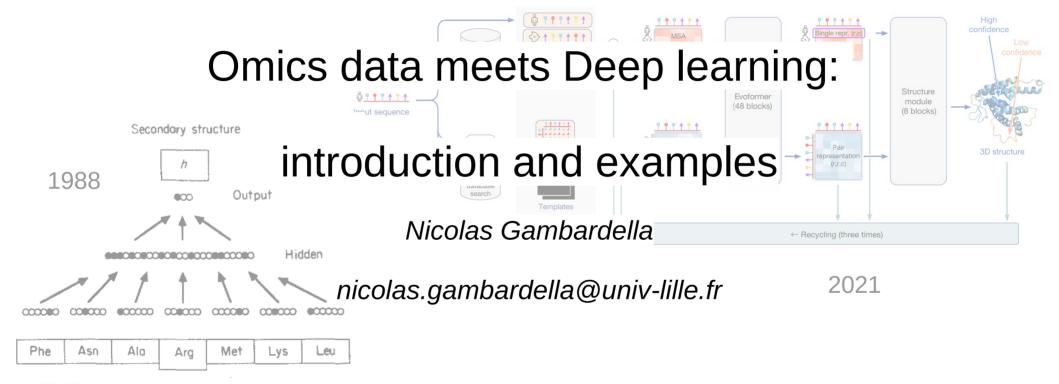


Hauts-de-France



Create an image for my presentation

Suggest a recipe based on a photo of my fridge

ES

Create a workout plan

Write a report based on my data

Message ChatGPT

ChatGPT can make mistakes. Check important info.

What are we going to (attempt to) cover?

- 1) What is artificial intelligence?
- 2) Multi-Layer Perceptrons (MLP)
- 3) MLPs in action
- 4) Convolutional Neural Networks (CNN)
- 5) Embeddings and latent space
- 6) Encoder-Decoders, (variational) AutoEncoders (VAEs)
- 7) Attention and the Transformer

- 8) Graph Neural Networks (GNNs)
- 9) Alphafold2
- 10) Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
- 11) RNNs are back: Rise of the Mamba
- 12) Generative Adversarial Networks (GANs)

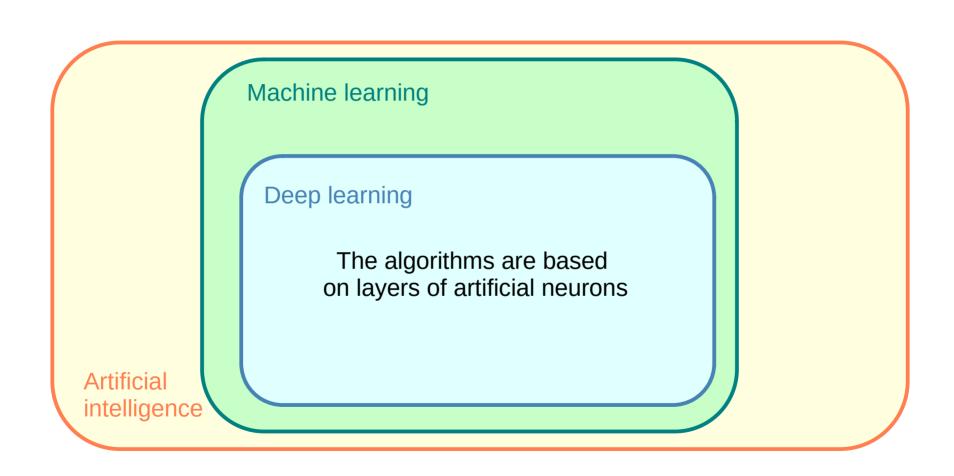
1

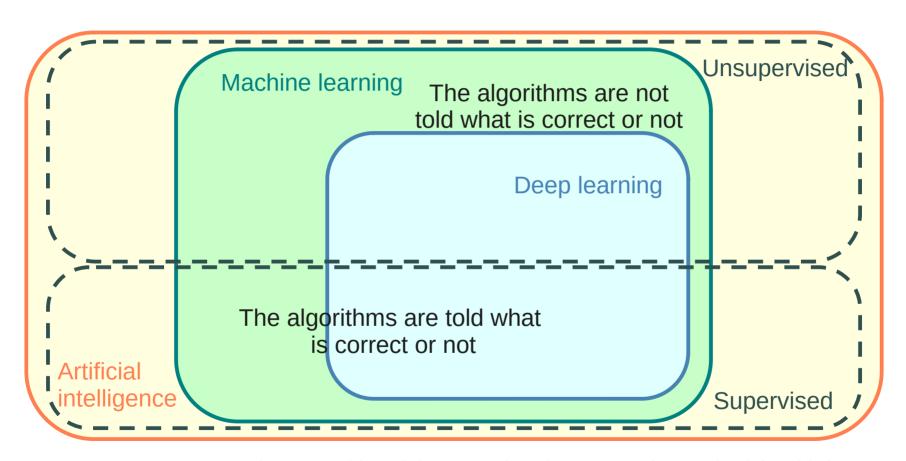
What is artificial intelligence?

Assessments, evaluations, decisions, predictions made by software tools

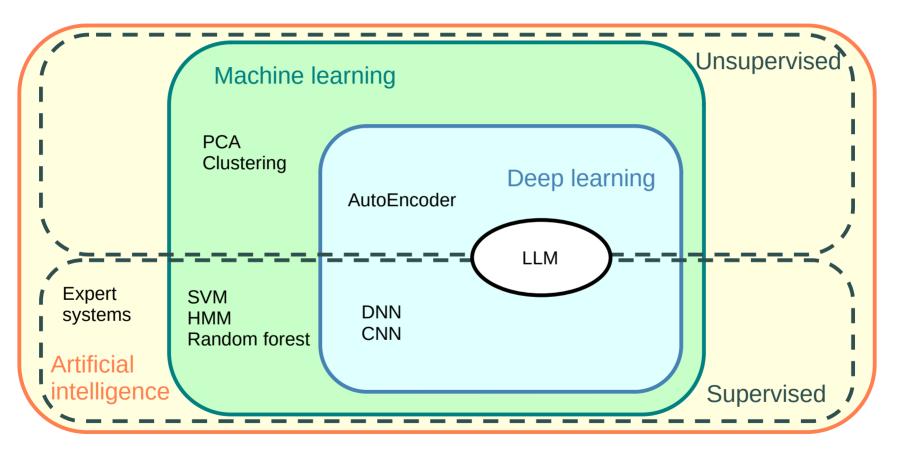
Artificial intelligence



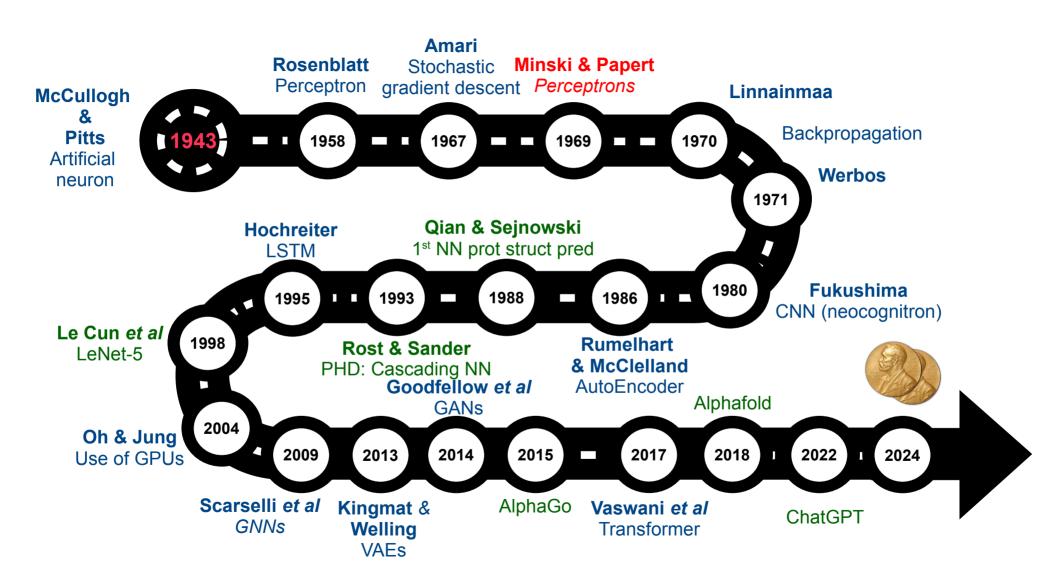




(NB: I consider reinforcement learning as part of supervised, but this is controversial)

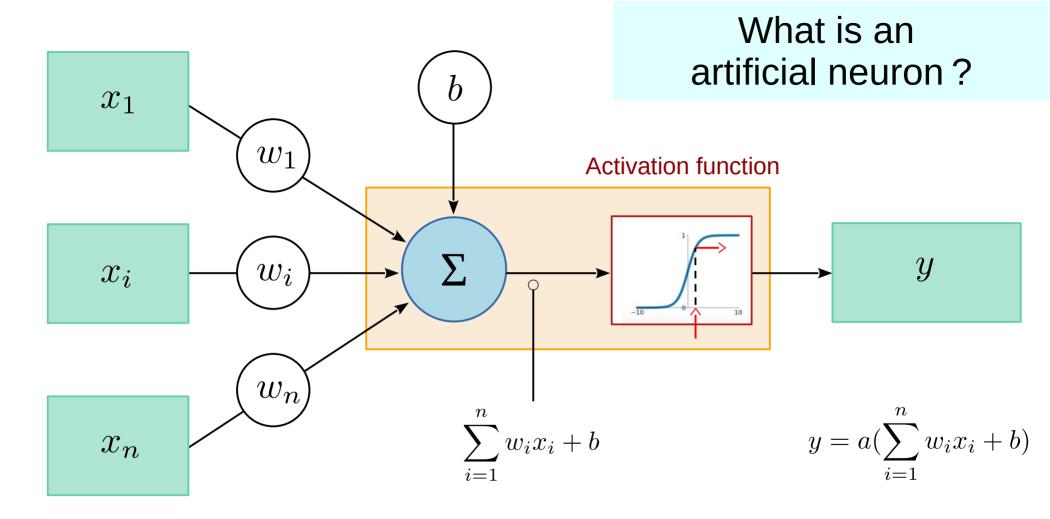


(NB: I consider reinforcement learning as part of supervised, but this is controversial)

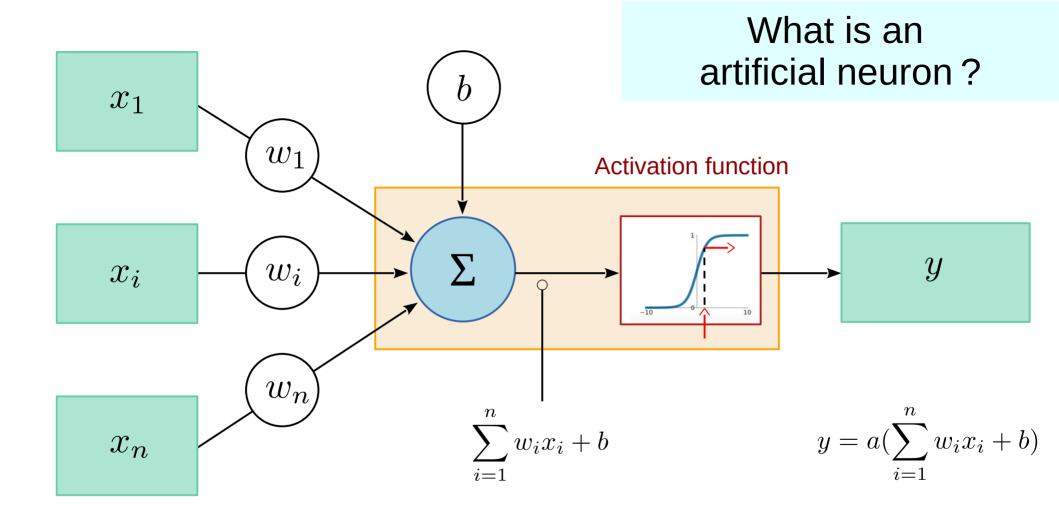


2

Multi-Layer Perceptrons (MLP) a.k.a Fully Connected Networks (FCN)

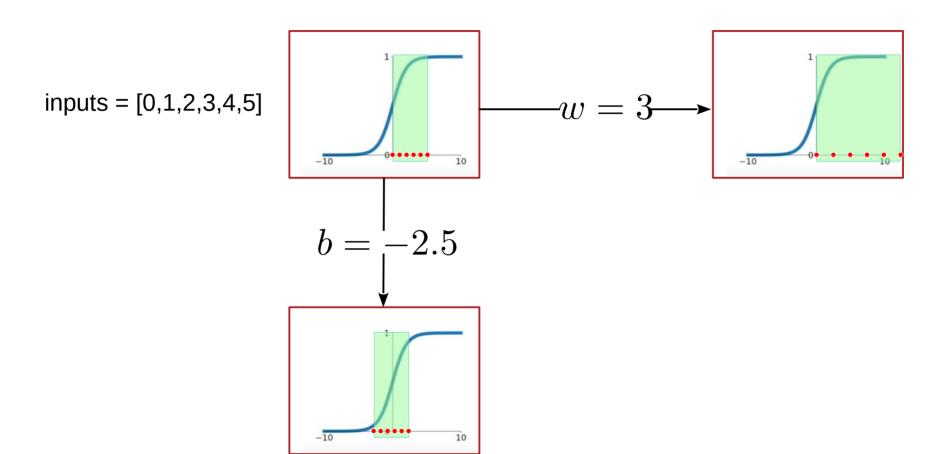


McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity. *Bull Math Biophys* 5:115-133
Rosenblatt (1958) The perceptron: a probabilistic model for information storage and organization in the brain. *Psychol Rev* 65(6):386-408
Widrow and Hoff (1960) Adaptive Switching circuits. *WESCON Convention record* part IV: 96-104

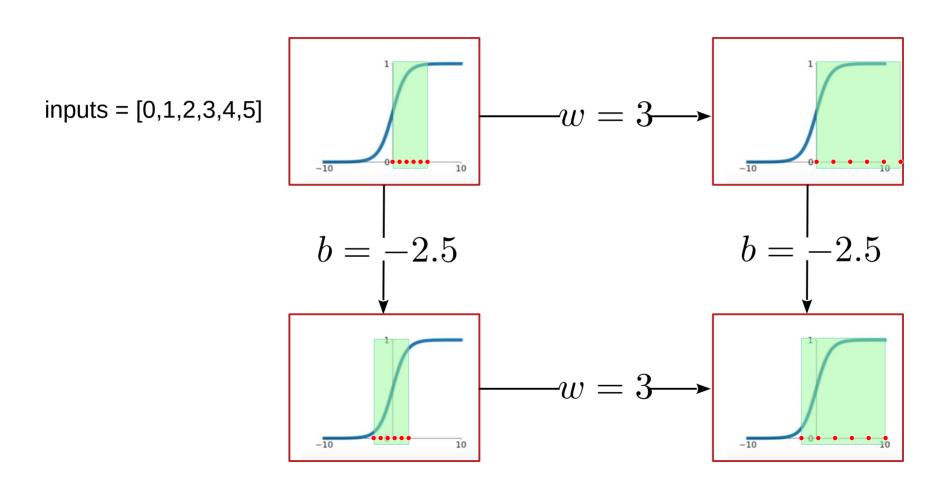


NB: when the activation function is logistic (sigmoid), this is actually a logistic regression...

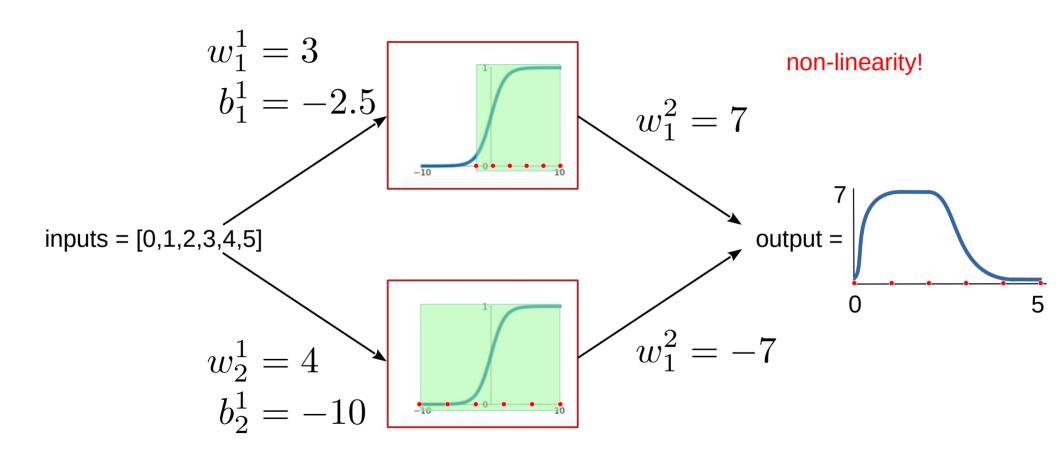
Impact of the weights and the bias



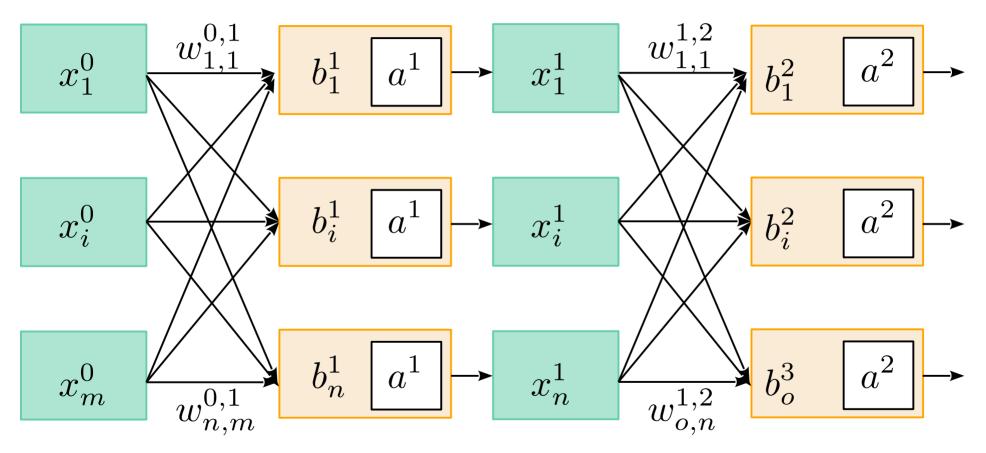
Impact of the weights and the bias



The magic happens with several neurons

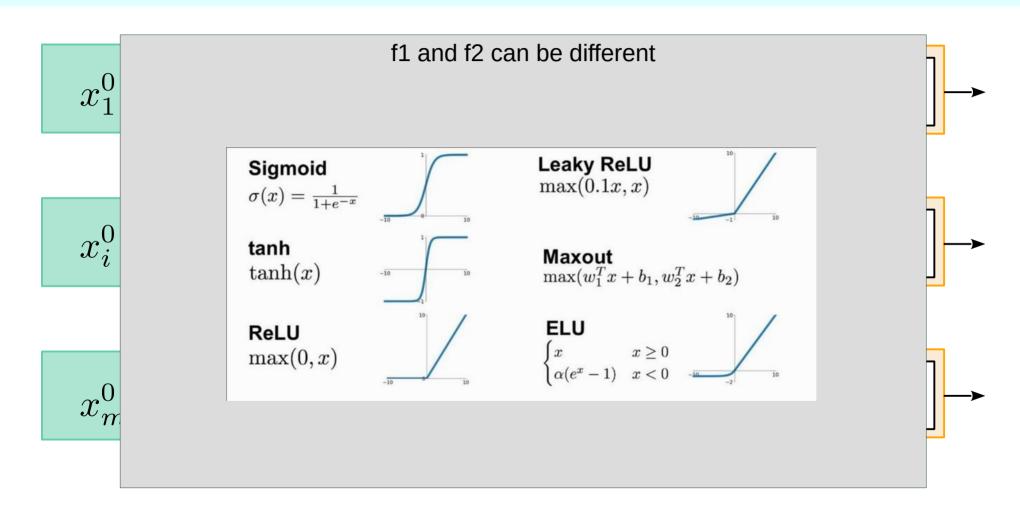


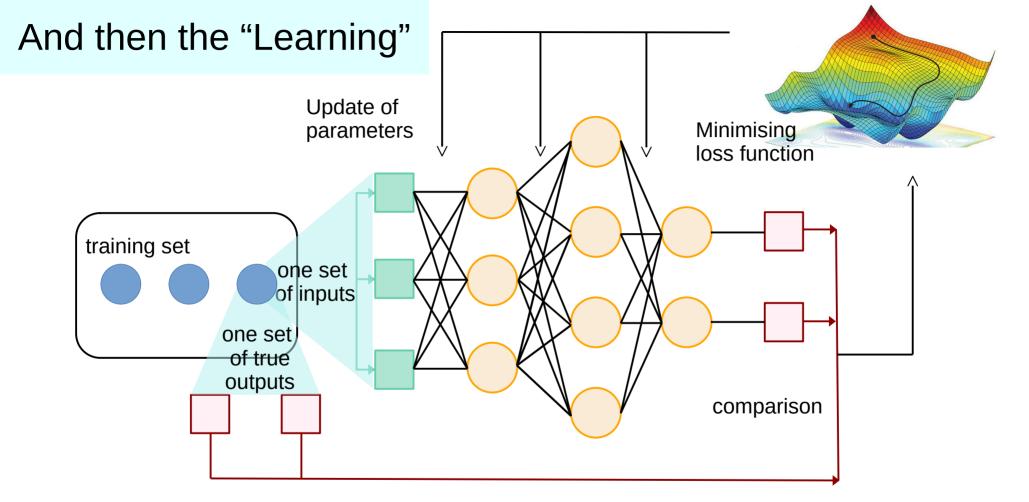
Then we add layers (the "Deep")



Rosenblatt (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386-408

And then we add layers (the "Deep")





Widrow and Hoff (1960) Adaptive Switching circuits. WESCON Convention record part IV: 96-104

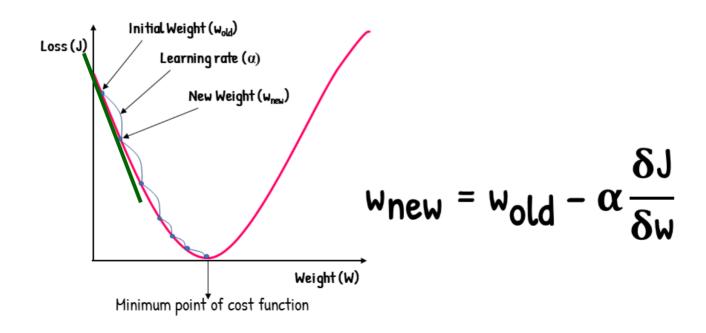
S Amari (1967). A theory of adaptive pattern classifier. *IEEE Transactions*. EC (16): 279–307

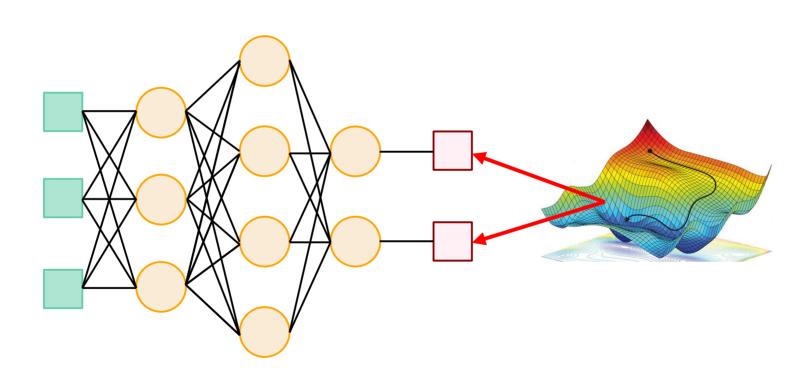
S Linnainmaa (1970-1976). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors (Masters). University of Helsinki. p. 6–7.

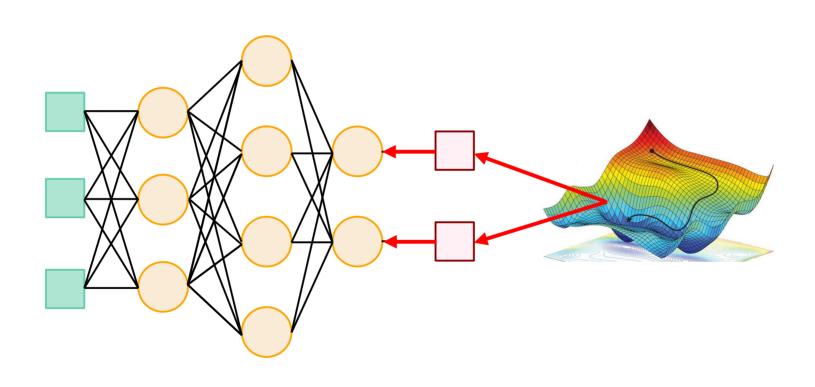
P Werbos (1971-1982) Applications of advances in non-linear sensitivity analysis. LNCIS 38: 762-770

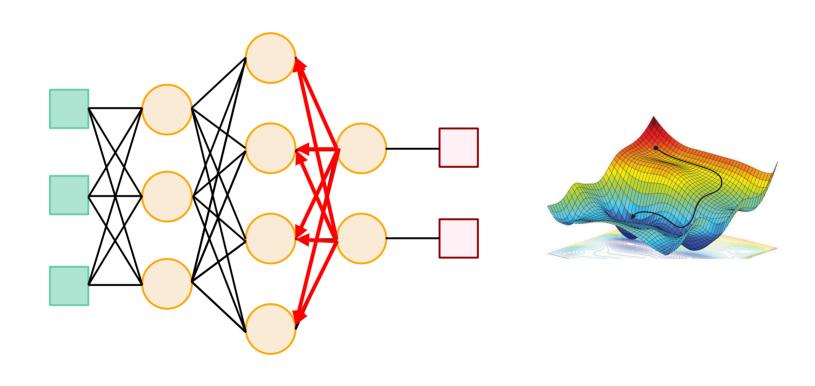
Optimization, e.g., gradient descent

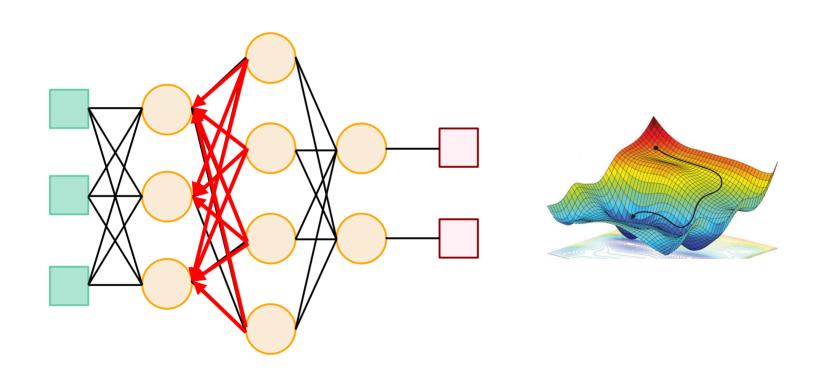
To minimise the loss function (called L, C, or most often J), we will calculate the "gradient" – the derivative – of the loss function with a set of parameters and calculate a new set using this gradient and the *learning rate*.

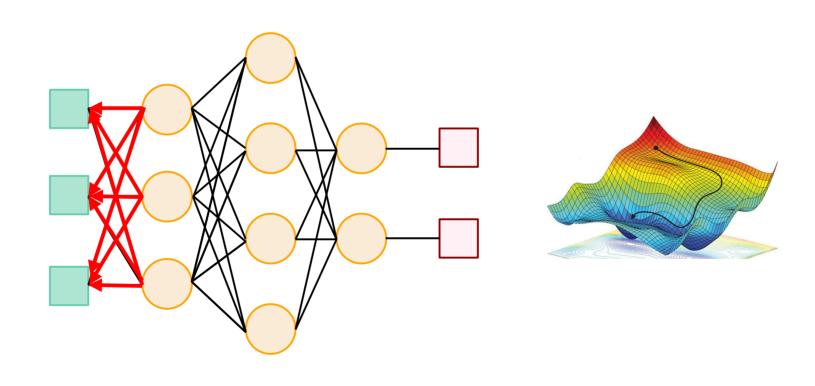




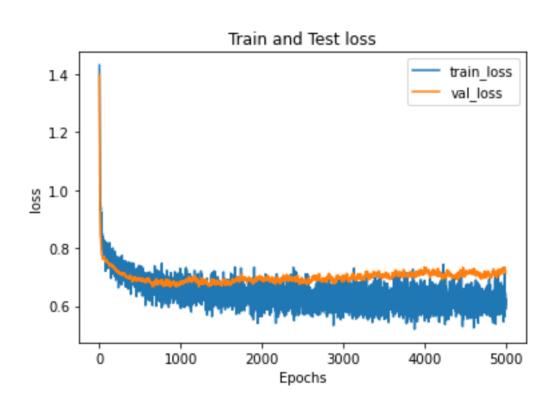








Learning



Training, testing, and validation sets

"validation" (never seen)
Same for all model instances
Used to assess the model at the end

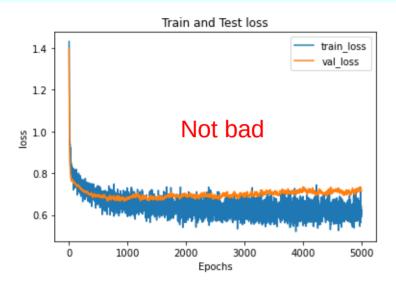
Training set: used to learn

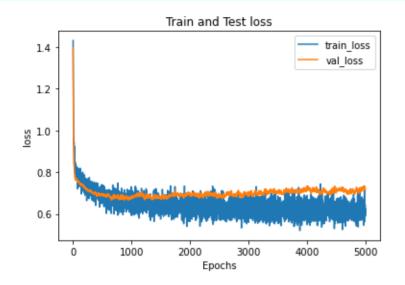
(training + test set = learning set)

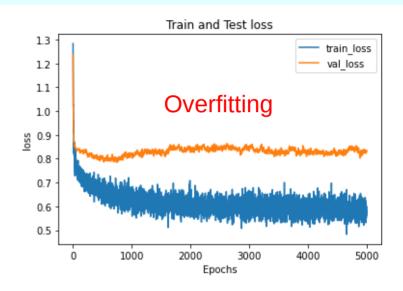
"test" set: used to assess the model during the learning phase Different for each model instance

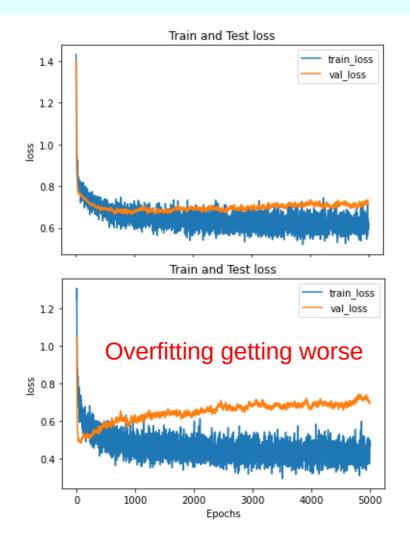
Beware: "validation" and "test" are used the other way around a lot in deep learning, at the opposite of all other fields of machine learning, or even life science in general

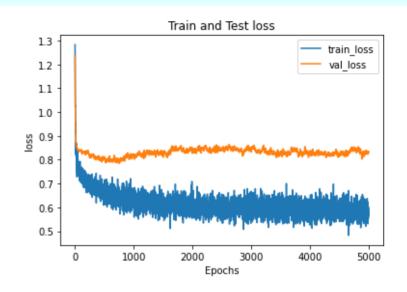
Random Test samples K-fold validation

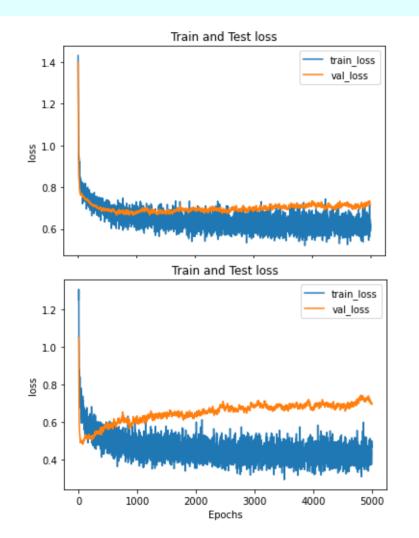


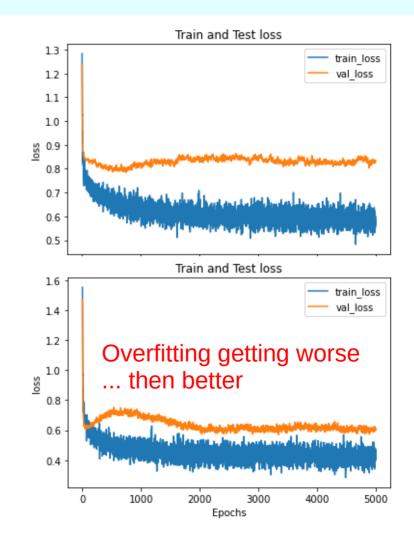












Why a test AND a validation set?

Underperforming on the test set means the model overfitted the <u>training set</u>, the parameters are too specific of the training samples. This overfitting is learned.

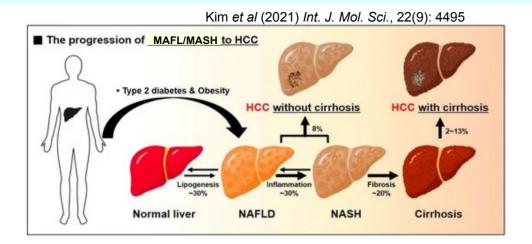
Underperforming on the validation set means the hyperparameters are too specific of the test set as well! When you modifies the structure of the model to avoid overfitting, you actually made the model overfit the <u>entire learning set</u>. YOU biased the model.

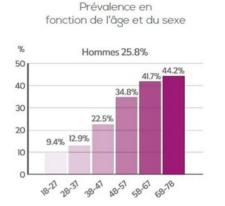
This overfitting is built-in.

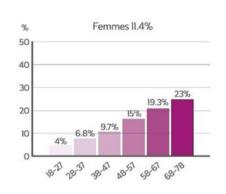
3

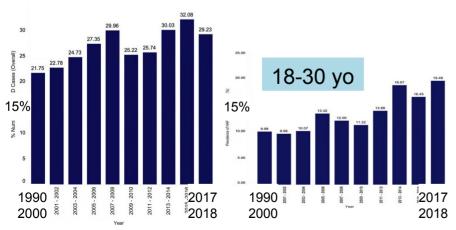
MLPs in action Multi-omics real-world example

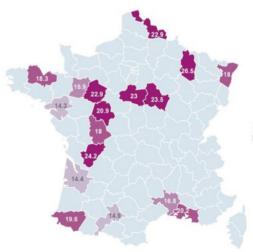
Let's try to recognise a disease severity











NASH (now MASH)

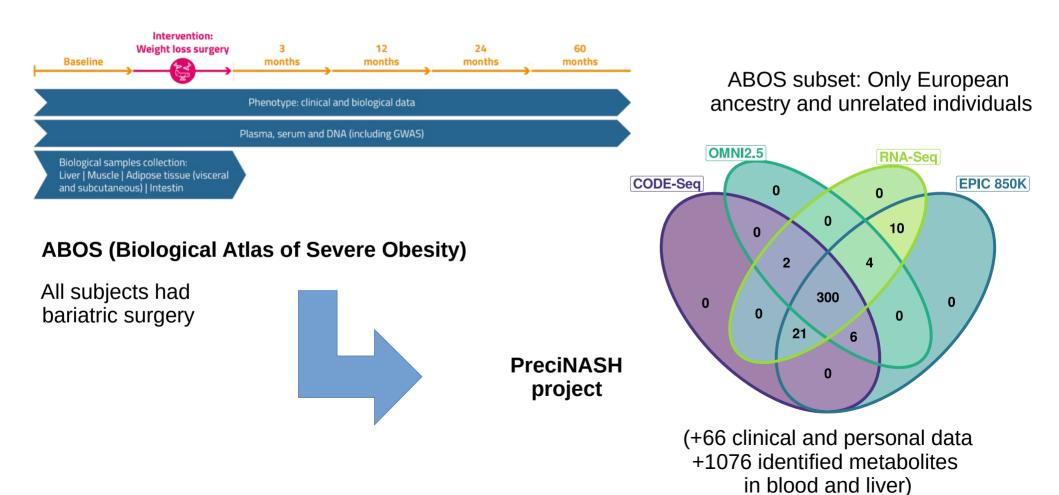
Répartition par régions

Paris MASH Meeting (11-12 juillet 2019)

Kim et al (2022) Met. Target Organ Damage, 2: 19

NALFD (now MASLD)

Cohort



Subject grouping

Scoring on liver biopsy with the method from Kleiner and Brunt 2005

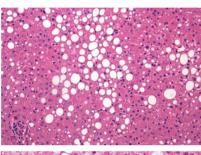
Steatosis

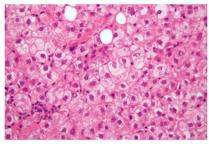
Categorical [0-3] from quantitative measurement

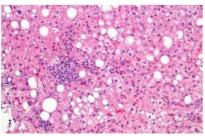
Categorical [0-2] = {none, some, much}

Inflammation

Categorical [0-3] from number of foci







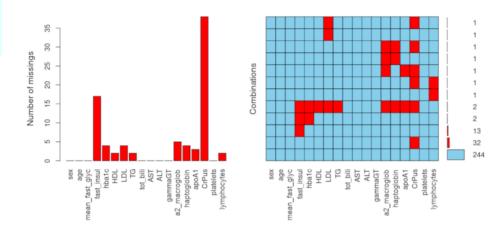
Final score:

Healthy: S = 0, B = 0, I = 0 n = 80

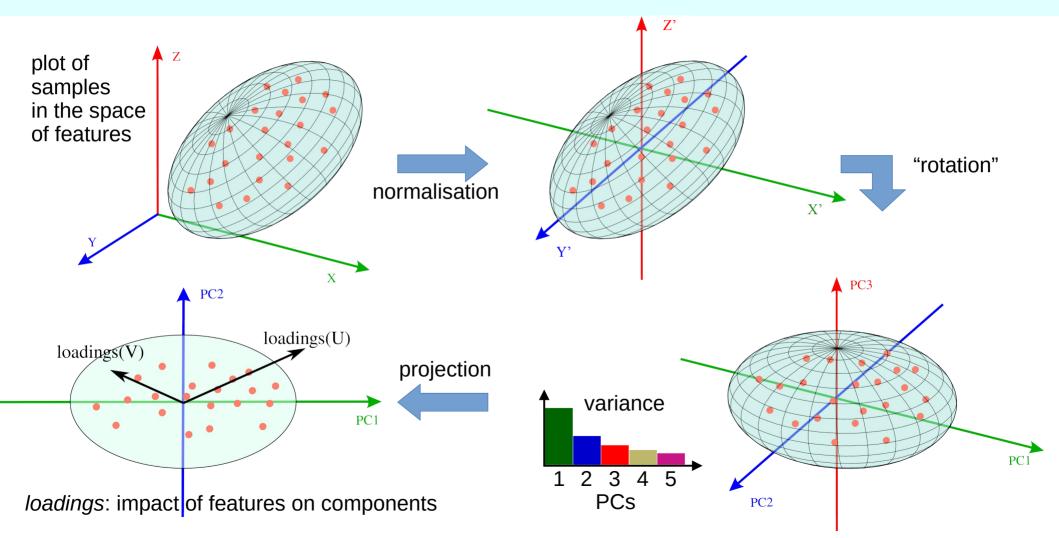
NAFL: S>1, B=0, $l\ge 1$ n=137 S>1, B>1, l=0

NASH: S > 0, B > 0, I > 0 n = 83

Clinical data



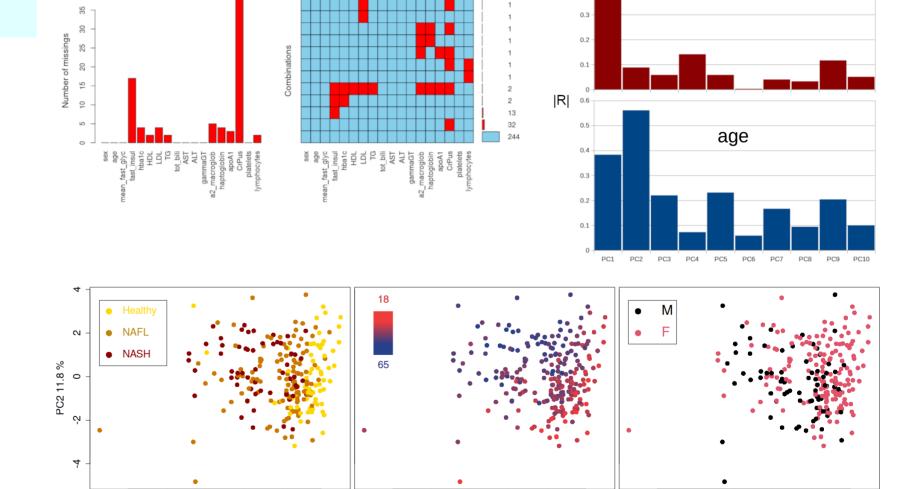
Principal component analysis (PCA)



Clinical data

-8

PC1 19.6 %



PC1 19.6 %

2

-8

0.5 -

0.4 -

2

-8

2

0

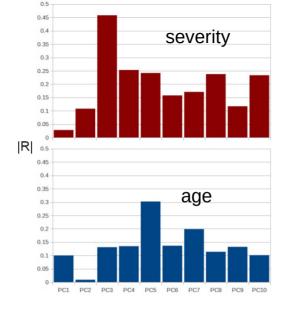
PC1 19.6 %

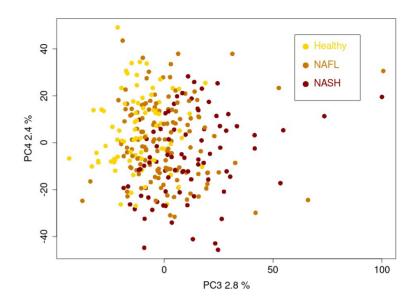
severity

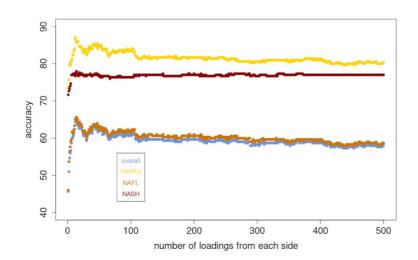
RNAseq

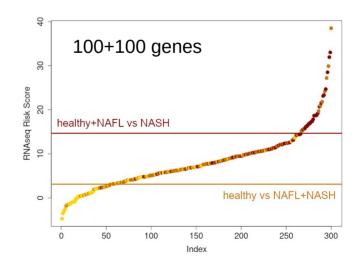
Score based on gene expression and gene "loadings" (impact of a gene on a given principal component)

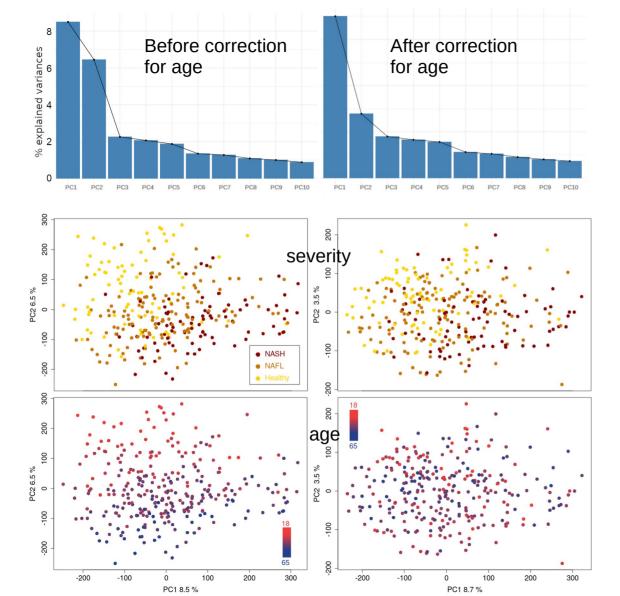
Logistic regression to find the thresholds best separating the severity groups

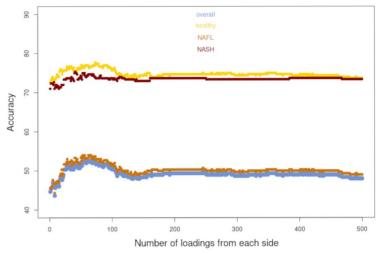


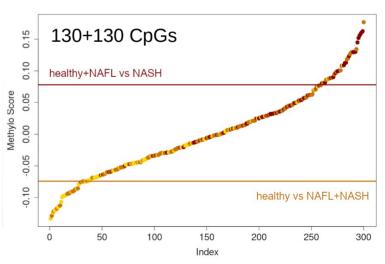


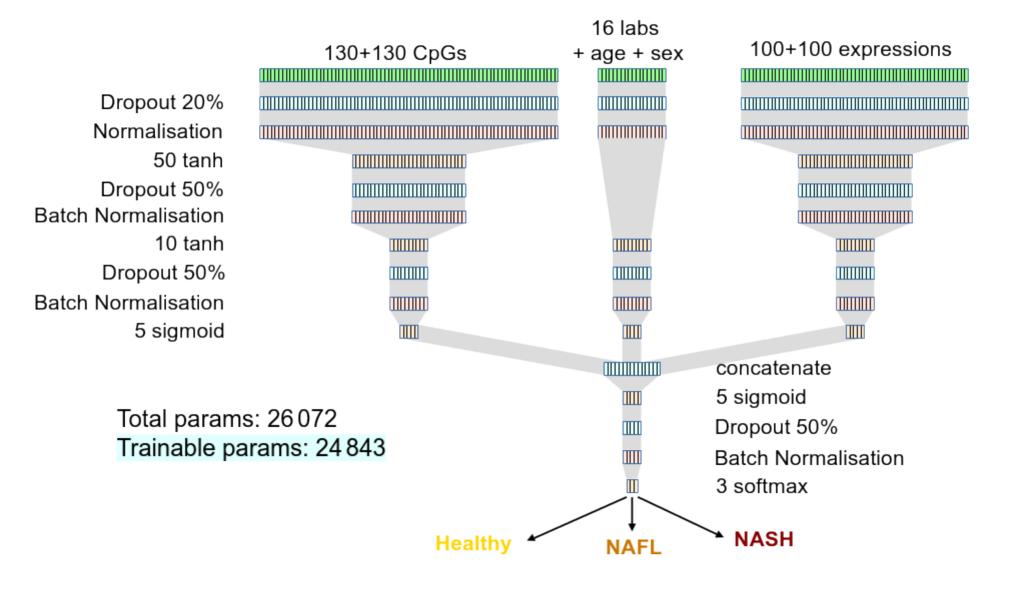






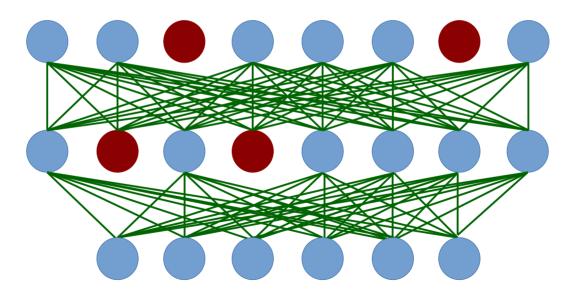






Dropout

- 1) Purpose: avoiding overfitting
- 2) Disable some connections at random (set the weights at 0)



Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 15(56):1929–1958

Normalisation

- 1) Normalisation during data processing
- 2) Normalisation before training: on the whole dataset
- 3) Normalisation during training: after dropout
- 4) Batch normalisation: normalisation on the current batch (not on the entire dataset)
- 5) Layer normalisation: normalisation of the input of a layer

Ba, Kiros, Hinton (2016) Layer Normalization. arXiv:1607.06450v1 loffe and Czegedy (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proc 32nd Intl Conf Machine Learning, Lille, France volume 37

Evaluating a model's performance



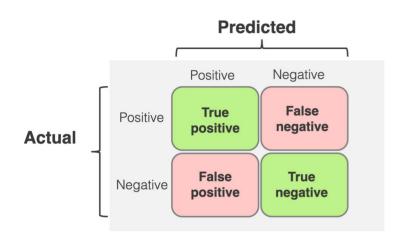
Accuracy = (TP+TN)/(TP+FN+TN+FP)

Precision = TP/(TP+FP)

Sensitivity (true positive rate) = TP/(TP+FN)

Specificity (true negative rate) = TN/(TN+FP)

Evaluating a model's performance



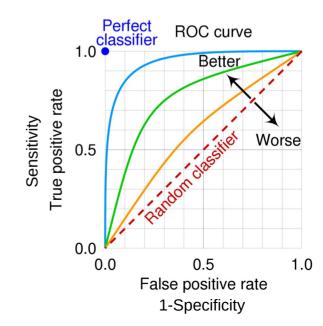
Accuracy = (TP+TN)/(TP+FN+TN+FP)

Precision = TP/(TP+FP)

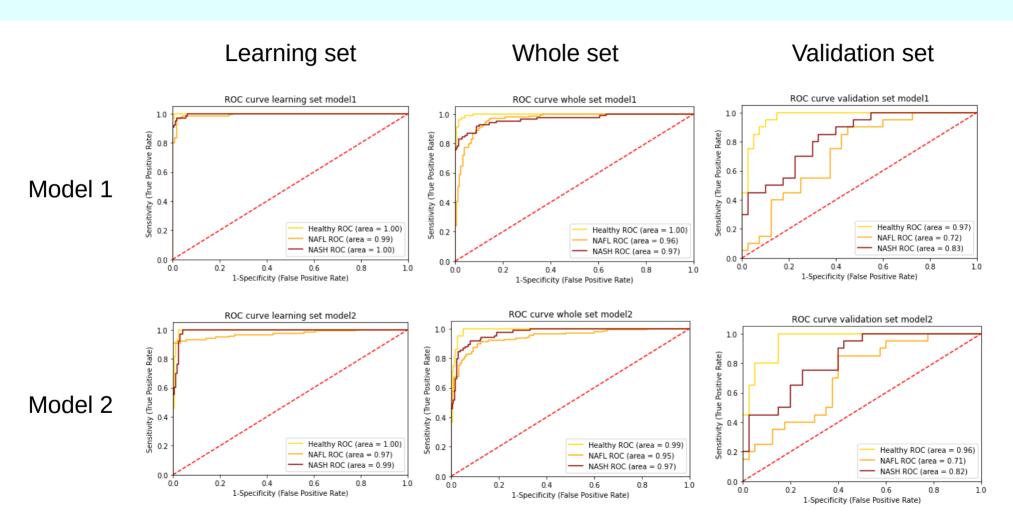
Sensitivity (true positive rate) = TP/(TP+FN)

Specificity (true negative rate) = TN/(TN+FP)

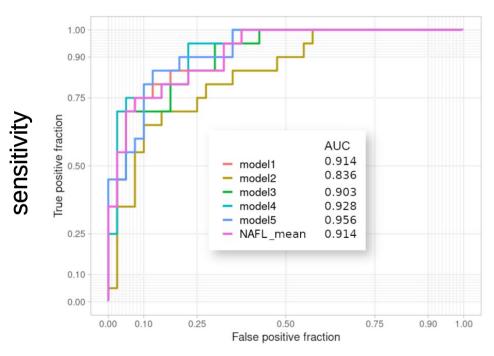
Receiver operating characteristic (ROC) curve



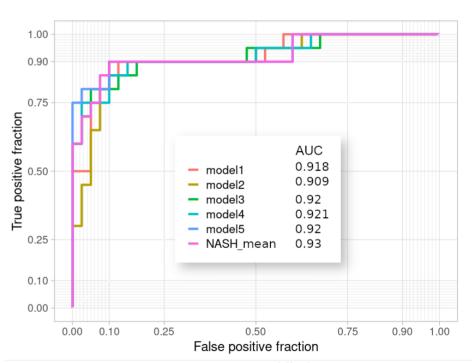
Different accuracies on different datasets



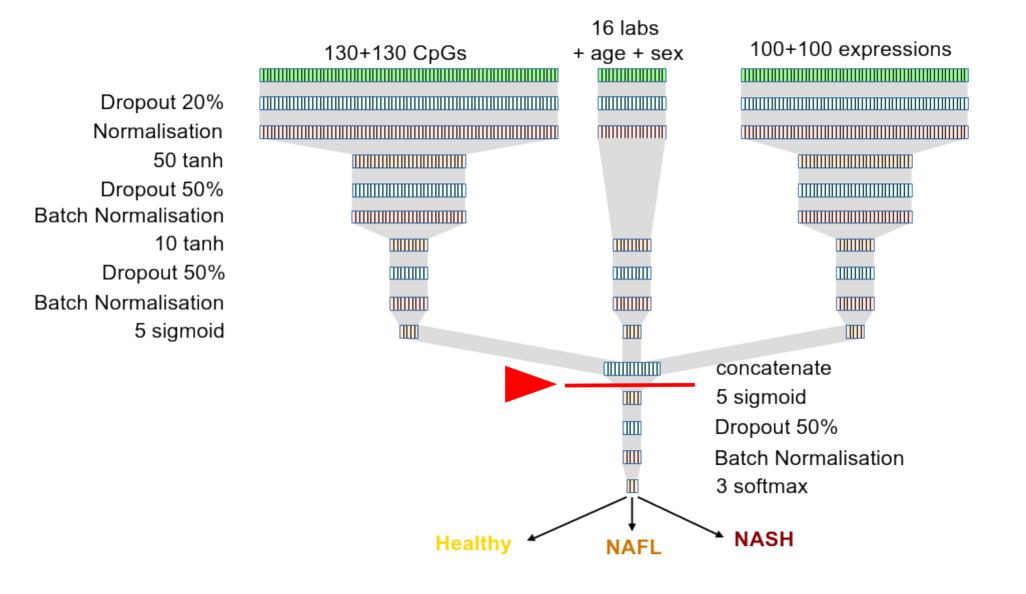
How good is the model to distinguish NAFL and NASH?



1 - specificity

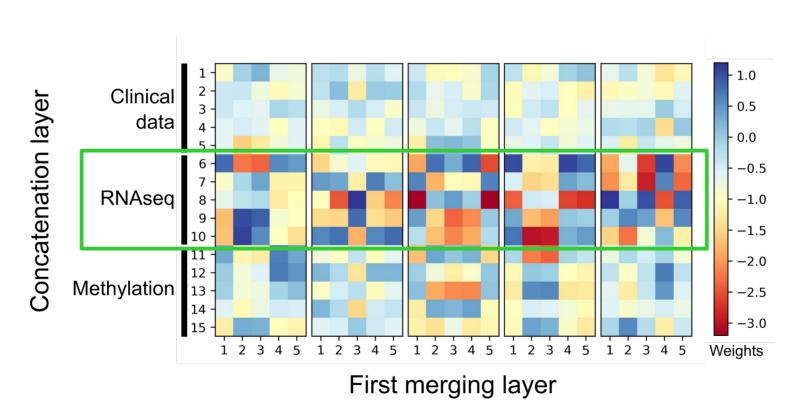


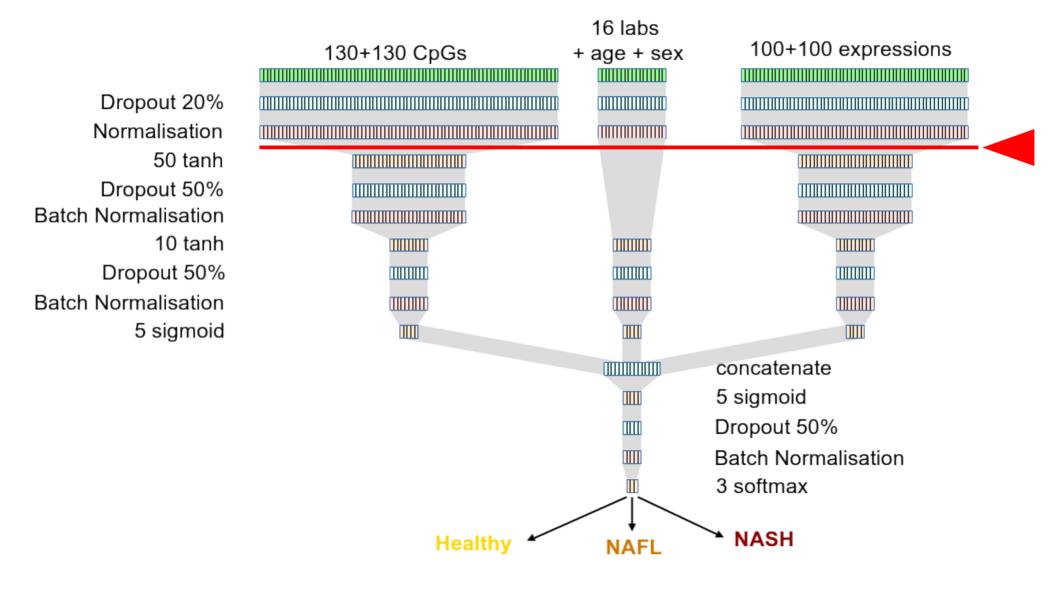
1 - specificity



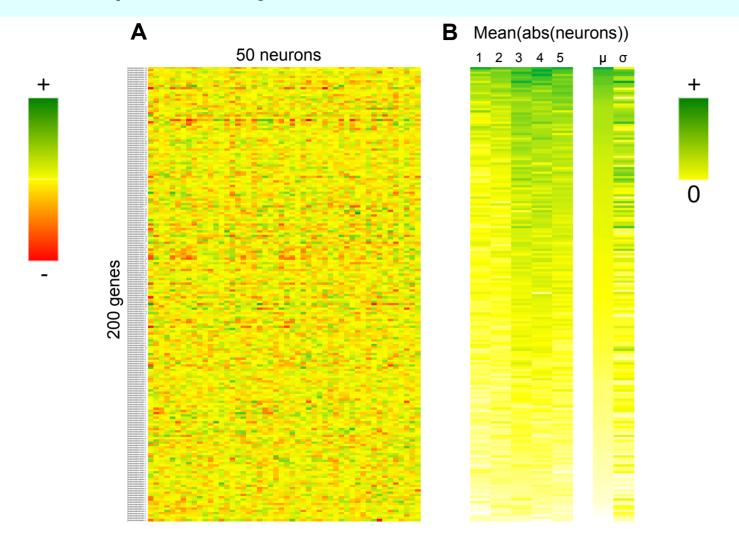
Peeping into the black box

The RNAseq module has the most impact on output

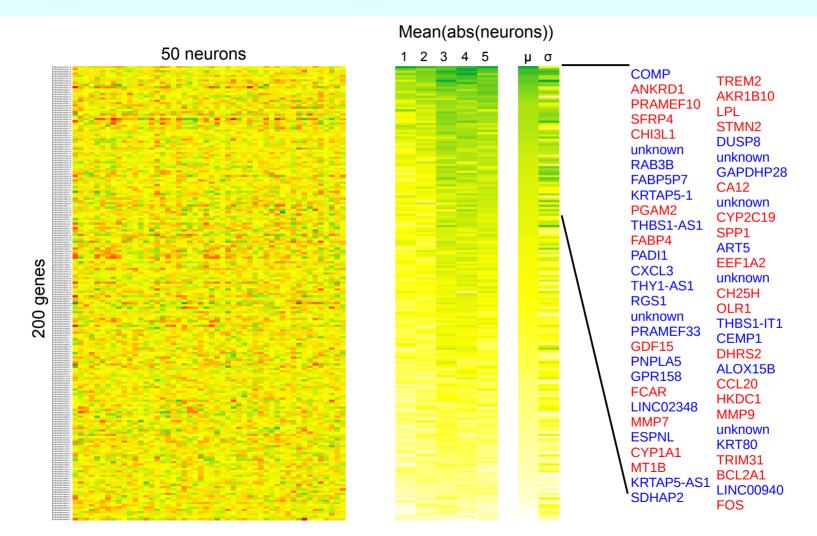




Independently trained models learn from the same genes



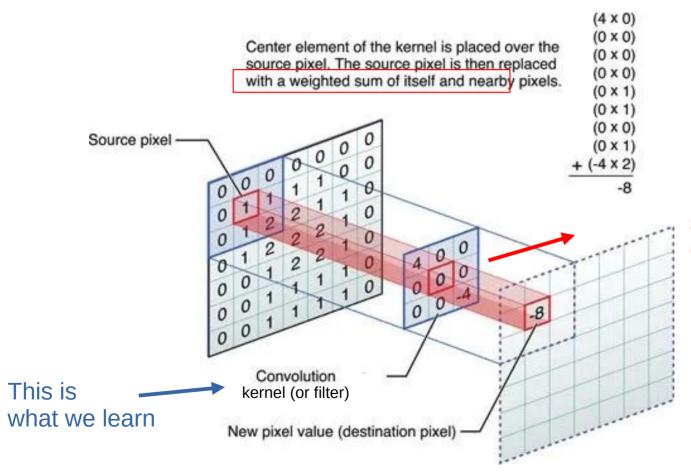
Known and new genes in MASLD severity



4

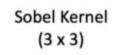
Convolutional Neural Networks (CNN)

We can detect local features by linking neighbouring inputs

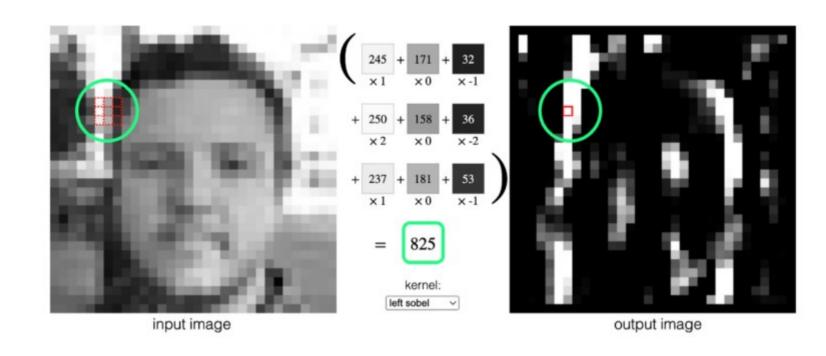


Detection of local features, such as edges, orientation, colour gradients, etc

Example of feature detection: vertical edges



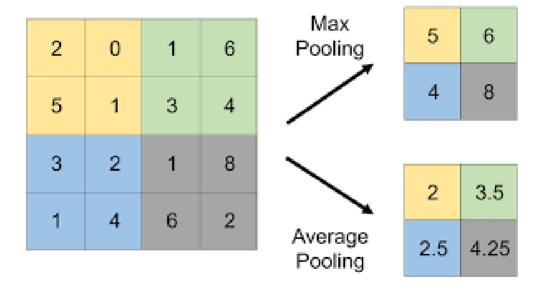
1	0	-1
2	0	-2
1	0	-1



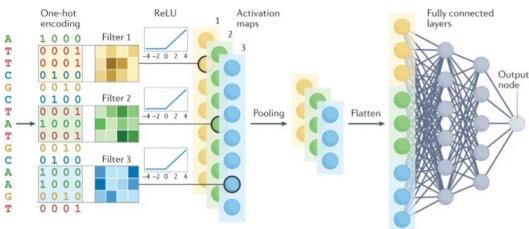
NB: here, we provide the kernel. In CNNs, the kernel is learned

https://setosa.io/ev/image-kernels/

Downsampling: Max/average pooling



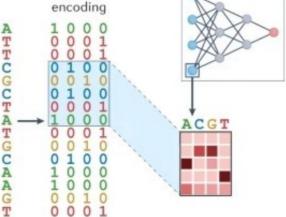
Everything is an image: DNA sequences to images



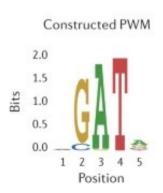
Obtaining genetics insights from deep learning via explainable artificial intelligence

<u>Cherman Novakovsky, Nick Dexter, Maxwell W. Libbrecht</u> ☑, <u>Wyeth W. Wasserman</u> ☑ & <u>Sara Mostafavi</u> ☑

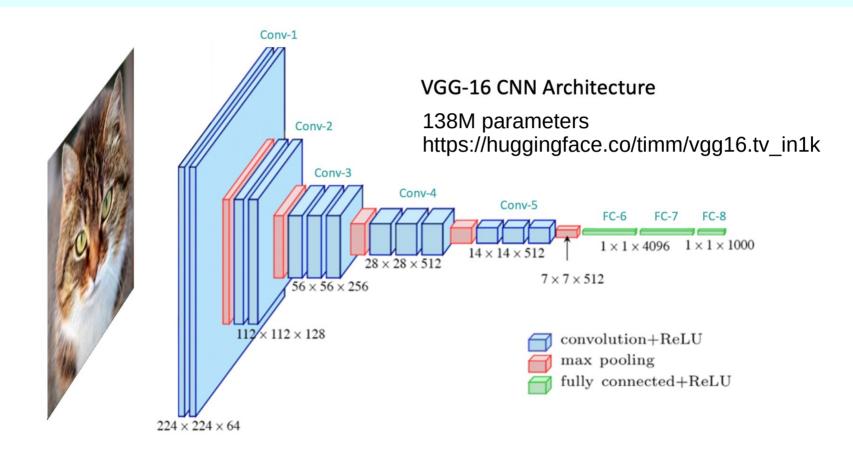
Nature Reviews Genetics 24, 125-137 (2023) | Cite this article



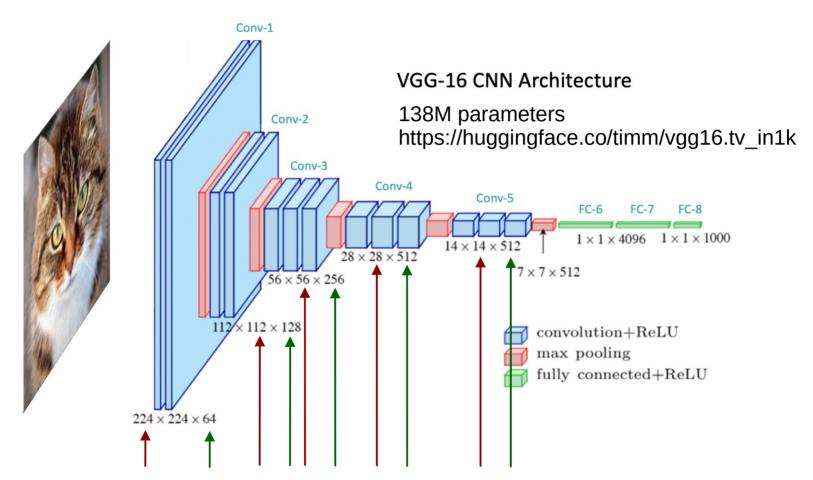
One-hot



Real example: VGG

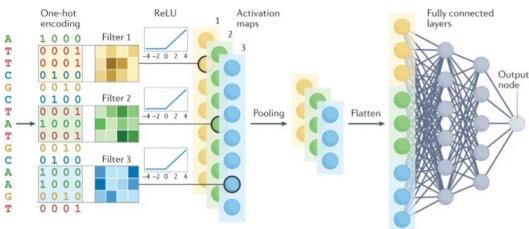


Decreasing size, increasing feature number



Simonyan K, Zisserman A (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015 https://arxiv.org/pdf/1409.1556

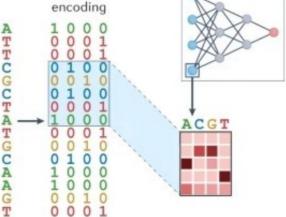
Everything is an image: DNA sequences to images



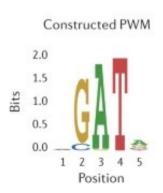
Obtaining genetics insights from deep learning via explainable artificial intelligence

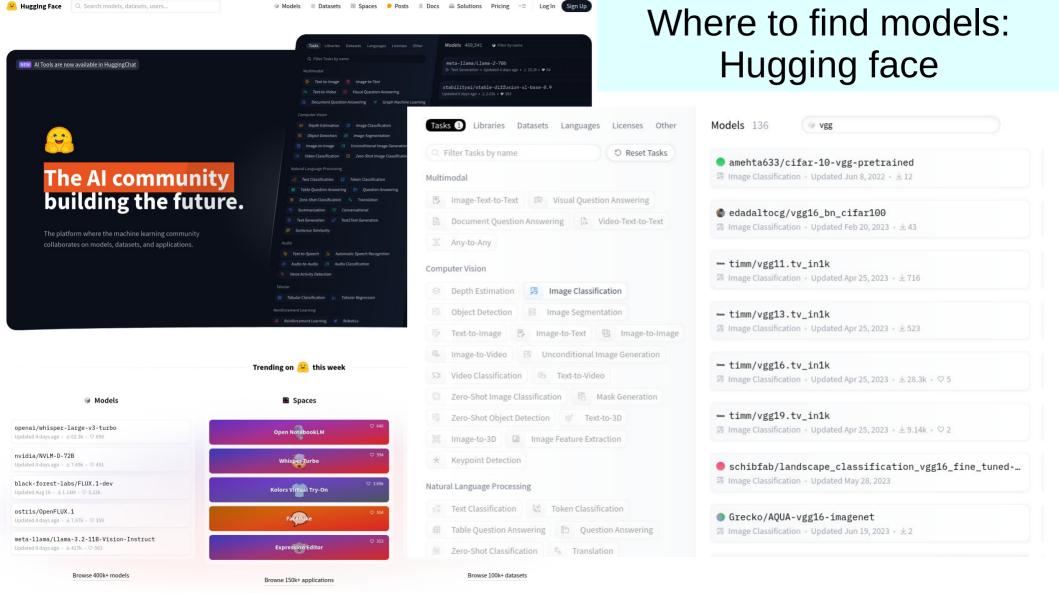
<u>Cherman Novakovsky, Nick Dexter, Maxwell W. Libbrecht</u> ☑, <u>Wyeth W. Wasserman</u> ☑ & <u>Sara Mostafavi</u> ☑

Nature Reviews Genetics 24, 125-137 (2023) | Cite this article



One-hot





Reusing models without full retraining

Skin Cancer Classification using VGG-16 and Googlenet CNN Models

January 2023 · International Journal of Computer Applications 184(42):5-9

Anju, T.E., Vimala, S. (2023). Finetuned-VGG16 CNN Model for Tissue Classification of Colorectal Cancer. In: Raj, J.S., Perikos, I., Balas, V.E. (eds) Intelligent Sustainable Systems. ICoISS 2023. Lecture Notes in Networks and Systems, vol 665. Springer, Singapore.

VGG 16 Pre-Trained Model for Early Detection of Retinal Diseases

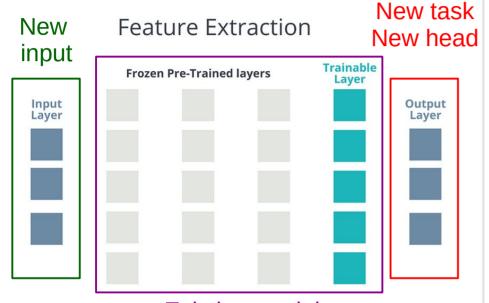
December 2023

DOI:10.1109/SMARTGENCON60755.2023.10442010

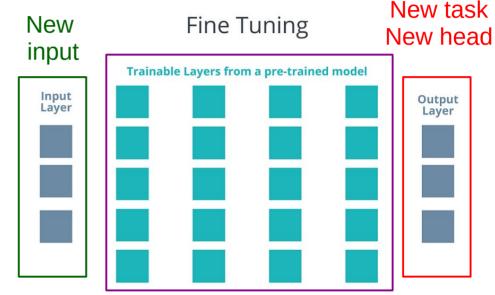
Conference: 2023 3rd International Conference on Smart Generation Computing,

Raghuvanshi S, Dhariwal S. The VGG16 Method Is a Powerful Tool for Detecting Brain Tumors Using Deep Learning Techniques. *Engineering Proceedings*. 2023; 59(1):46. https://doi.org/10.3390/engproc2023059046

Transfer Learning: How Feature Extraction & Fine-Tuning work?

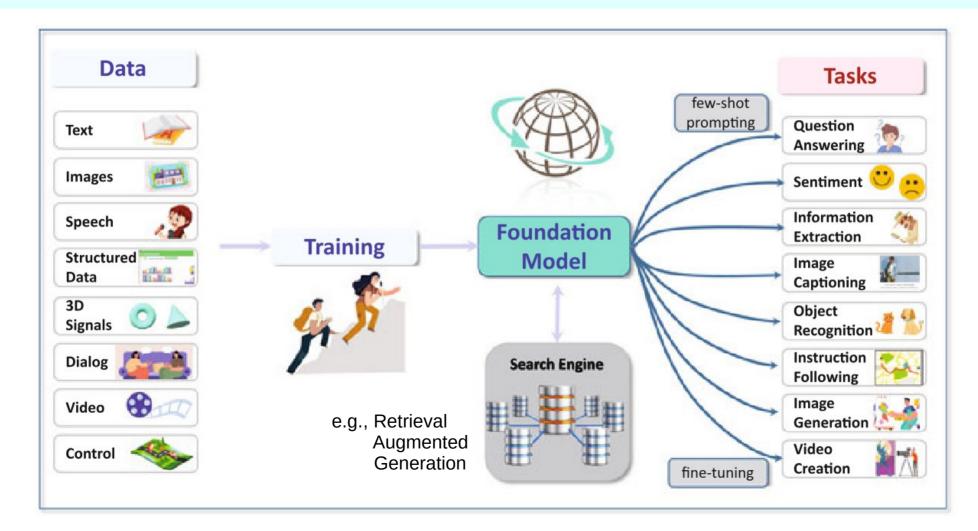


Existing model
In feature extraction, you freeze the pre-trained
model layers to preserve existing learning and add
new layers to learn additional information.



Existing model
In fine-tuning, you unfreeze the entire model and
train it with a lower learning rate to adapt to new
challenges.

Extreme transfer learning: Foundation models



5

Embeddings and latent spaces

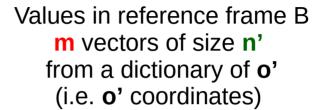
Embeddings ("plongement")

Values in reference frame A

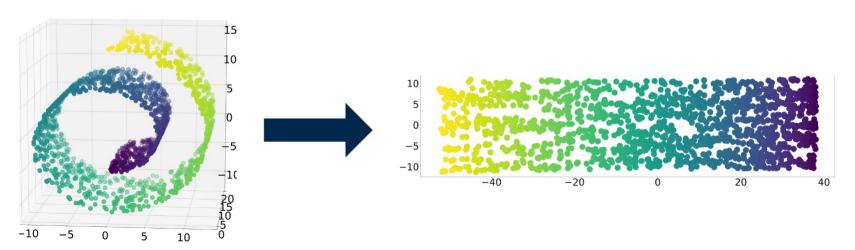
m vectors of size n

from a dictionary of o

(i.e. o coordinates)

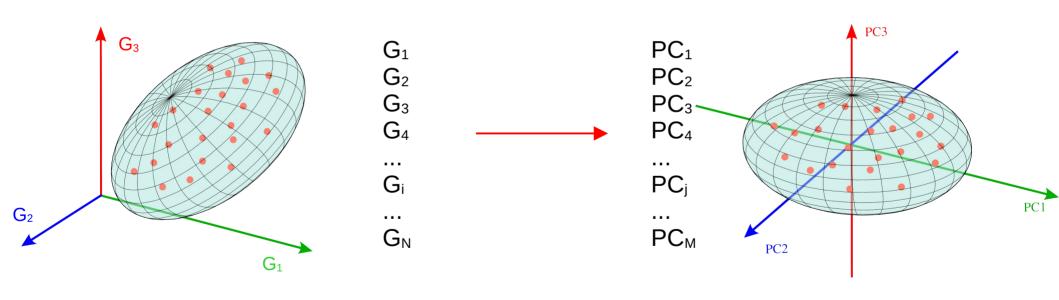


Embedding from a space with **n** dimensions into a space of **o** dimensions

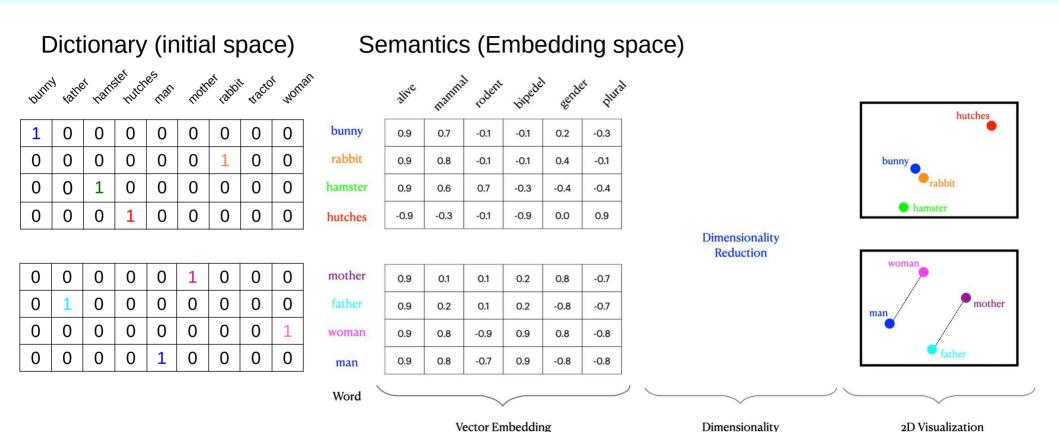


A PCA is an embedding

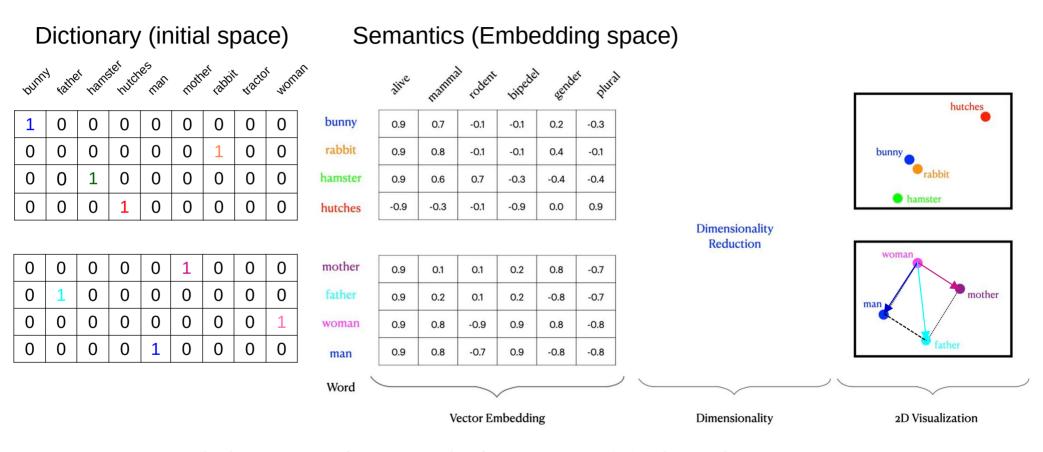
Axes = N genes Coordinate = expressions Axes = M principal components Coordinates = Rotations x expressions



"Similar" objects are neighbours in the latent space

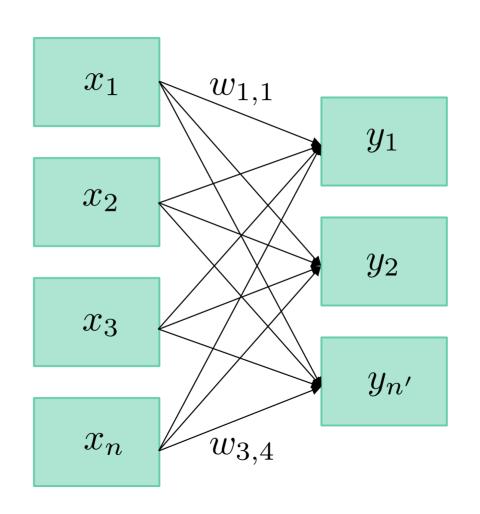


Arithmetic operation in latent space = semantic statement

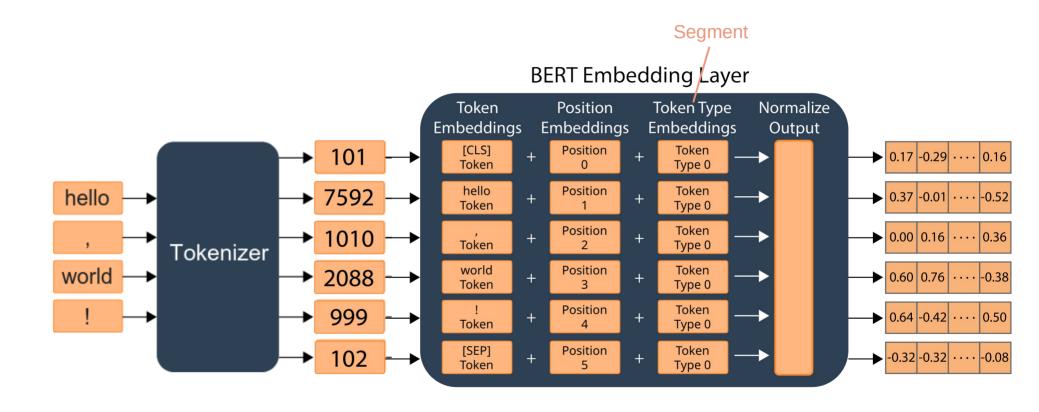


In the latent space, the vector going from woman to father is equal to the vector going from woman to man plus the vector going from woman to mother

DL: Fully connected layers to learn the embedding

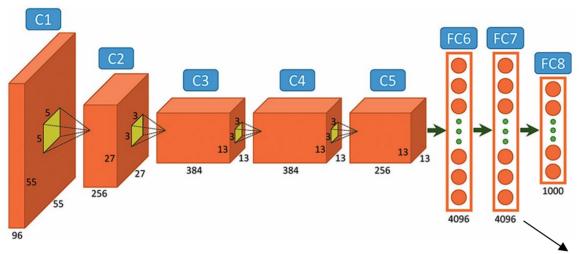


There can be several embeddings



Source: https://tinkerd.net/blog/machine-learning/bert-embeddings/

Deep CNNs are "embedding" the images in a "latent space"



6 nearest neighbours in the 4096 dimension space

Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet Classification with Deep Convolutional Neural Networks https://proceedings.neurips.cc/paper/2012/file/ c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

(presenting AlexNet, the first Deep Convolutional Network)

https://huggingface.co/debashd/AlexNet

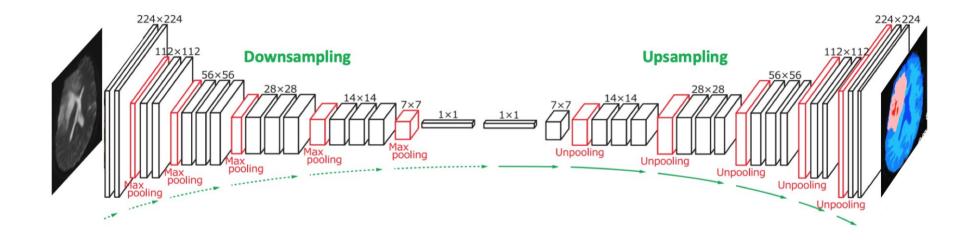
input image

6

Encoder-Decoders

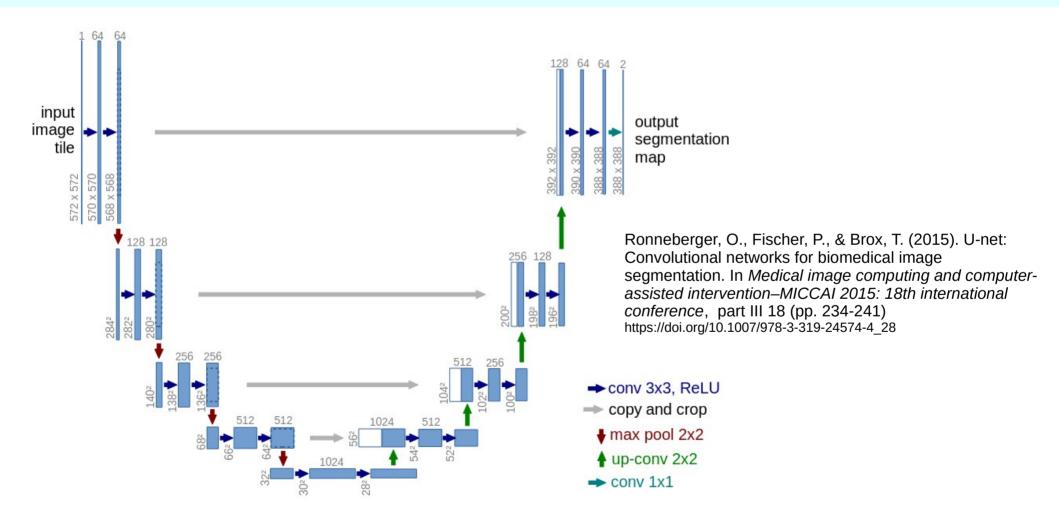
(variational) AutoEncoders (VAEs)

Encoder-decoder

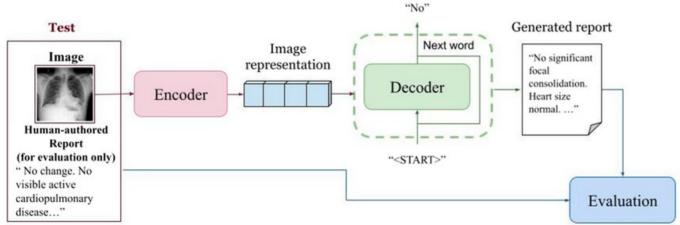


Example of segmentation to identify brain tumours

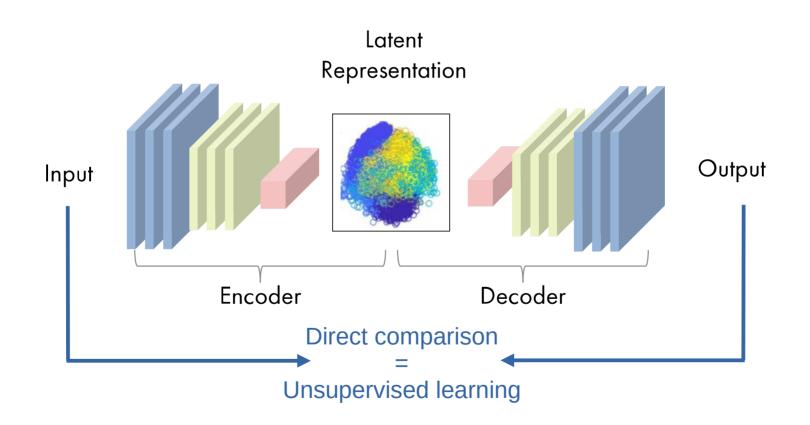
Disclaimer: it is more complicated



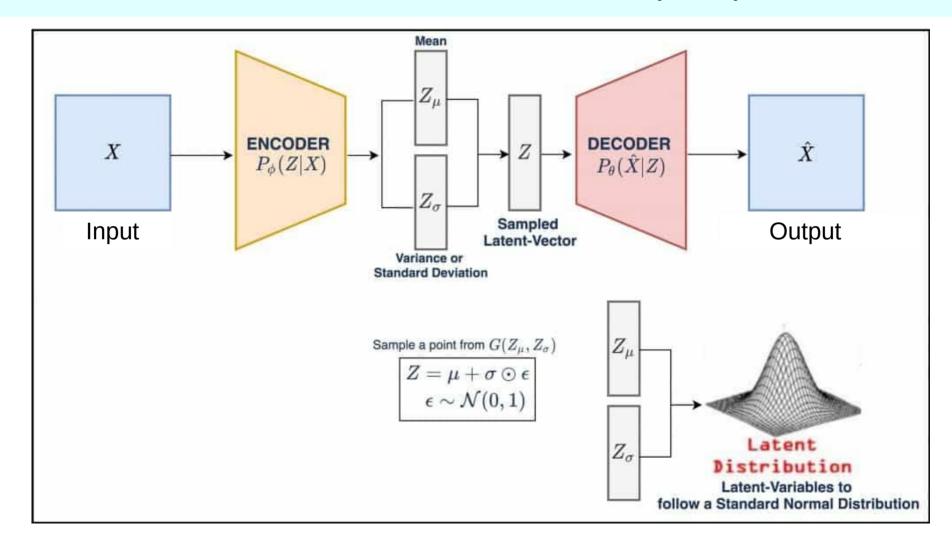
Encoders and decoders can be anything



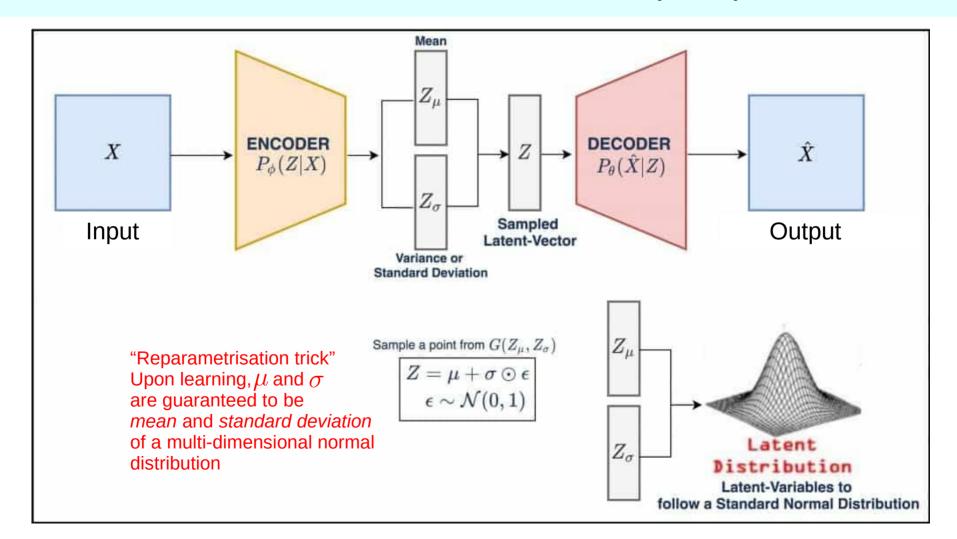
Learn by itself: AutoEncoder



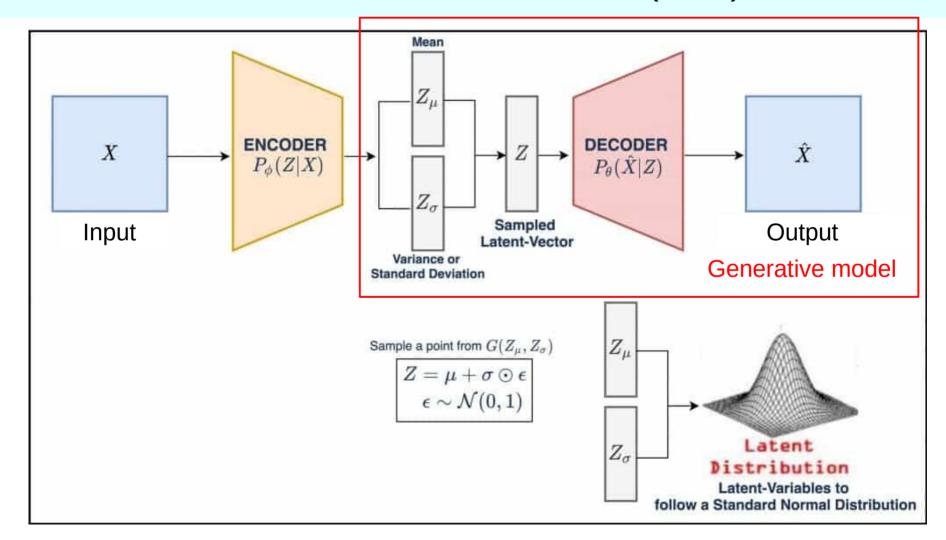
Variational Auto Encoder (VAE)



Variational Auto Encoder (VAE)



Variational Auto Encoder (VAE)

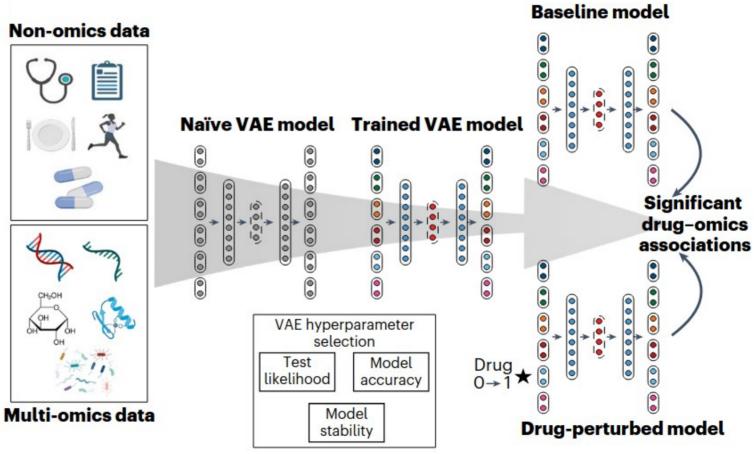


Benkirane, H., Pradat, Y., Michiels, S., Cournède, P. H. (2023). CustOmics: A versatile deep-learning a. Early Integration b. Joint Integration based strategy for multi-omics integration. PLoS Computational Biology, 19(3), e1010921. CNV CNV $\mathcal{N}(0,1)$ RNAseq RNAseq d. Mixed Integration: c. Late Integration CustOMICS CNV CNV RNAseq Aggregation Network Methyl

Article

https://doi.org/10.1038/s41587-022-01520->

Discovery of drug-omics associations in type 2 diabetes with generative deep-learning models



7

Attention and the Transformer

Attention Is All You Need

Ashish Vaswani' Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones+ Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain

lukaszkaiser@google.com

Illia Polosukhin* illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation [29] [2]. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures [31] [21, 13].

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

The paper that changed everything: the Transfomer

^{*}Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head attention and the parameter-free position representation and became the other person involved in nearly every detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating our research.

Work performed while at Google Brain.

[‡]Work performed while at Google Research.

Attention Is All You Need

Cool title

Ashish Vaswani' Google Brain avaswani@google.com

Noam Shazeer' Google Brain noam@google.com

Niki Parmar' Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain

lukaszkaiser@google.com

Illia Polosukhin*

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

All authors equal

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks

*Equal contribution. Listing order is random.

*Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head attention and the parameter-free position representation and became the other person involved in nearly every detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating

Work performed while at Google Brain. Work performed while at Google Research Never published in a journal

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

The paper that changed everything: the Transfomer

Cited... 140833 times as of 13 October 2024!

Attention Is All You Need

Ashish Vaswani' Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar' Google Research

Jakob Uszkoreit* Google Research nikip@google.com usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto Łukasz Kaiser* Google Brain

aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin*

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

1 Introduction

Recurrent neural networks, long short-term memory [12] and gated recurrent [7] neural networks in particular, have been firmly established as state of the art approaches in sequence modeling and transduction problems such as language modeling and machine translation [29] [2] [5]. Numerous efforts have since continued to push the boundaries of recurrent language models and encoder-decoder architectures [31] [21, 13].

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

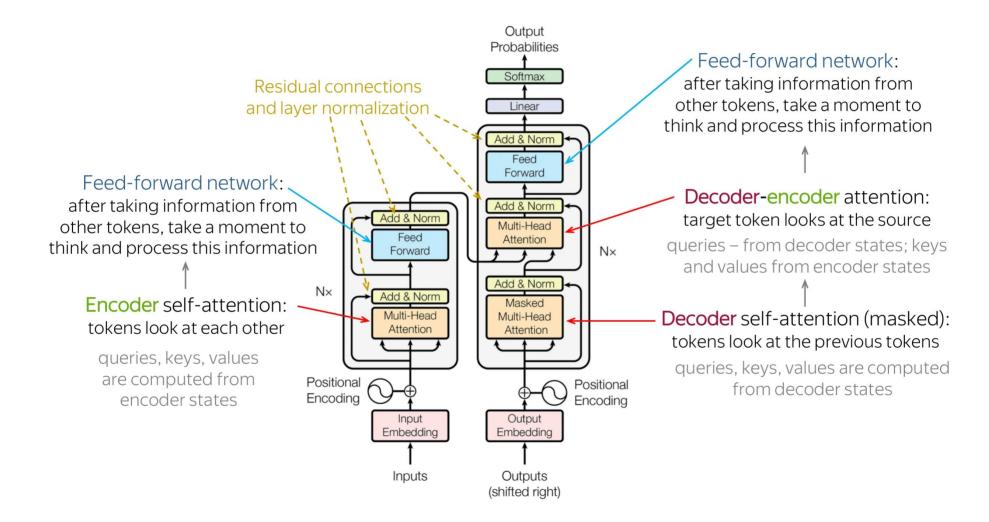
The paper that changed everything: the Transfomer

^{*}Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head attention and the parameter-free position representation and became the other person involved in nearly every detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating our research.

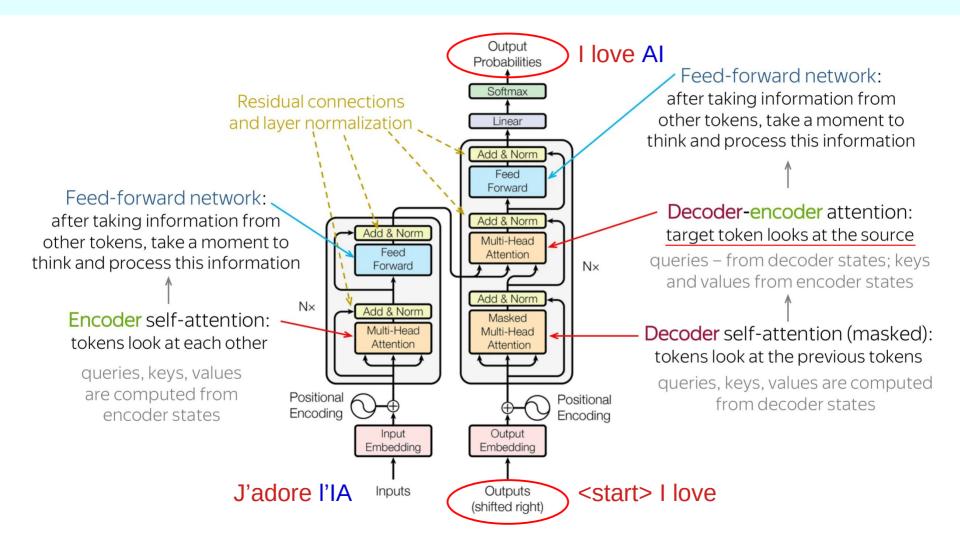
Work performed while at Google Brain.

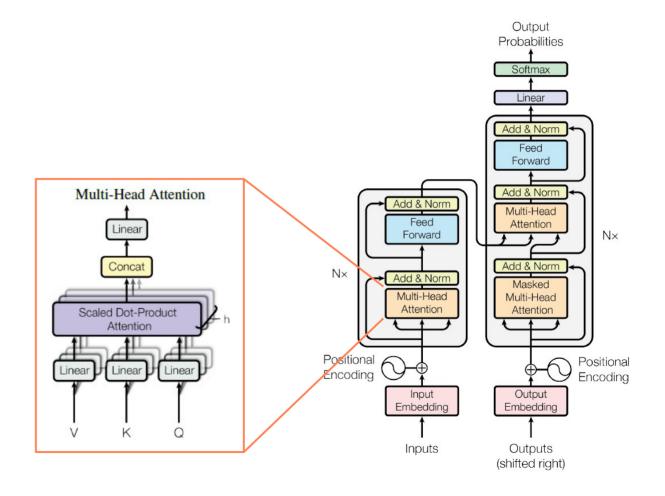
Work performed while at Google Research.

The Transformer: Memory + context = attention

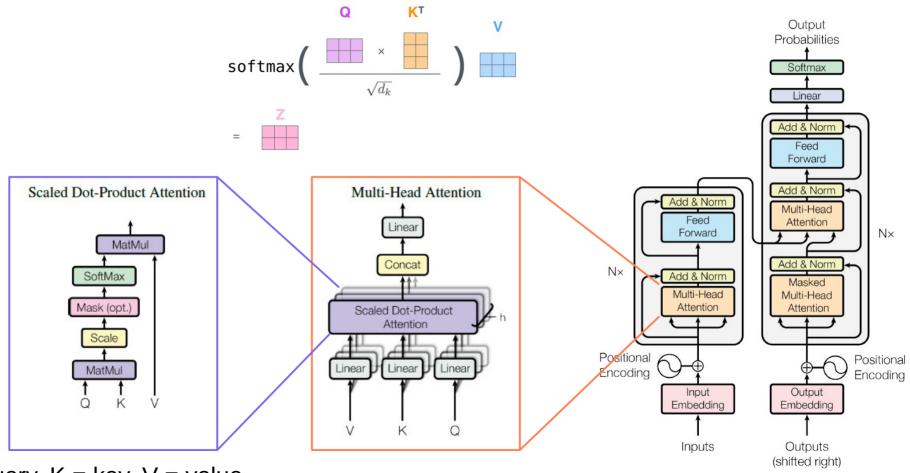


The Transformer: Memory + context = attention

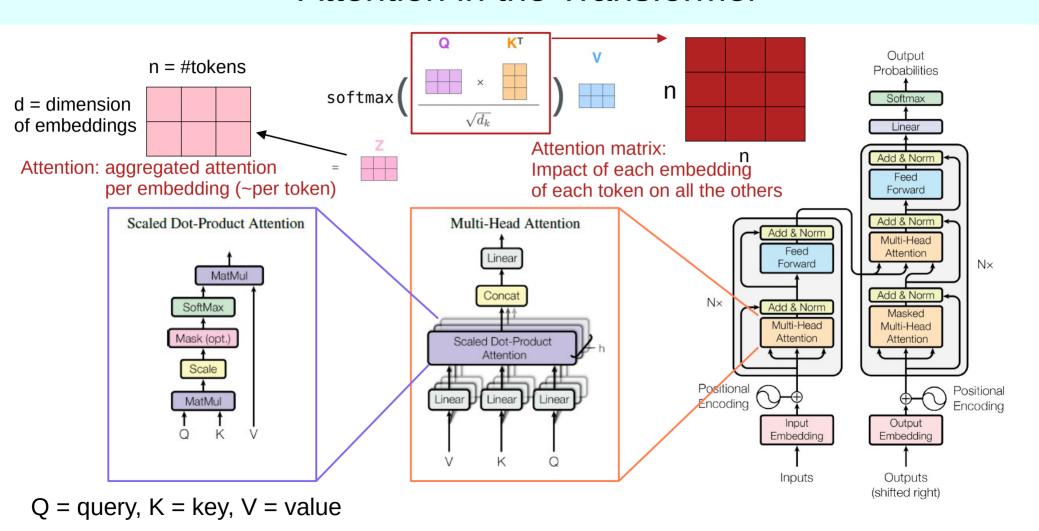


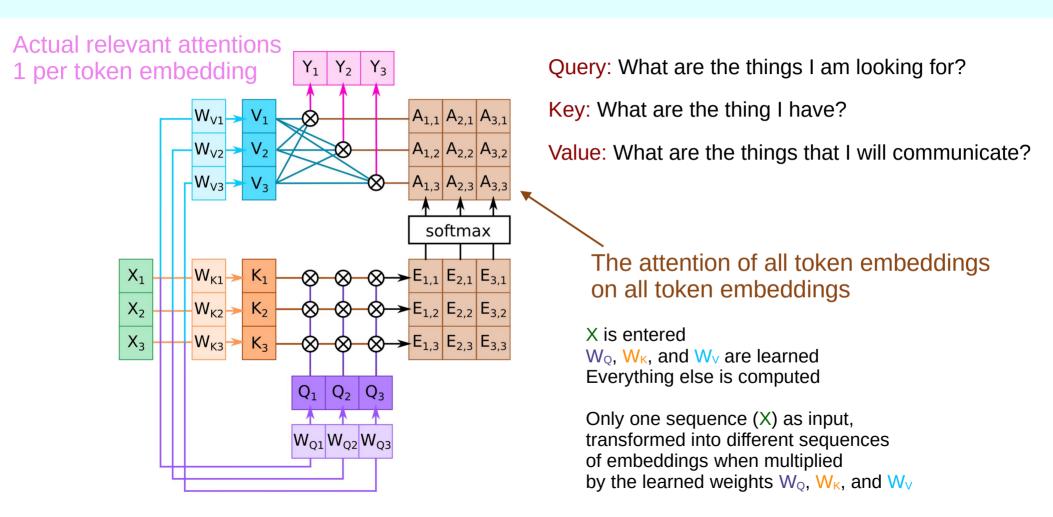


Q = query, K = key, V = value

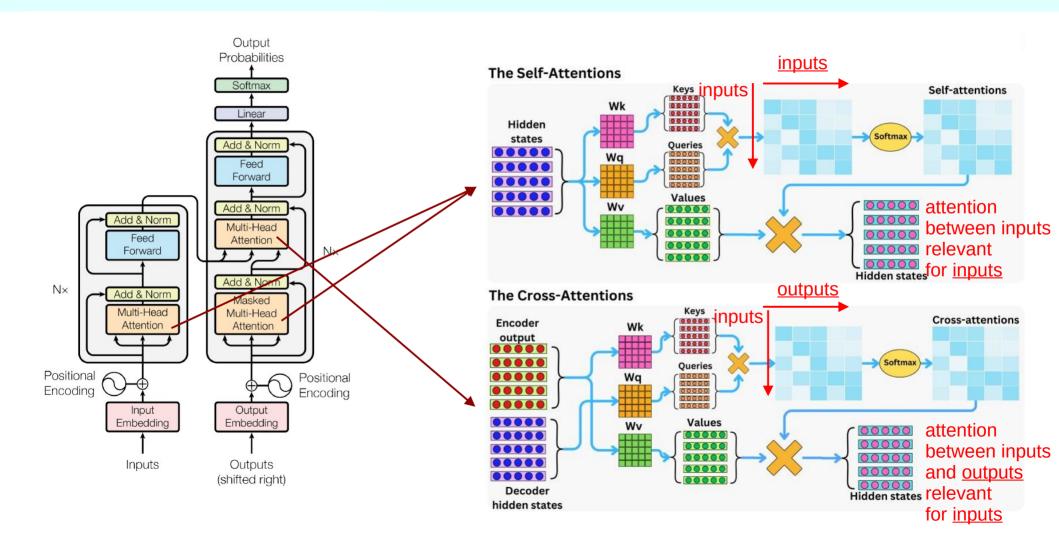


Q = query, K = key, V = value

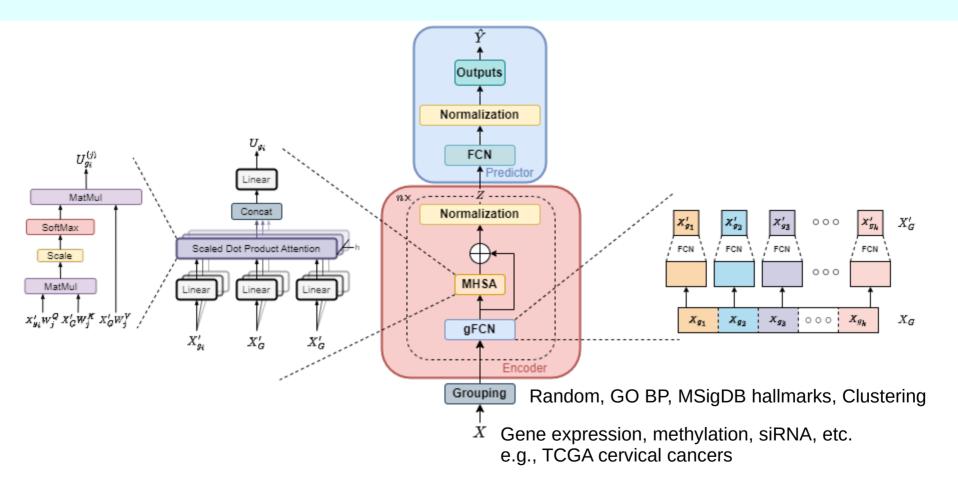




Self versus Cross-attention

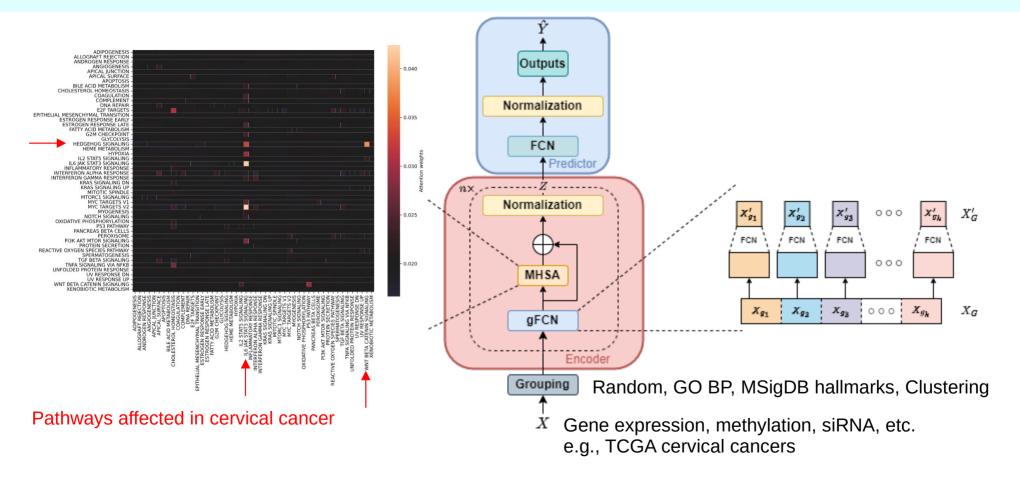


AttOmics



Beaude, A., Rafiee Vahid, M., Augé, F., Zehraoui, F., & Hanczar, B. (2023). AttOmics: attention-based architecture for diagnosis and prognosis from omics data. *Bioinformatics*, 39(Supplement 1), i94-i102.

AttOmics



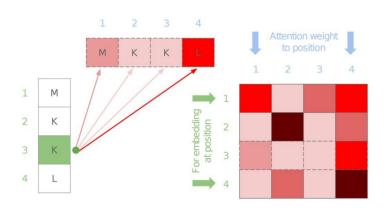
Beaude, A., Rafiee Vahid, M., Augé, F., Zehraoui, F., & Hanczar, B. (2023). AttOmics: attention-based architecture for diagnosis and prognosis from omics data. *Bioinformatics*, 39(Supplement 1), i94-i102.

EnzBERT

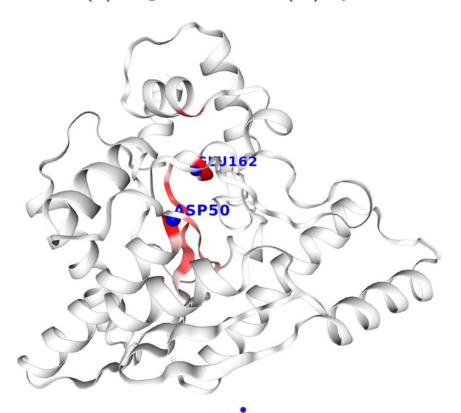
Predicting enzymatic function of protein sequences with attention 8

Nicolas Buton ™, François Coste, Yann Le Cunff

Bioinformatics, Volume 39, Issue 10, October 2023, btad620, https://doi.org/10.1093/bioinformatics/btad620



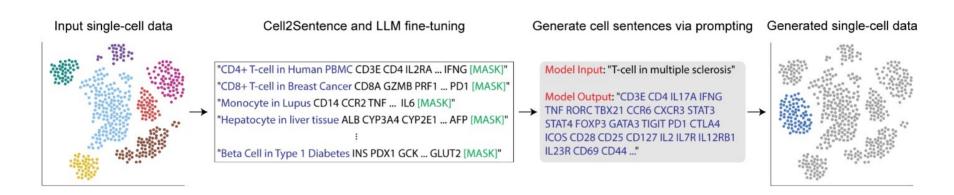
Nh(3)-dependent nad(+) synthetase



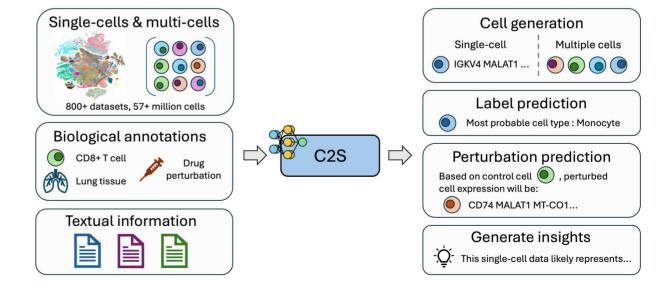
Aggregated attention for each token (amino acid)

- 0 MSMQEKIMRE LHVKPSIDPK QEIEDRVNFL KQYVKKTGAK GFVLGISMOQ DSTLAGRLAQ LAVESIREEG GDAQFIAVRL PHGTQQDEDD AQLALKFIKP
- 1 DKSWKFDIKS TVSAFSDQYQ QETGDQLTDF NKGNVKARTR MIAQYAIGGQ EGLLVLO DI ALAVTGFFT KYGDGGADLL PLTGLTKRQG RTLLKELGAP
- 2 ERLYLKEPTA DLLDEKPOOS DETELGISHD EIDDYLEGKE VSAKVSEALE KRYSMTEHKR QVPASMFDDW WK

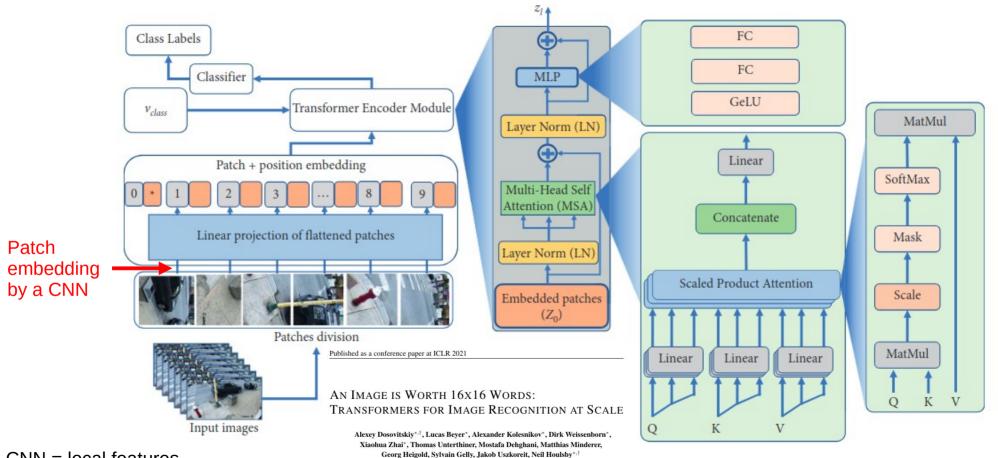
Cell2Sentence



Levine *et al* (2024). Cell2Sentence: Teaching Large Language Models the Language of Biology. *BioRxiv* https://doi.org/10.1101/2023.09.11.557287



Vision Transformer



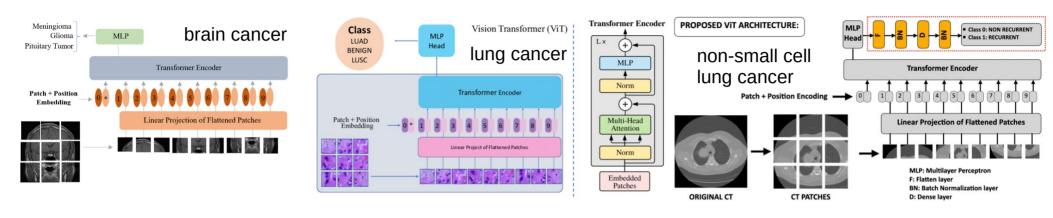
*equal technical contribution, †equal advising Google Research, Brain Team

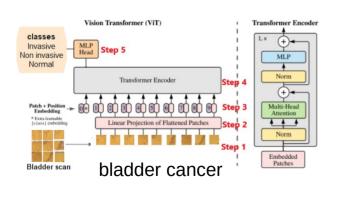
{adosovitskiy, neilhoulsby}@google.com

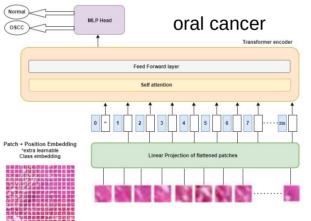
CNN = local features ViT = relations between distant features

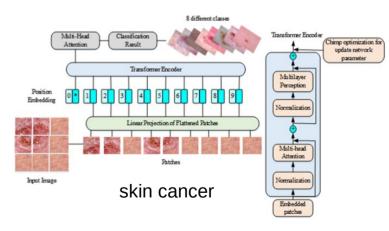
source: https://doi.org/10.1155/2022/3454167

ViTs are replacing vanilla CNNs







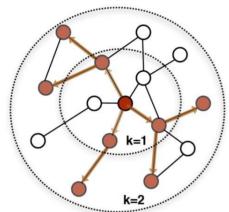


8

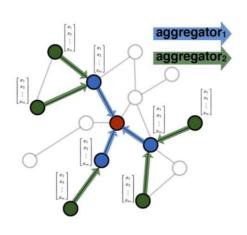
Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs)

source: https://blogs.nvidia.com/blog/what-are-graph-neural-networks/

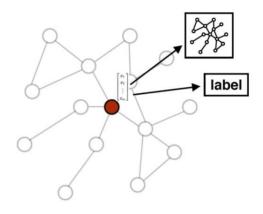


1. Sample neighborhood



2. Aggregate feature information from neighbors

61



3. Predict graph context and label using aggregated information

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

The Graph Neural Network Model

Franco Scarselli, Marco Gori, *Fellow, IEEE*, Ah Chung Tsoi, Markus Hagenbuchner, *Member, IEEE*, and Gabriele Monfardini

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Michaël Defferrard

ovier Presson

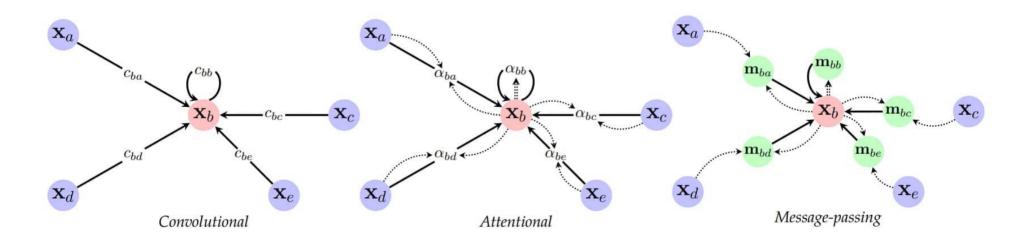
Pierre Vandergheynst

EPFL, Lausanne, Switzerland {michael.defferrard, xavier.bresson, pierre.vandergheynst}@epfl.ch

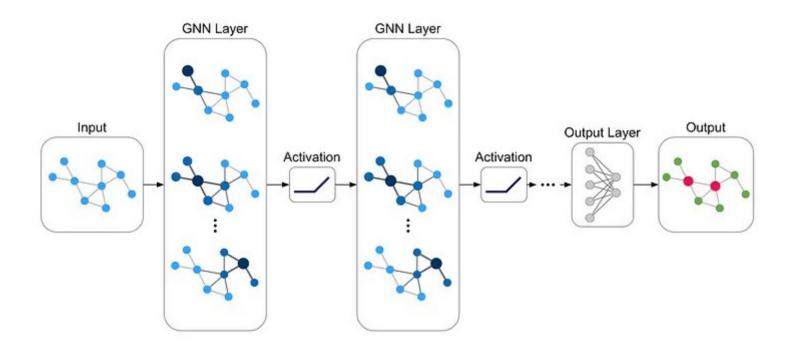
30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Many different ways to update GNNs

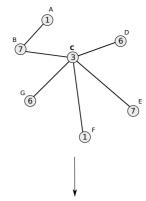
source: https://blogs.nvidia.com/blog/what-are-graph-neural-networks/

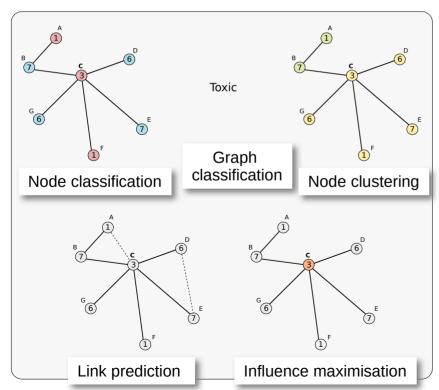


Graph Neural Networks (GNNs)



NB: GNNs generally comprise 3 embeddings that are updated at each iteration, i.e nodes (vertices), edges, and graph





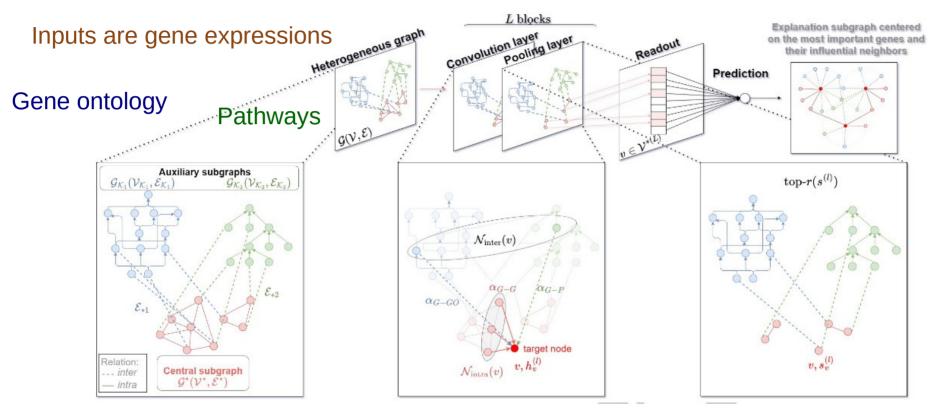
GNNs: What can we do?

Source: Understanding Convolutions on Graphs https://distill.pub/2021/understanding-gnns/

See also: A Gentle Introduction to Graph Neural Networks https://distill.pub/2021/gnn-intro/

Both by Google Research teams

GNN can be heterogeneous



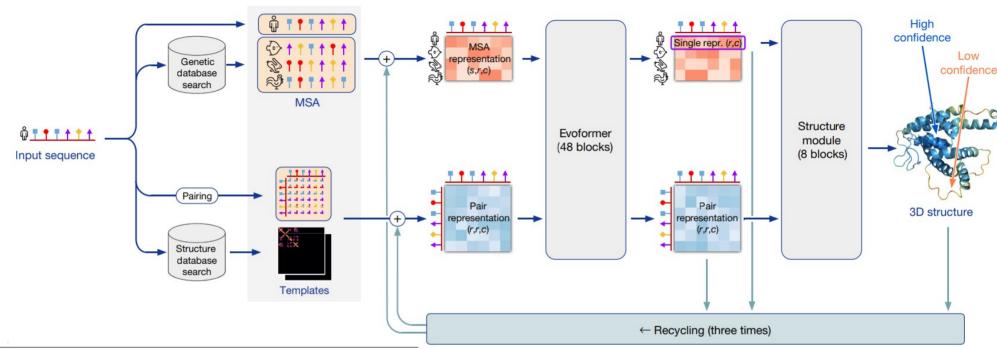
BioHAN: a Knowledge-based Heterogeneous Graph Neural Network for precision medicine on transcriptomic data

https://hal.science/hal-04092210/

9

Alphafold2

AlphaFold2



Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2

Received: 11 May 2021

Accepted: 12 July 2021

Published online: 15 July 2021

Open access

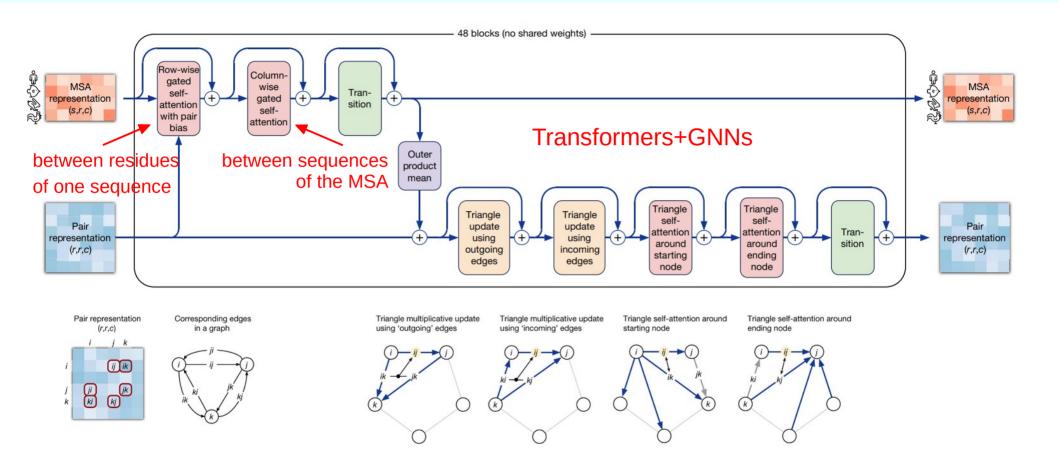
Check for updates

John Jumper¹^{4,83}, Richard Evans¹⁴, Alexander Pritzel¹⁴, Tim Green¹⁴, Michael Figurnov¹⁴, Algus Bates¹⁴, Augustin Židek¹⁴, Anna Potapenko¹⁴, Alexe Bridgland¹⁴, Clemens Meyer¹⁴, Simon A. A. Kohl¹⁴, Rishub Jain¹⁴, Andrew Cowie¹⁴, Bernain Romera-Paredes¹⁴, Stanislav Nikolov¹⁴, Rishub Jain¹⁴, Jonas Adler¹, Trevor Back¹, Stig Petersen¹, David Reiman¹, Ellen Clancy¹, Michal Zielinski¹, Martin Steinegger²³, Michaelina Pacholska³, Tamas Berghammer³, Sebastian Bodenstein¹, David Silver¹, Oriol Vinyals¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Pushmeet Kohli¹ & Demis Hassabis¹^{4,58}

~93 million parameters (weights+biases)

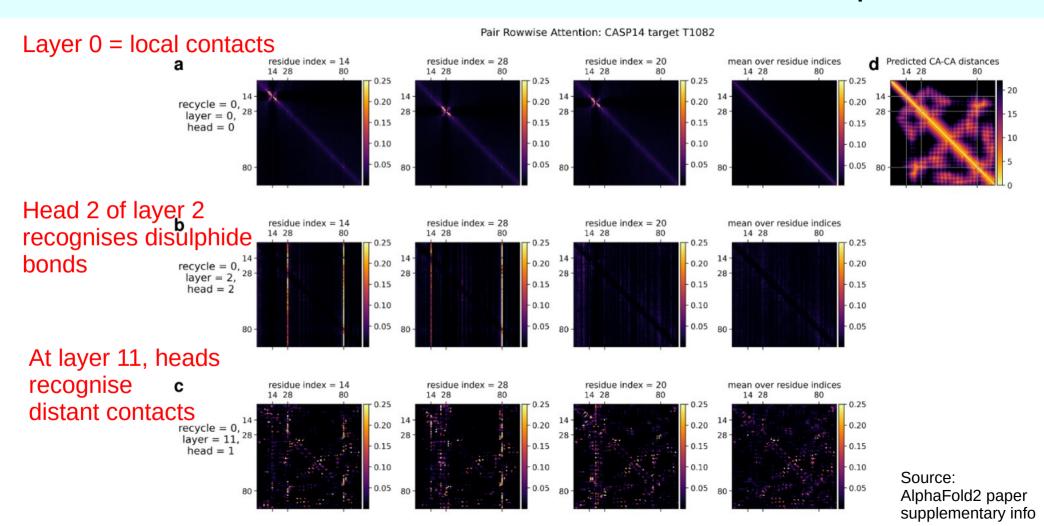
https://github.com/google-deepmind/alphafold

AlphaFold2: evoformer



see also: https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/

Row-wise attention: between residues of a sequence



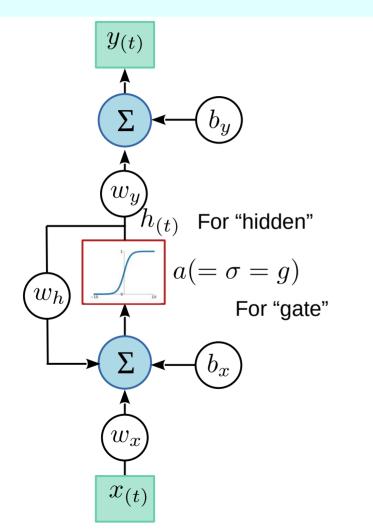
10

Analysing and predicting series:

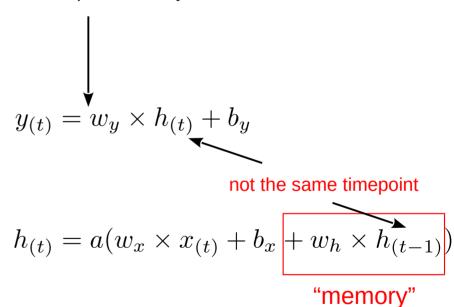
Recurrent Neural Networks (RNNs)

Long Short-Term Memory (LSTM)

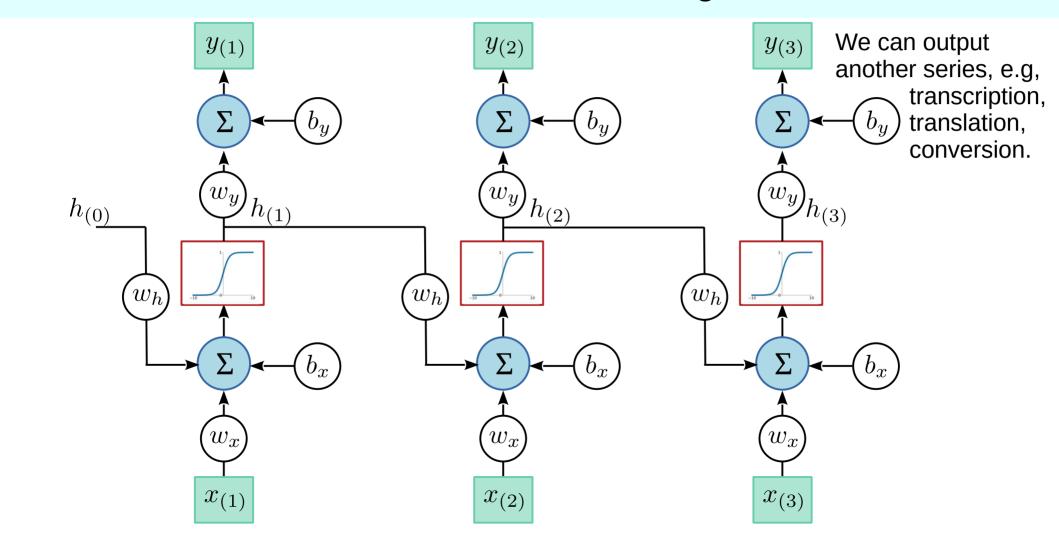
RNN: 1 cell (here, 1 neuron)



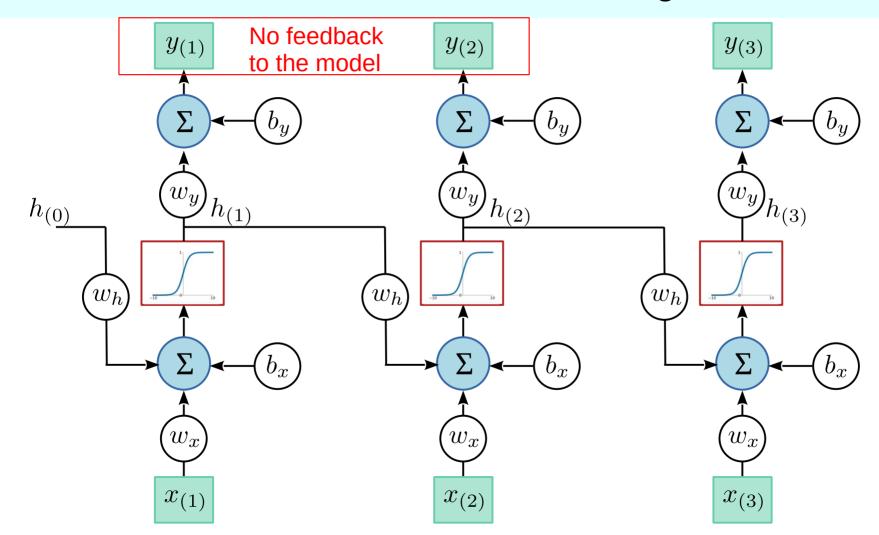
NB: implicit "identity" activation function



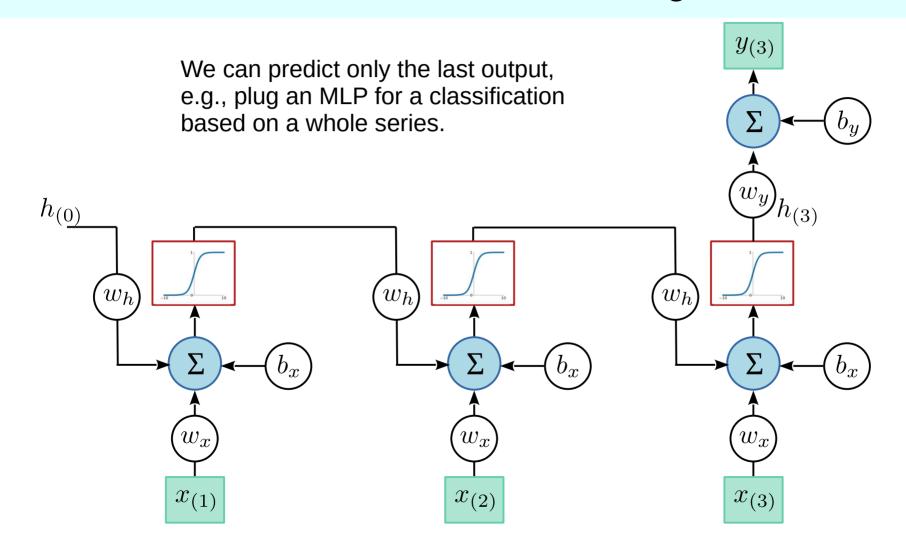
RNN: 1 cell - unfolding



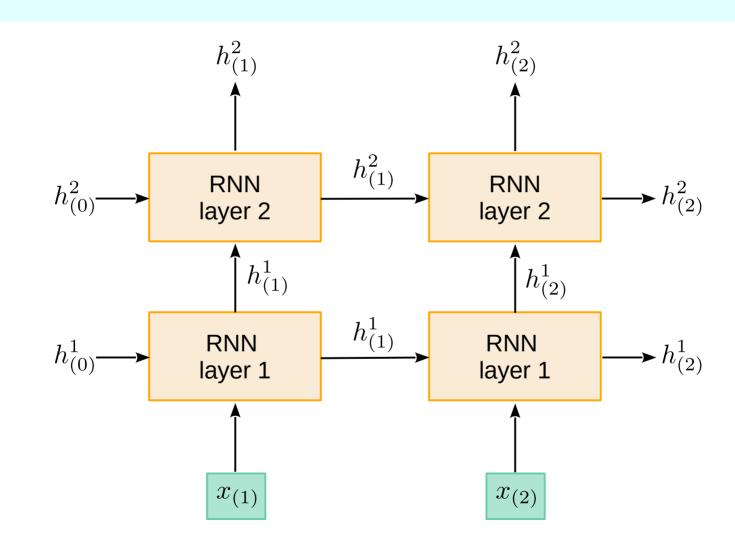
RNN: 1 cell - unfolding



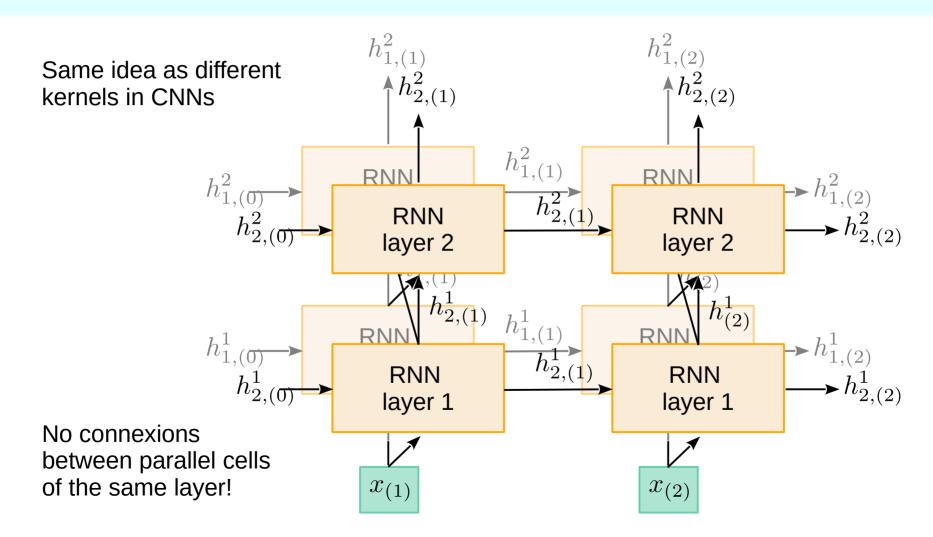
RNN: 1 cell - unfolding



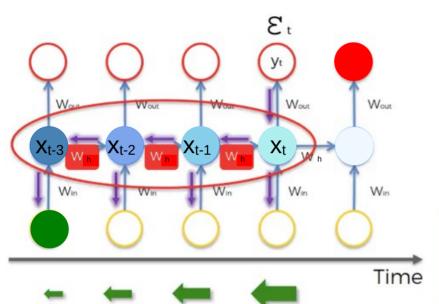
Stacked RNNs



Several RNNs may learn different patterns in parallel



Vanishing and exploding gradients: the network forgets



$$\frac{\partial \mathcal{E}}{\partial \theta} = \sum_{1 \leq t \leq T} \frac{\partial \mathcal{E}_t}{\partial \theta}$$

$$\frac{\partial \mathcal{E}_t}{\partial \theta} = \sum_{1 \leq k \leq t} \left(\frac{\partial \mathcal{E}_t}{\partial \mathbf{x}_t} \frac{\partial \mathbf{x}_t}{\partial \mathbf{x}_k} \frac{\partial^+ \mathbf{x}_k}{\partial \theta} \right)$$

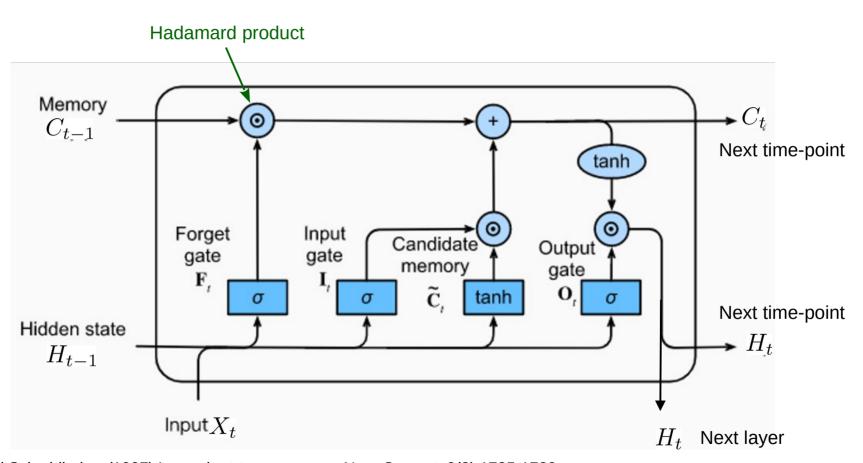
$$\frac{\partial \mathbf{x}_t}{\partial \mathbf{x}_k} = \prod_{t \geq i > k} \frac{\partial \mathbf{x}_i}{\partial \mathbf{x}_{i-1}} = \prod_{t \geq i > k} \mathbf{W}_{\text{rec}}^T diag(\sigma'(\mathbf{x}_{i-1}))$$

Adapted from: SuperDataScience

$$\frac{\partial x_i}{\partial x_{i-1}} = w_h$$

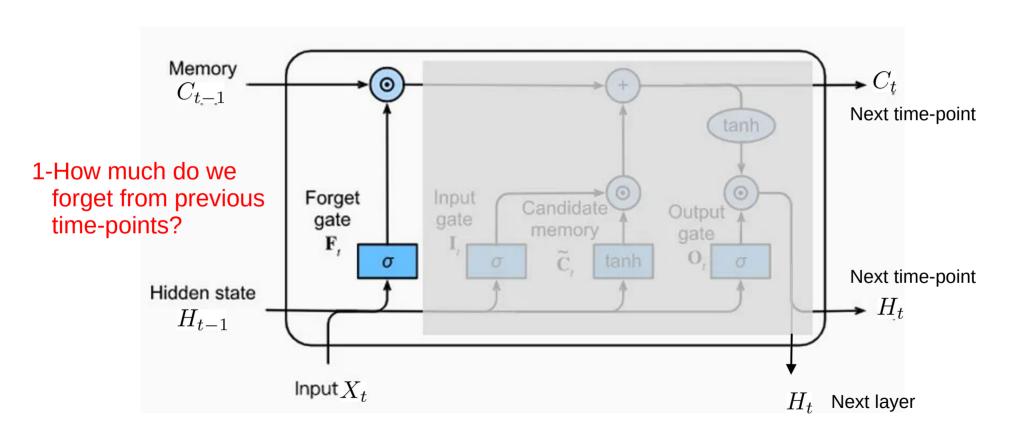
$$w_h = 0.1; \frac{\partial x_{10}}{\partial x_1} = w_h^{10} = 0.0000000001$$

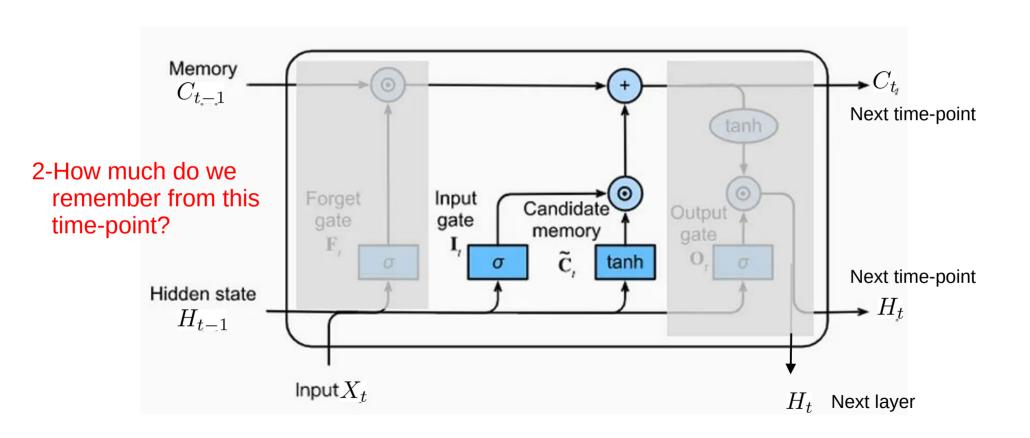
$$w_h = 10; \frac{\partial x_{10}}{\partial x_1} = w_h^{10} = 100000000000$$

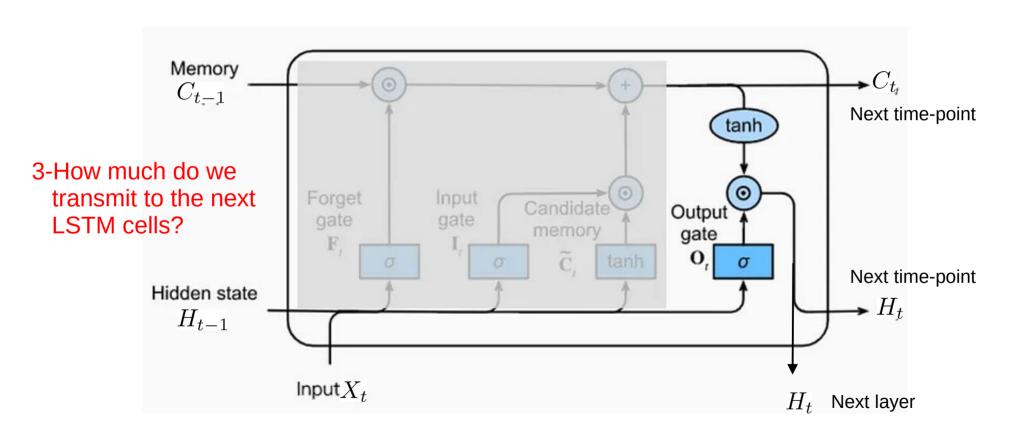


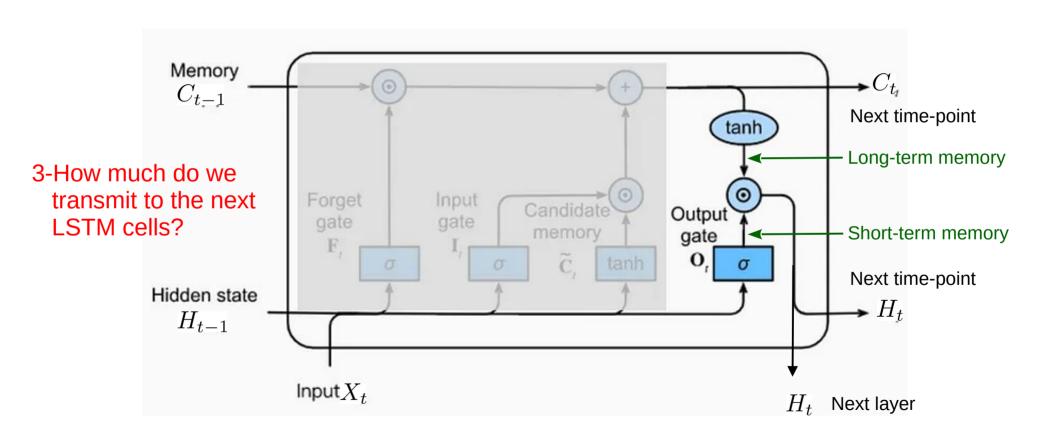
Hochreiter and Schmidhuber (1997) Long short-term memory. Neur Comput, 9(8):1735-1780

Source: Ottavio Calzone (2002) An Intuitive Explanation of LSTM. https://medium.com/@ottaviocalzone

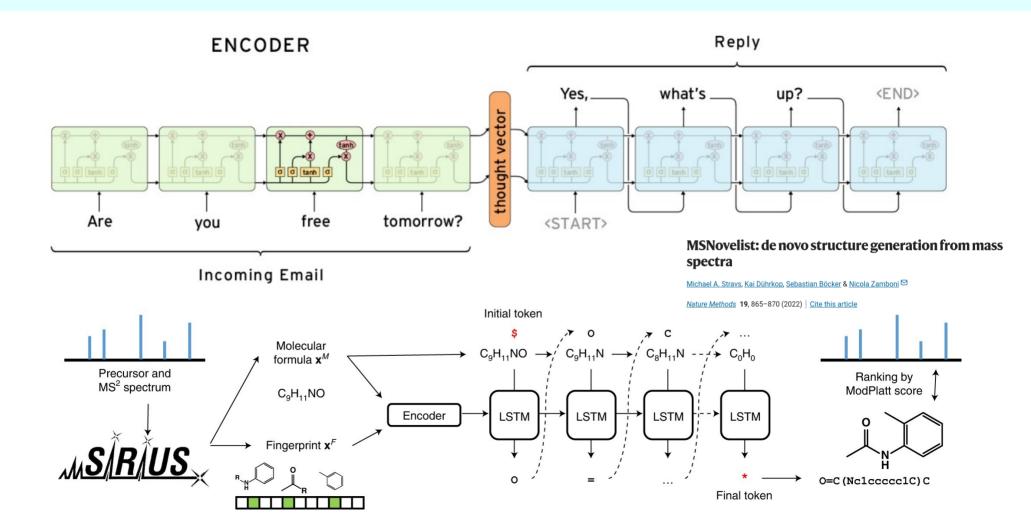








LSTMs for Encoder-Decoder



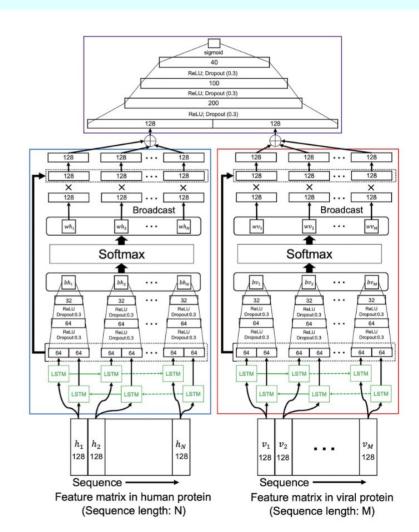
Example in bioinformatics

Briefings in Bioinformatics, 22(6), 2021, 1-9

https://doi.org/10.1093/bib/bbab228 Problem Solving Protocol

LSTM-PHV: prediction of human-virus protein-protein interactions by LSTM with word2vec

Sho Tsukiyama, Md Mehedi Hasan, Satoshi Fujii and Hiroyuki Kurata



Example in clinical setting

Contents lists available at ScienceDirect

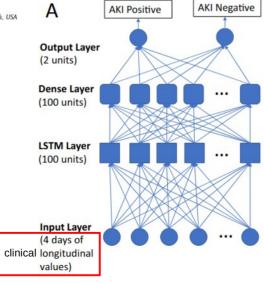
International Journal of Infectious Diseases

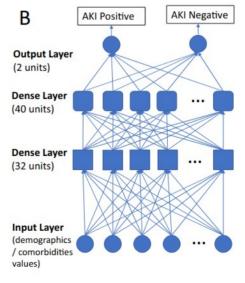
iournal homepage: www.elsevier.com/locate/iiid

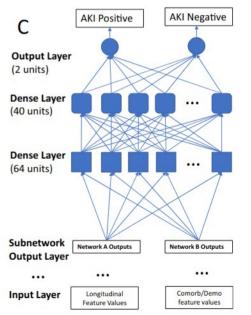
Long-short-term memory machine learning of longitudinal clinical data accurately predicts acute kidney injury onset in COVID-19: a two-center study

Justin Y. Lu, Joanna Zhu, Jocelyn Zhu, Tim Q Duong*

Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, USA







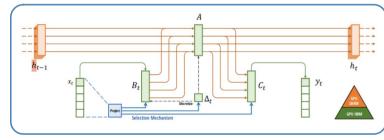
RNNs are back Rise of the Mamba

Selective State Space Model

"Attention" = embedding size x input length

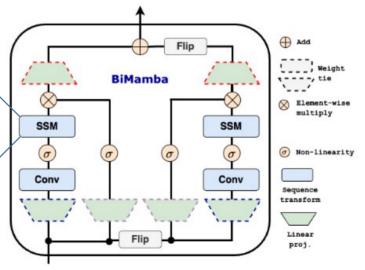
→ linear growth with input length

(not quadratic like transformers)



SSM = State Space Model

Prediction/classification



The model learns about variants'

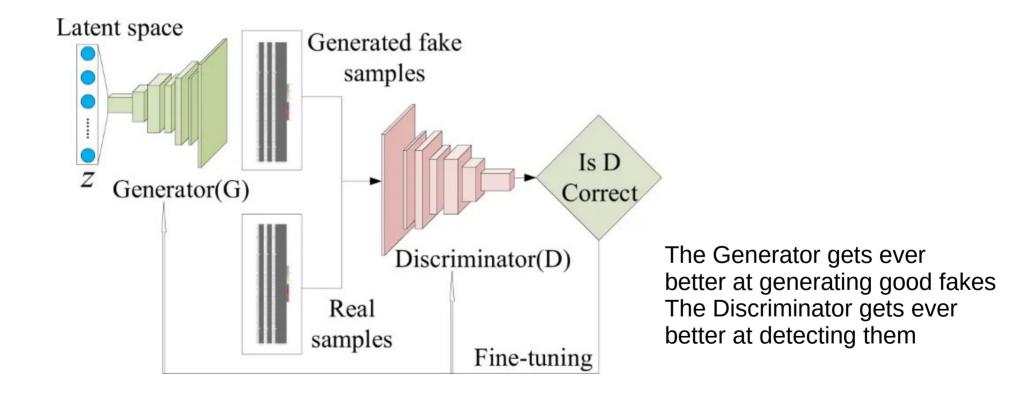
→ Reusable foundation model

...AGGCTAGGATATCGATAAGCTGACTGAT...

(12)

Generative Adversarial Networks (GANs)

Learning by trying to trick itself: Generative Adversarial Network (GAN)



GAN for synthetic data

Neurocomputing

Volume 321, 10 December 2018, Pages 321-331

GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification

 $\frac{\text{Maayan Frid-Adar}^{\,\text{a}}, \text{Idit Diamant}^{\,\text{a}}, \underbrace{\text{Eyal Klang}^{\,\text{b}}, \underbrace{\text{Michal Amitai}^{\,\text{b}}, \text{Jacob Goldberger}^{\,\text{c}},}_{\text{Hayit Greenspan}^{\,\text{a}}} \stackrel{\alpha}{\times} \boxtimes$

Brain tumor image generation using an aggregation of GAN models with style transfer

<u>Debadyuti Mukherkjee</u>, <u>Pritam Saha</u>, <u>Dmitry Kaplun</u> ✓, <u>Aleksandr Sinitca</u> & <u>Ram Sarkar</u>

Scientific Reports 12, Article number: 9141 (2022) | Cite this article

Computer Methods and Programs in Biomedicine

Volume 195, October 2020, 105568

A GAN-based image synthesis method for skin lesion classification

Zhiwei Qin a, Zhao Liu B⊠, Ping Zhu AN Ma, Yongbo Xue A

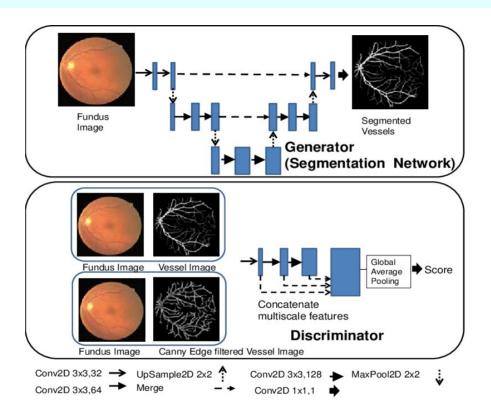
<u>Home</u> > <u>Proceedings of International Conference on Artificial Intelligence and Applications</u> > Conference paper

MR Image Synthesis Using Generative Adversarial Networks for Parkinson's Disease Classification

Conference paper | First Online: 02 July 2020 pp 317–327 | Cite this conference paper

Sukhpal Kaur , Himanshu Aggarwal & Rinkle Rani

GAN for segmentation



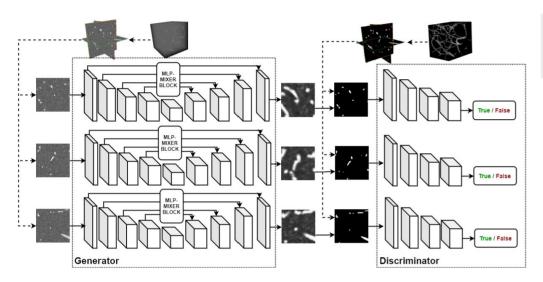
Tjio, G., Li, S., Xu, X., Ting, D.S.W., Liu, Y., Goh, R.S.M. (2019).

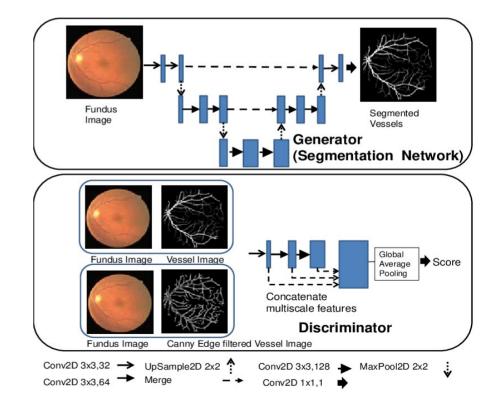
Multi-discriminator Generative Adversarial Networks for Improved Thin Retinal Vessel Segmentation.

In: Fu, H., Garvin, M., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2019.

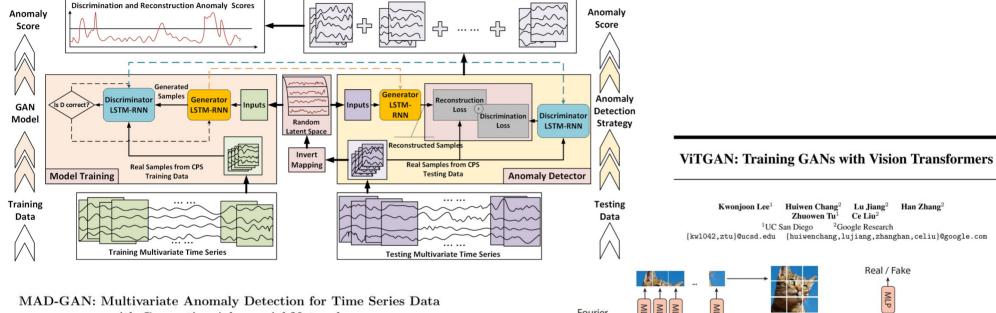
Lecture Notes in Computer Science(), vol 11855. Springer, Cham. https://doi.org/10.1007/978-3-030-32956-3 18

GAN can be built out of any DL architecture



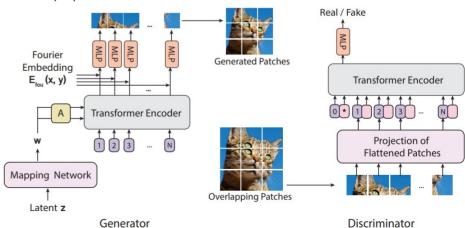


GAN can be built out of any DL architecture



with Generative Adversarial Networks

Dan Li¹, Dacheng Chen¹, Lei Shi¹, Baihong Jin², Jonathan Goh³, and See-Kiong Ng¹



Acknowledgements

Philippe Froguel Amélie Bonnefond

Smaïn Fettem

Mathilde Boissel Lijiao Ning Emma Henriques ShuangShuang Geng Anne-Sophie Ledoux Vincent Massy

Amna Khamis Stefan Gaget Mehdi Derhourhi

Hélène de Gavre Mélanie Hocquet François Pattou

R package developers (VIM, MICE, DESeq2, ChAMP)

Python package developers (Tensorflow/Keras, Numpy, Pandas, Scikit-learn)

