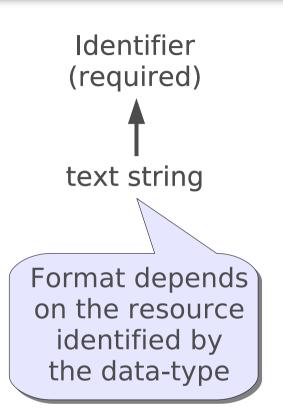
Resolvable

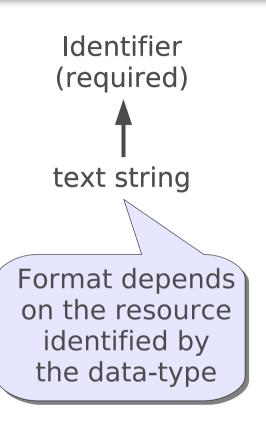
identifiers must be able to be transformed into locations of online resources storing the object or information about the object;

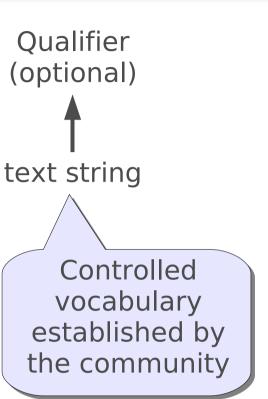

Free of use

everybody should be able to use and create identifiers, freely and at no cost.





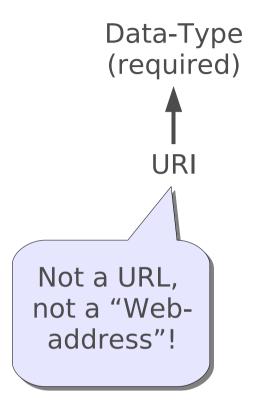


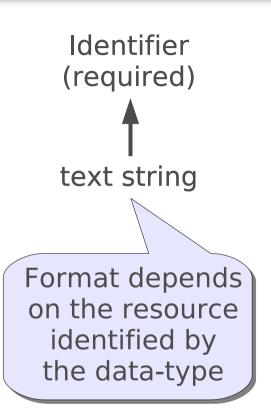

MIRIAM annotation

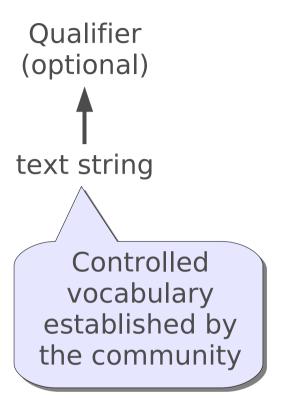
Data-Type (required)

URI

Not a URL,
not a "Web-address"!







The data-type and the identifier can be combined in a single URI

URL style: http://www.MyResource.org/#MyIdentifier

URN style: urn:lsid:MyResource.org:MyIdentifier

MIRIAM Database

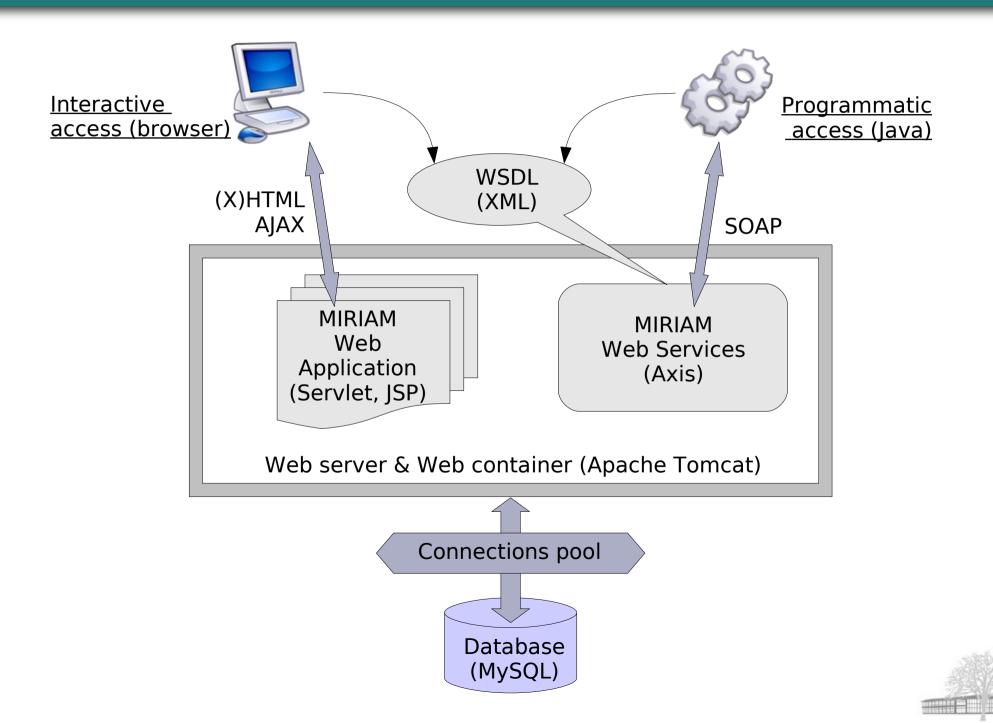
Core element of the resource, storing all the information about the data-types and associated information;

MIRIAM Web Services

SOAP-based application programming interface (API) for querying MIRIAM Database

MIRIAM Library

Library to use MIRIAM Web Services


MIRIAM Web Application

Interactive web interface for browsing and querying MIRIAM Database, and submit or edit data-types.

·WSDL

·Library

Documents

·FAQ Media News 🔕

Contact

Neurobiologu

SOURCEFORGE NET

Services available

documentation

MIRIAM Standard

BioModels Qualifiers

MIRIAM on SourceForge

http://www.ebi.ac.uk/miriam/

KEGG Reaction

MIRIAM Resources

Brief overview of the different data-types stored in MIRIAM Database.

Name	URI	Definition
<u>ArrayExpress</u>	http://arrayexpress.org/	ArrayExpress is a public repository for microarray data, which is aimed at storing MIAME-compliant data in accordance with Microarray Gene Expression Data (MGED) recommendations.
<u>arXiv</u>	http://arxiv.org/	arXiv is an e-print service in the fields of physics, mathematics, non-linear science, computer science, and quantitative biology.
BIND	http://www.bind.ca/	BIND is a database of protein-protein interactions. This data-resource is not open-access.
BioModels Database	http://www.ebi.ac.uk/biomodels/	BioModels Database is a data resource that allows biologists to store, search and retrieve published mathematical models of biological interests.
<u>ChEBI</u>	http://www.ebi.ac.uk/chebi/	Chemical Entities of Biological Interest (ChEBI) is a freely available dictionary of molecular entities focused on 'small' chemical compounds.
CluSTr	http://www.ebi.ac.uk/clustr/	The CluSTr database offers an automatic classification of UniProt Knowledgebase and IPI proteins into groups of related proteins. The clustering is based on analysis of all pairwise comparisons (Smith-Waterman) between protein sequences.
DOI	http://www.doi.org/	The Digital Object Identifier System is for identifying content objects in the digital environment.
<u>Ensembl</u>	http://www.ensembl.org/	Ensembl is a joint project between EMBL - EBI and the Sanger Institute to develop a software system which produces and maintains automatic annotation on selected eukaryotic genomes.
Enzyme Nomenclature	http://www.ec-code.org/	The Enzyme Classification contains the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the nomenclature and classification of enzyme-catalysed reactions.
<u>FlyBase</u>	http://www.flybase.org/	FlyBase is the database of the Drosophila Genome Projects and of associated literature.
Gene Ontology	http://www.geneontology.org/	The Gene Ontology project provides a controlled vocabulary to describe gene and gene product attributes in any organism.
<u>ICD</u>	http://www.who.int/classifications/icd/	The International Classification of Diseases is the international standard diagnostic classification for all general epidemiological and many health management purposes.

http://www.ebi.ac.uk/intact/ IntAct

IntAct provides a freely available, open source database system and analysis tools for protein interaction data. InterPro is a database of protein families, domains and functional sites in which identifiable

http://www.ebi.ac.uk/interpro/ InterPro http://www.genome.jp/kegg/compound/ KEGG Compound

features found in known proteins can be applied to unknown protein sequences. KEGG compound contains our knowledge on the universe of chemical substances that are relevant to life.

KEGG Drug http://www.genome.jp/kegg/drug/

KEGG DRUG contains chemical structures of drugs and additional information such as therapeutic categories and target molecules. KEGG GLYCAN, a part of the KEGG LIGAND database, is a collection of experimentally determined

KEGG Glycan http://www.genome.jp/kegg/glycan/ KEGG Pathway http://www.genome.jp/kegg/pathway/

http://www.genome.jp/kegg/reaction/

http://biomodels.net/MIRIAM/

glycan structures. It contains all unique structures taken from CarbBank, structures entered from recent publications, and structures present in KEGG pathways. KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on

the molecular interaction and reaction networks.

KEGG reaction contains our knowledge on the universe of reactions that are relevant to life.

MIRIAM Resources is an online resource created to catalogue the data-types (Gene Ontology,

Taxonomy or PubMed are some examples), their URIs and the corresponding physical URLs, whether these are controlled vocabularies or databases.

III

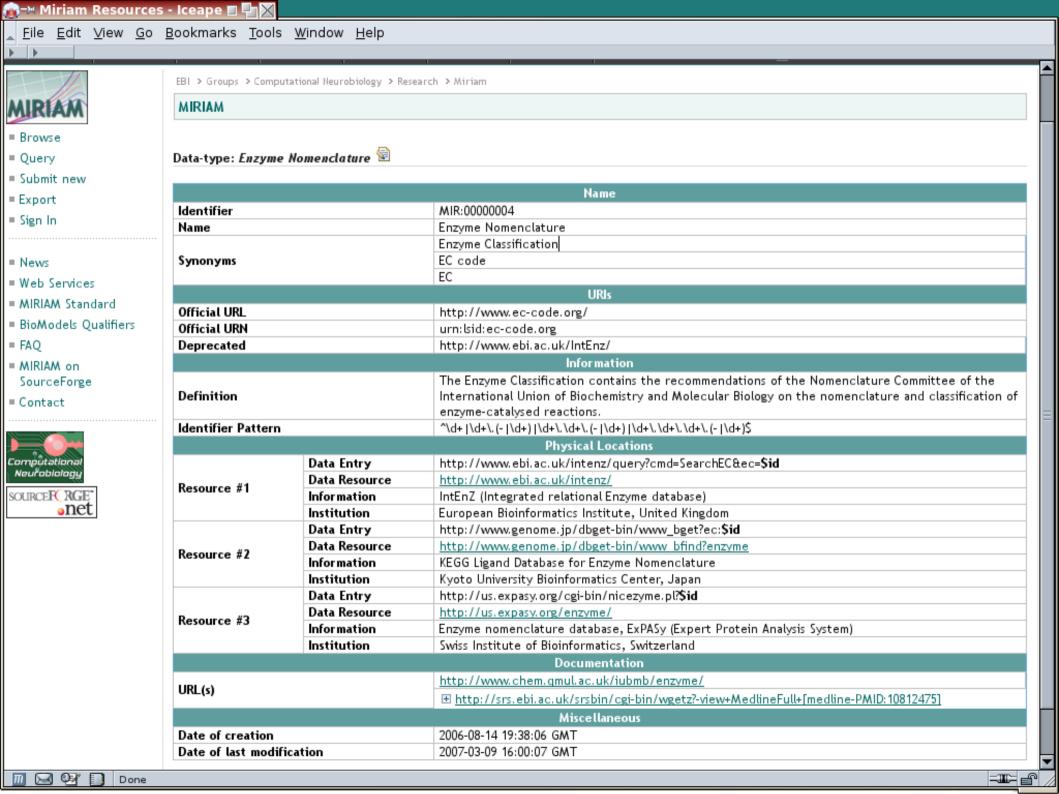
requirements for a MIRIAM-compliant data-type

Open access

Anybody can access any public data without restriction (no commercial licence; no login page etc.)

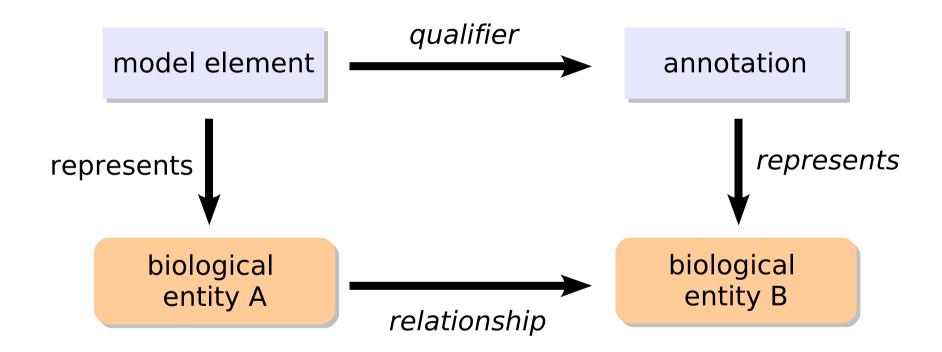
Atomicity

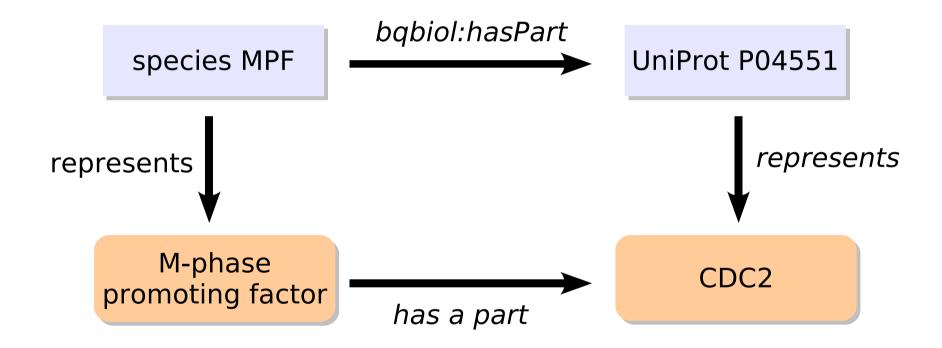
The granularity of the data distributed has to be appropriately selected (A database of "reactions" distributes reactions and not pathways) and consistent (e.g. classes or instances but not classes AND instances)

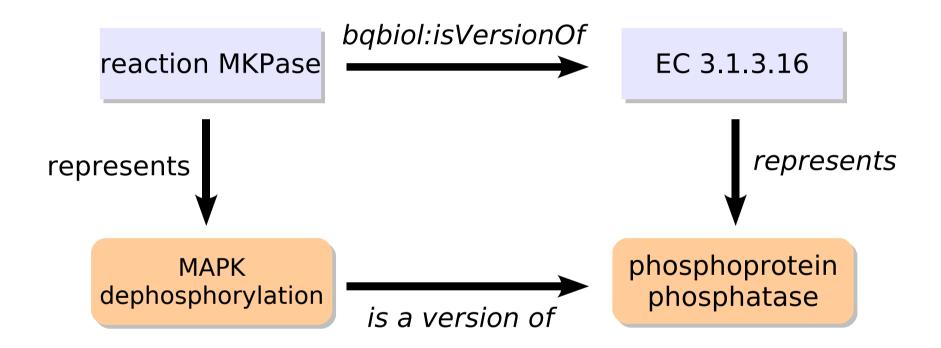

Identifier

An atomic data is associated to a unique and perennial identifier

Community recognition


The resource has to be "recognised" by the corresponding experimental community, be reasonably supported etc


Qualification of annotation


Qualification of annotation

Qualification of annotation

Current BioModels.net Qualifiers

- bqmodel:is The modelling object represented by the model component is the subject of the referenced resource.
- bqmodel:isDescribedBy The modelling object represented by the component of the encoded model is described by the referenced resource.
- bqbiol:is The biological entity represented by the model component is the subject of the referenced resource.
- bqbiol:hasPart The biological entity represented by the model component includes the subject of the referenced resource, either physically or logically.
- bqbiol:isPartOf The biological entity represented by the model component is a physical or logical part of the subject of the referenced resource
- bqbiol:isVersionOf The biological entity represented by the model component is a version or an instance of the subject of the referenced resource.
- bqbiol:hasVersion The subject of the referenced resource is a version or an instance of the biological entity represented by the model component.
- bqbiol:isHomologTo The biological entity represented by the model component is homolog, to the subject of the referenced resource, i.e. they share a common ancestor.
- bqbiol:isDescribedBy The biological entity represented by the model component is described by the referenced resource.

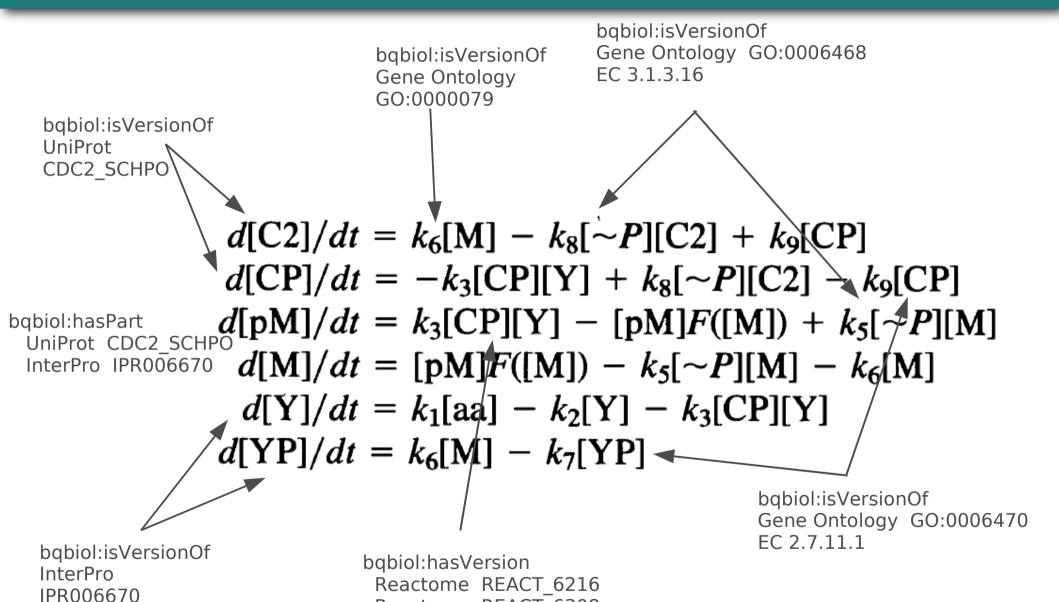
Current BioModels.net Qualifiers

NEW

- bqbiol:encodes The biological entity represented by the model component encodes, directly or by transitivity the subject of the referenced resource.
- **bqbiol:isEncodedBy** The biological entity represented by the model component is encoded, directly, or by transitivity, by the subject of the referenced resource.

PROPOSED

bqbiol:occursIn The biological entity represented by the model component takes place in the subject of the referenced resource.




```
<species id="Ca_calmodulin" metaid="cacam">
 <annotation>
   <rdf:RDF
        xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
        xmlns:bqbiol="http://biomodels.net/biology-qualifiers/">
      <rdf:Description rdf:about="#cacam">
        <bgbiol:hasPart>
          <rdf:Bag>
            <rdf:li rdf:resource="http://www.uniprot.org/#P62158"/>
            <rdf:li rdf:resource="http://www.ebi.ac.uk/chebi/#CHEBI:29108"/>
          </rdf:Bag>
        </bqbiol:hasPart>
      </rdf:Description>
    </rdf:RDF>
 </annotation>
</species>
```


Reactome REACT 6308

Hidden assumptions

```
<reaction>
  <listOfReactants>
    <speciesReference species="S" />
  </listOfReactants>
  <listOfProducts>
    <speciesReference species="P" />
  </listOfProducts>
  <listOfModifiers>
    <speciesReference species="E" />
  </listOfModifiers>
  <kineticLaw>
    <listOfParameters>
      <parameter id="Km"/>
      <parameter id="kp"/>
    </listOfParameters>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <divide/><apply>
                    <times/><ci>E</ci>
                            <ci>kp</ci>
                            <ci>S</ci>
                  </apply>
                  <apply>
                    <plu><plus/><ci>Km</ci>
                           <ci>S</ci>
                  </apply>
      </apply>
    </kineticLaw>
</reaction>
```

E
$$v = \frac{\text{kp.[E].[S]}}{\text{Km + [S]}}$$

Import in a discrete simulator

$$k_{1} \quad k_{p} \quad \text{Henri-Michaelis-Menten}$$

$$E+S \rightleftharpoons ES \rightarrow E+P \; ; \; k_{1} = k_{-1}/K_{m}$$

$$k_{-1} \quad k_{p} \quad \text{Van Slyke-Cullen}$$

$$E+S \rightarrow ES \rightarrow E+P \; ; \; k_{1} = k_{p}/K_{m}$$

$$k_{-1} \quad k_{p} \quad \text{Briggs-Haldane}$$

$$E+S \rightleftharpoons ES \rightarrow E+P \; ; \; k_{1} = (k_{-1}+k_{p})/K_{m}$$


$$k_{-1} \quad k_{-1} \quad k_{$$

Systems Biology Ontology vocabularies

- Types and roles of reaction participants, including terms like "substrate", "catalyst" etc., but also "macromolecule", or "channel"
- Parameter used in quantitative models. This vocabulary includes terms like "Michaelis constant", "forward unimolecular rate constant"etc. A term may contain a precise mathematical expression stored as a MathML lambda function. The variables refer to other parameters.
- Mathematical expressions. Examples of terms are "mass action kinetics", "Henri-Michaelis-Menten equation" etc. A term may contain a precise mathematical expression stored as a MathML lambda function. The variables refer to the other vocabularies.
- Modelling framework to precise how to interpret the rate-law. E.g. "continuous modelling", "discrete modelling" etc.
- Event type, such as "catalysis" or "addition of a chemical group".


```
<reaction sboTerm="SBO:0000172">
  <listOfReactants>
    <speciesReference species="S" sboTerm="SBO:0000015"/>
  </listOfReactants>
  <listOfProducts>
    <speciesReference species="P" sboTerm="SBO:0000011"/>
  </listOfProducts>
  <listOfModifiers>
    <speciesReference species="E" sboTerm="SBO:0000014"/>
  </listOfModifiers>
  <kineticLaw sboTerm="SBO:0000031">
    <listOfParameters>
      <parameter id="K1" sboTerm="SBO:0000008"/>
      <parameter id="kp" sboTerm="SBO:0000025"/>
    </listOfParameters>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <divide/><apply>
                   <times/><ci>E</ci>
                           <ci>kp</ci>
                           <ci>S</ci>
                 </apply>
                 <apply>
                   <ci>S</ci>
                 </apply>
      </apply>
    </kineticLaw>
</reaction>
```


SBML and SBO


```
<reaction sboTer = "SBO:0000172">
                                         catalysis
  <listOfReactants>
                                                                  substrate
    <speciesReference species="S" sboTerm="SBO:0000015"/>
  </listOfReactants>
  <listOfProducts>
                                                                  ▶ product
    <speciesReference species="P" sboTern="SBO:0000011"/>
  </listOfProducts>
  <listOfModifiers>
                                                                 catalyst
    <speciesReference species="E" sboTerm="SBO:0000014"/>
  </listOfModifiers>
                                             Briggs-Haldane equation
  <kineticLaw sboTerm="SBO:0000031">
    <listOfParameters>
                                                        ► Km
      <parameter id="K1" sboTerm="SBO:0000008"/>
      <parameter id="kp" sboTerm="SBO:0000025"/>
                                                          kcat
    </listOfParameters>
    <math xmlns="http://www.w3.org/1998/Math/MathML">
      <apply>
        <divide/><apply>
                   <times/><ci>E</ci>
                           <ci>kp</ci>
                           <ci>S</ci>
                 </apply>
                 <apply>
                   <ci>S</ci>
                 </apply>
      </apply>
    </kineticLaw>
</reaction>
```



```
<reaction sboTerm="SBO:0000172">
  <listOfReactants>
    <speciesReference species="A" sboTerm="SBO:0000015"/>
  </listOfReactants>
  <listOfProducts>
    <speciesReference species="B" sboTerm="SBO:0000011"/>
  </listOfProducts>
  <listOfModifiers>
    <speciesReference species="C" sboTerm="SBO:0000014"/>
  </listOfModifiers>
  <kineticLaw sboTerm="SBO:0000031">
    <listOfParameters>
      <parameter id="U" sboTerm="SBO:0000008"/>
      <parameter id="V" sboTerm="SBO:0000025"/>
    </listOfParameters>
  </kineticLaw>
</reaction>
```

continuous simulator

$$v = \frac{C \cdot V \cdot [A]}{(U + [A])}$$

discrete simulator

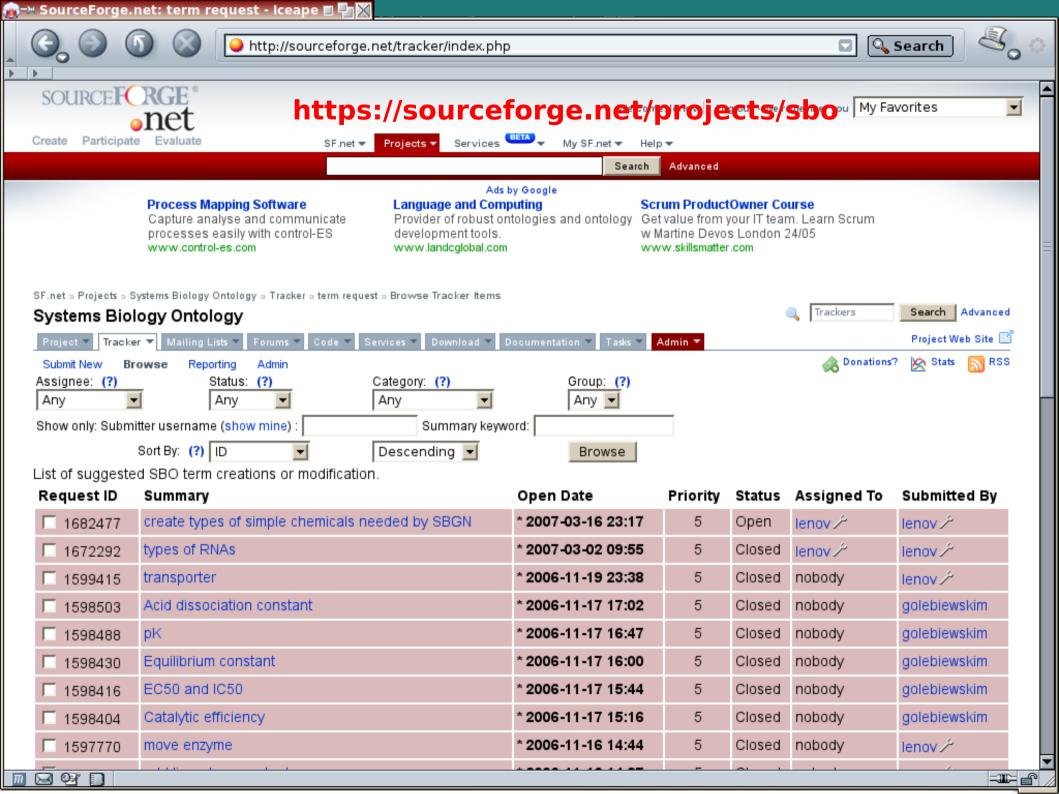
$$v1 = \frac{(k_{-1} + V)}{U} \cdot [A] \cdot [C]$$

$$v2 = k_{-1} \cdot [D]$$

$$v3 = V \cdot [D]$$

SBML and SBO


```
<listOfCompartments>
                                                      functional compartment
  <compartment id="C" sboTerm="SBO:0000289">
</listOfCompartments>
<listOfSpecies>
                                                   simple chemical
  <species id="A" sboTerm="SBO:0000247"</pre>
                                                    simple chemical
                  sboTerm=""
  <species id="B"</pre>
                                                    enzyme
  <species id="C" sboTerm="SBU:0000014</pre>
</listOfSpecies>
<listOfReactions>
                                            catalysis
  <reaction sboTer "SBO:0000172">
    stOfReactants>
      <speciesReference species="A" sboTern="SBO:0000015"/>
                                                                      substrate
    </listOfReactants>
    <listOfProducts>
      <speciesReference species="B" sboTern="SBO:0000011"/>
                                                                      product
    </listOfProducts>
    <listOfModifiers>
      <speciesReference species="C" sboTern="SB0:0000014"/>
                                                                     catalyst
    </listOfModifiers>
                                                 Briggs-Haldane equation
    <kineticLaw sboTern="SBO:0000031">
      <listOfParameters>
        <parameter id="U" sboTerm="SBO:000008"/>
        <parameter id="V" sboTerm="SB0:0000025"/>
                                                             kcat
      </listOfParameters>
    </kineticLaw>
  </reaction>
</listOfReactions>
```



SBML to BioPAX conversion using SBO

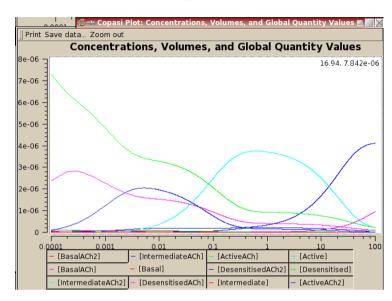
```
<listOfCompartments>
                                                       GO annotation
  <compartment id="C" sboTerm="SBO:0000289">
</listOfCompartments>
<listOfSpecies>
                                                  Small molecule
  <species id="A" sboTerm="SBO:0000247"</pre>
                                                    Small molecule
  <species id="B"</pre>
                  sboTerm="
                                                    Protein
  <species id="C"</pre>
                  sboTerm="SBO:0000014
</listOfSpecies>
<listOfReactions>
                                            catalysis
  <reaction sboTer = "SBO:0000172">
    stOfReactants>
      <speciesReference species="A" sboTern="SBO:0000015"/>
                                                                 physicalEntityParticipant
    </listOfReactants>
    <listOfProducts>
                                                                 physicalEntityParticipant
      <speciesReference species="B" sboTern="SB0:0000011"/>
    </listOfProducts>
    <listOfModifiers>
      <speciesReference species="C" sboTern="SBO:0000014"/>-
                                                                 physicalEntityParticipant
    </listOfModifiers>
    <kineticLaw sboTerm="SBO:0000031">
      <listOfParameters>
        <parameter id="U" sboTerm="SBO:0000008"/>
        <parameter id="V" sboTerm="SBO:0000025"/>
      </listOfParameters>
    </kineticLaw>
  </reaction>
</listOfReactions>
                                              http://www.biopax.org/
```


SBML to SBGN conversion using SBO

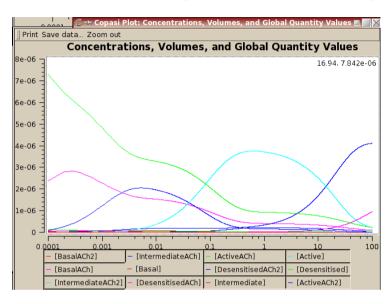
```
<listOfCompartments>
  <compartment id="C" sboTerm="SB0:0000289">
</listOfCompartments>
<listOfSpecies>
  <species id="A" sboTerm="SBO:0000247"</pre>
  <species id="B" sboTerm="">"
  <species id="C" sboTerm="SBO:0000014</pre>
</listOfSpecies>
<listOfReactions>
  <reaction sboTer "SBO:0000172">
    stOfReactants>
      <speciesReference species="A" sboTern="SBO:0000015"/>
    </listOfReactants>
    <listOfProducts>
      <speciesReference species="B" sboTern="SBO:0000011"/>
    </listOfProducts>
    <listOfModifiers>
      <speciesReference species="C" sboTern="SBO:0000014"/>
    </listOfModifiers>
    <kineticLaw sboTerm="SBO:0000031">
      <listOfParameters>
        <parameter id="U" sboTerm="SBO:0000008"/>
        <parameter id="V" sboTerm="SB0:0000025"/>
      </listOfParameters>
    </kineticLaw>
  </reaction>
</listOfReactions>
                                                  http://www.sbgn.org/
```

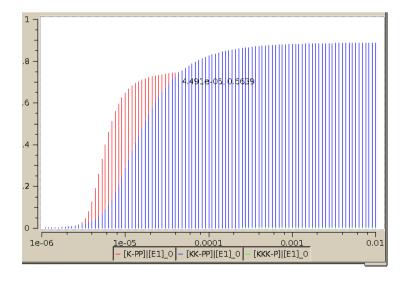

- A model is a mathematical description of the components of a system, their relationships, and the evolution of both.
 - ordinary differential equations (system evolution) dX/dt = f(X)
 - partial differential equation (system description) $\nabla X = g(X)$
 - algebraic equations (conservation laws) h(X) = 0
 - \blacksquare probability distributions PX = i(X)
 - master equation dPX/dt = j(PX)
 - cell automata/finite elements
 - ...

What is a simulation

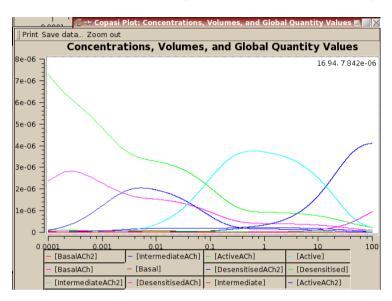


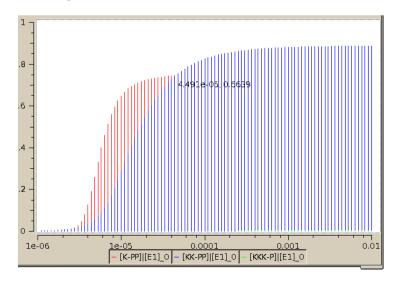
- A simulation is the instantiation of a model over time, using a given algorithmic approach, and a particular software: A model can beget simulations giving different results!
 - Logical (boolean or discrete) approach
 - Deterministic approach
 - Stochastic approach
 - Fixed timesteps
 - Adaptative timesteps
 - ...
- Plus ... range of simulations
 - parameter scan
 - parameter search/optimisation
 - phase-plane analysis
 - bifurcation analysis

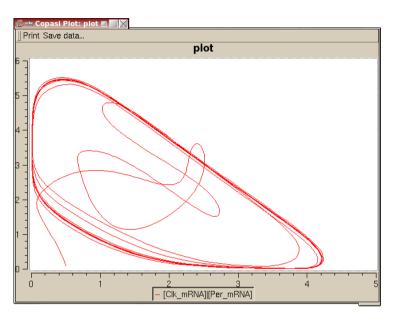

Edelstein et al 1996 (BIOMD000000002)



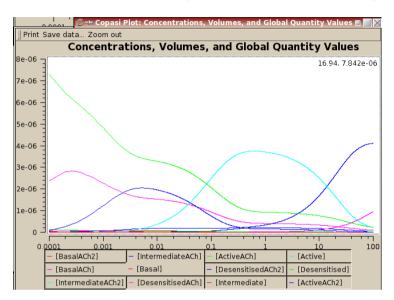
Edelstein et al 1996 (BIOMD000000002)

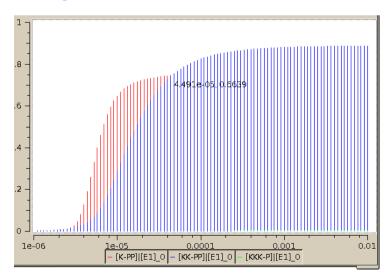

Huang & Ferrell (BIOMD000000009)

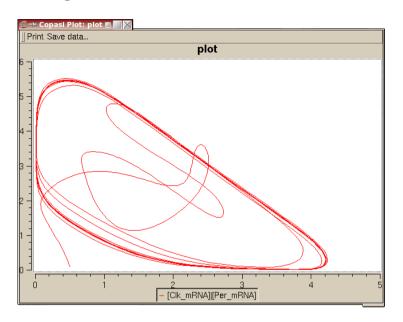


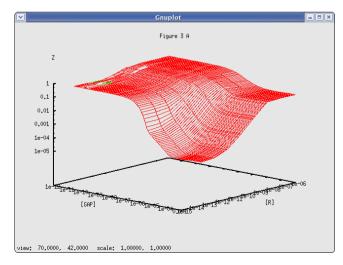

Edelstein et al 1996 (BIOMD000000002)

Huang & Ferrell (BIOMD000000009)


Ueda, Hagiwara, Kitanol 2001 (BIOMD000000022)




Edelstein et al 1996 (BIOMD000000002)


Huang & Ferrell (BIOMD000000009)

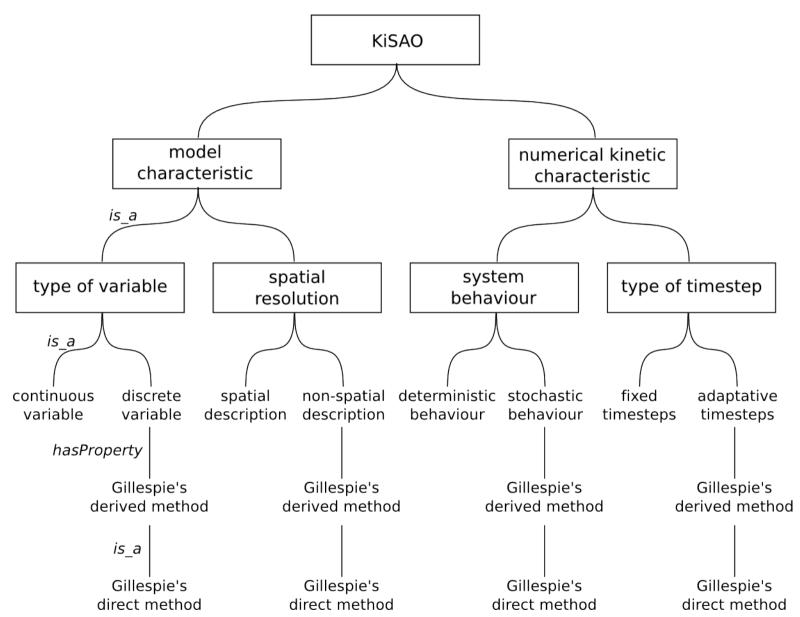
Ueda, Hagiwara, Kitanol 2001 (BIOMD000000022)

Bornheimer et al 2004 (BIOMD000000086)

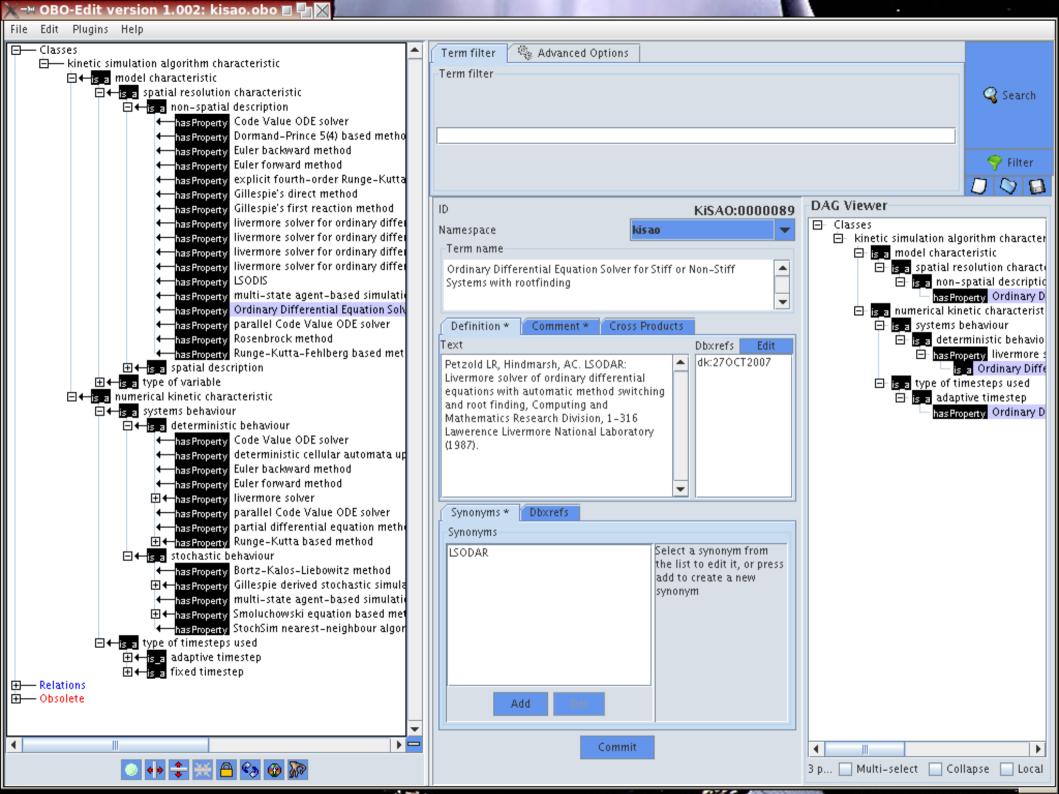
Minimum Information About a Simulation Experiment (MIASE)

https://sourceforge.net/projects/miase

MIASE aims at describing the information needed to run and repeat a numerical simulation experiment derived from a given quantitative model.


The project is divided into three parts:

- 1. MIASE The list of requested information to repeat a simulation result
 - * Simulation settings (Type of simulation and the according parameters)
 - * Simulation algorithm used to simulate a given model (see KiSAO)
 - * Model references & model changes
 - * Parameter settings
 - * Desired output
- 2. KiSAO Kinetic Simulation Algorithm Ontology
 - * Classification of simulation algorithms & methods
 - * Literature references
 - * Relations between different simulation algorithms & methods
- 3. The MIASE Object Model
 - * Formal representation of the requirements defined in MIASE
 - * UML representation
 - * XML Schema representation to encode MIASE information (MIASE-ML)



Kinetic Simulation Algorithm Ontology (KiSAO)

Description of dynamics. Why?

- Comparison of simulation output with experimental datasets
- Retrieval of models based on their behaviours "Find-me one model that display an oscillation of period X"
- From Systems Biology to Synthetic biology and reverse

TErminology for the Description of DYnamics (https://sourceforge.net/projects/teddyontology)

- Dynamical behaviour of biological variables, including terms like "oscillation", "bistability", "steady-state", "equilibrium" etc.
- Characteristics used to describe dynamics, such as "period", "limit-cycle", "Hopf bifurcation"etc.
- Functional role of model elements. Examples of terms are "negative feedback", "integrator" etc.

TeDDy is expressed in OWL

Contents

<u>Ontology</u>

All Resources

Class Hierarchy

All Classes

Teddy Entity

==Dvnamical Behaviour

====Monotonic Behaviour

=====<u>Strictly Monotonic Behaviour</u>

======<u>Isotonic Behaviour</u>

========Linear Increasing Behaviour

========Increasing Asymptotic Behavior

=======Diverging Increasing Behavior

=======Antitonic Behaviour

=======<u>Linear Decreasing Behaviour</u>

======<u>Decreasing Asymptotic Behavior</u>

=====<u>Steady State</u>

====Non-Monotonic Behaviour

=====Oscillation

=======Non-Periodic Oscillating Behavior

=======Periodic Oscillating Behavior

========Single-Periodic Oscillating Behavior

=============Sustained Oscillation

========Damped Oscillation

========Mixed-Mode Oscillation

=====Single Turnaround Behaviour

=====Chaotic Behavior

=====Bursting

Class: Dynamical Behaviour (TEDDY_0000001)

•owl:Thing

Teddy Entity

Dynamical Behaviour

Super Classes

Teddy Entity

Annotations

<u>Curator Comment</u> "The word 'dynamical' is used in order to emphasize the evolution of the state in time

distinguishing the term form behaviour in ethology. 'Dynamical' will be omitted in

sub-terms for convenience if confusion is impossible." [lang: en]

<u>Curator Comment</u> "This concept is used to name concrete behaviours of dynamical systems. Concrete

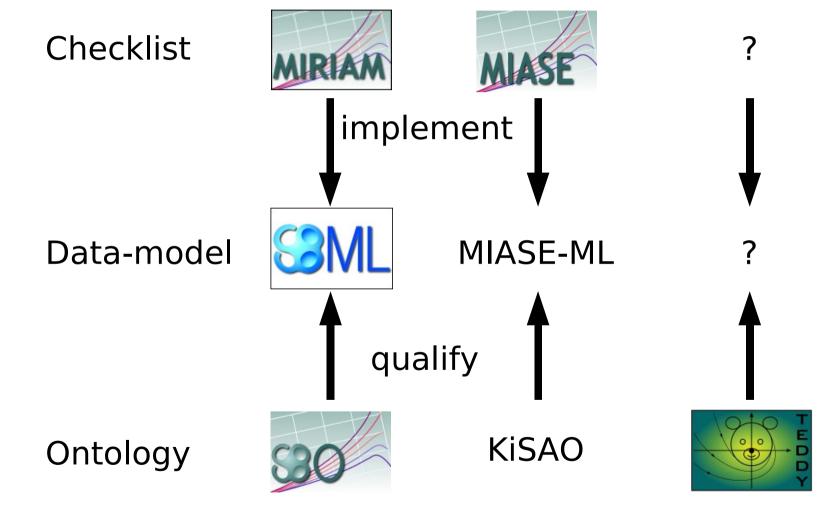
refers to a specified interval of time in which the behaviour takes place." [lang: en]

Curator Comment "The set of possible states of a dynamical system has to be a metric space

(Kuznetsov 1998, p.4). IMHO it's enough to require a totally ordered set." [lang: en]

Curator Comment "mathematical: A dynamical behaviour is a function from an ordered set (called Time)

to a totally ordered set S (called State Space). " [lang: en]


Definition "A Dynamical Behaviour is a temporal sequence of states of (a part of) a dynamical

system. The set of possible states (state space) has to be a totally ordered set. A dynamical system is either a fully instantiated mathematical model or a particular

biological entity." [lang: en]

<u>Display Name</u> Dynamical Behaviour

Acknowledgements

- EBI
 - Mélanie Courtot
 - Nick Juty
 - Christian Knuepfer
 - Dagmar Koehn
 - Camille Laibe
 - Nicolas Le Novère
- SBML team
 - Michael Hucka
 - Sarah Keating

BioModels Database developers and curators

Acknowledgements

- EBI
 - Mélanie Courtot
 - Nick Juty
 - Christian Knuepfer
 - Dagmar Koehn
 - Camille Laibe
 - Nicolas Le Novère
- SBML team
 - Michael Hucka
 - Sarah Keating

BioModels Database developers and curators

The community of Systems Biology for their contributions, their software support and their comments.

What is ELIXIR?

- ELIXIR is an EU Framework 7 Preparatory Phase project
- Its mission is to construct and operate a <u>sustainable</u> infrastructure for biological information in Europe
- It comprises a 32-member consortium engaging many of Europe's main bioinformatics <u>funding agencies</u> and <u>research institutes</u>
- The deliverables are <u>memoranda</u> of understanding to fund the <u>implementation</u>
- The implementation will take many years and the estimated cost is ~ €500-800M
- It is envisaged that the cost of implementation will be borne, mainly, by funding agencies within the <u>member states</u> and by <u>structural</u> or <u>cohesion</u> funds
- Interested parties should register as stake-holders:
 www.elixir-europe.org

What might ELIXIR be?

- A reliable <u>distributed</u> infrastructure to provide equality of access to biological information across all of Europe
- Sustainable funding for the <u>core</u> European biological data collections (genomes, sequences, structures, pathways etc)
- Sustainable funding the European components of the international biological data collaborations (INSDC, UNIPROT, ww-PDB etc)
- Processes for developing <u>new</u> core data collections supporting <u>interoperability</u> of bioinformatics tools developing bioinformatics <u>standards</u> and <u>ontologies</u>
- Enhanced use of biological information in Academic Research, the Pharmaceutical Industry, Biotechnology, Agriculture and for the Protection of the Environment

