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What are we going to (attempt to) cover?

1) What is artificial intelligence?

2) Multi-Layer Perceptrons (MLP)

3) MLPs in action

4) Convolutional Neural Networks (CNN)

5) Embeddings and latent space

6) Encoder-Decoders, 
 (variational) AutoEncoders (VAEs)

7) Attention and the Transformer

8)   Graph Neural Networks (GNNs)

9)  Alphafold2

10) Recurrent Neural Networks (RNNs) 
   and Long Short-Term Memory (LSTM)

11) RNNs are back: Rise of the Mamba

12) Generative Adversarial Networks (GANs)



  

What is artificial intelligence?
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Artificial 
intelligence

Some terminology

Assessments, evaluations, decisions, predictions 
made by software tools 



  

Artificial 
intelligence

Machine learning

Some terminology

The rules are learned from the data 



  

Artificial 
intelligence

Machine learning

Deep learning

Some terminology

The algorithms are based 
on layers of artificial neurons



  

Artificial 
intelligence

Machine learning

Deep learning

Unsupervised

Supervised

Some terminology

(NB: I consider reinforcement learning as part of supervised, but this is controversial)

The algorithms are not
told what is correct or not

The algorithms are told what 
is correct or not



  

Artificial 
intelligence

Machine learning

Deep learning

Unsupervised

Supervised

PCA
Clustering

SVM
HMM
Random forest

Expert
systems DNN

CNN

AutoEncoder

Some terminology

(NB: I consider reinforcement learning as part of supervised, but this is controversial)

LLM
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&
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1958

Rosenblatt
Perceptron

1969

Minski & Papert
Perceptrons

Amari
Stochastic

gradient descent

1970

1971

Linnainmaa

          Backpropagation

          Werbos

2004Oh & Jung
Use of GPUs

19881993

Qian & Sejnowski
1st NN prot struct pred

Rost & Sander
PHD: Cascading NN

1980 Fukushima
CNN (neocognitron)

1998Le Cun et al
LeNet-5

1995

Hochreiter
LSTM

2017

Vaswani et al
Transformer

2015

AlphaGo

2018

Alphafold

2014

Goodfellow et al
GANs

2013

Kingmat &
Welling
VAEs

2022

ChatGPT

1967

1986

Rumelhart 
& McClelland
AutoEncoder

2009

Scarselli et al
GNNs

2024



  

Multi-Layer Perceptrons (MLP) 
a.k.a Fully Connected Networks (FCN)
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What is an 
artificial neuron ?

Σ

McCulloch and Pitts (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115-133
Rosenblatt (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386-408
Widrow and Hoff (1960) Adaptive Switching circuits.  WESCON Convention record part IV: 96-104 

Activation function



  

What is an 
artificial neuron ?

Σ

NB: when the activation function is logistic (sigmoid), this is actually a logistic regression...

Activation function



  

Impact of the weights and the bias

inputs = [0,1,2,3,4,5]



  

Impact of the weights and the bias

inputs = [0,1,2,3,4,5]



  

The magic happens with several neurons

output =

0 5

7

 

inputs = [0,1,2,3,4,5]

non-linearity!



  

Then we add layers (the “Deep”)

Rosenblatt (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65(6):386-408



  

And then we add layers (the “Deep”)

f1 and f2 can be different



  

 
comparison

training set
one set 
of inputs

one set 
of true
outputs

Update of
parameters Minimising

loss function

And then the “Learning”

Widrow and Hoff (1960) Adaptive Switching circuits.  WESCON Convention record part IV: 96-104
S Amari (1967). A theory of adaptive pattern classifier. IEEE Transactions. EC (16): 279–307
S Linnainmaa (1970-1976). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding 
errors (Masters). University of Helsinki. p. 6–7.
P Werbos (1971-1982) Applications of advances in non-linear sensitivity analysis. LNCIS 38: 762-770

 



  

Optimization, e.g., gradient descent

To minimise the loss function (called L, C, or most often J), we will calculate 
the “gradient” – the derivative – of the loss function with a set of parameters 
and calculate a new set using this gradient and the learning rate. 



  

Error backpropagation one layer at a time

 



  

Error backpropagation one layer at a time

 



  

Error backpropagation one layer at a time

 



  

Error backpropagation one layer at a time

 



  

Error backpropagation one layer at a time

 



  

Learning



  

Training, testing, and validation sets

“validation” (never seen)
Same for all model instances
Used to assess the model at the end

Training set: used to learn

“test” set: used to assess the model
during the learning phase
Different for each model instance

Random
Test samples

K-fold 
validation

Beware: “validation” and “test” are used the other way 
around a lot in deep learning, at the opposite of all other 
fields of machine learning, or even life science in general

(training + test set = learning set)



  

Learning and overfitting

Not bad



  

Learning and overfitting

Overfitting



  

Learning and overfitting

Overfitting getting worse



  

Learning and overfitting

Overfitting getting worse
... then better



  

Why a test AND a validation set?

Underperforming on the test set means the model overfitted 
the training set, the parameters are too specific of the training samples. 
This overfitting is learned.

Underperforming on the validation set means the hyperparameters are 
too specific of the test set as well! When you modifies the structure 
of the model to avoid overfitting, you actually made the model overfit 
the entire learning set. YOU biased the model. 
This overfitting is built-in.



  

MLPs in action
Multi-omics real-world example
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Let’s try to recognise a disease severity

Paris MASH Meeting 
(11-12 juillet 2019)

Kim et al (2021) Int. J. Mol. Sci., 22(9): 4495

Kim et al (2022) Met. Target Organ Damage, 2: 19

NASH 
(now MASH)

NALFD (now MASLD)

18-30 yo
15% 15%

1990
2000

2017
2018

1990
2000

2017
2018

  MAFL/MASH 



  

Cohort

ABOS subset: Only European 
ancestry and unrelated individuals

(+66 clinical and personal data
+1076 identified metabolites 

in blood and liver)

 ABOS (Biological Atlas of Severe Obesity)

PreciNASH
project

All subjects had 
bariatric surgery



  

Subject grouping

Scoring on liver biopsy with the method from Kleiner and Brunt 2005

Steatosis 
Categorical [0-3] from 
quantitative measurement

Ballooning 
Categorical [0-2]
= {none, some, much}

Inflammation 
Categorical [0-3] from 
number of foci

Final score:

Healthy:S = 0, B = 0, I = 0 n = 80

NAFL: S > 1, B = 0, I ≥ 1 n = 137
S > 1, B > 1, I = 0

NASH: S > 0, B > 0, I > 0 n = 83



  

severity

age

Principal
Component
Analysis
(PCA)

Clinical 
data



  

Principal component analysis (PCA)

variance

PCs
1 2 3 4 5

normalisation
“rotation”

projection

plot of 
samples
in the space
of features

loadings: impact of features on components

Y’

Z’

X’



  

severity

age

Clinical 
data



  

severity

age

Logistic regression
to find the thresholds
best separating the 
severity groups

Score based on
gene expression
and gene “loadings”
(impact of a gene
on a given principal
component)

RNAseq

100+100 genes



  

severity

age

Before correction
for age

After correction
for age

130+130 CpGs

D
N
A

M
e
t
h
y
l
a
t
I
o
n





  

Dropout

1) Purpose: avoiding overfitting

2) Disable some connections at random (set the weights at 0)

Srivastava et al (2014) Dropout: A Simple Way to Prevent Neural Networks from Overfitting. JMLR 
15(56):1929−1958



  

Normalisation

1) Normalisation during data processing

2) Normalisation before training: on the whole dataset

3) Normalisation during training: after dropout

4) Batch normalisation: normalisation on the current batch
(not on the entire dataset)

5) Layer normalisation: normalisation of the input of a layer

Ba, Kiros, Hinton (2016) Layer Normalization. arXiv:1607.06450v1
Ioffe and Czegedy (2015) Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. Proc 32 nd 
Intl Conf Machine Learning, Lille, France volume 37



  

Evaluating a model’s performance

Accuracy = (TP+TN)/(TP+FN+TN+FP)

Precision = TP/(TP+FP)

Sensitivity (true positive rate) = TP/(TP+FN)

Specificity (true negative rate) = TN/(TN+FP) 



  

Evaluating a model’s performance

Accuracy = (TP+TN)/(TP+FN+TN+FP)

Precision = TP/(TP+FP)

Sensitivity (true positive rate) = TP/(TP+FN)

Specificity (true negative rate) = TN/(TN+FP) 

Receiver operating characteristic (ROC) curve S
en

si
tiv

ity

1-Specificity



  

Different accuracies on different datasets

Model 1

Model 2

Learning set Whole set Validation set



How good is the model to distinguish NAFL and NASH?
se

ns
iti

vi
ty

1 - specificity

se
ns

iti
vi

ty
se

ns
iti

vi
ty

1 - specificity





Peeping into the black box

The RNAseq module has the most impact on output





Independently trained models learn from the same genes

20
0 

ge
ne

s
50 neurons

Mean(abs(neurons))
1 2 3 4 5 μμ σ

A B

+

-

+

0



Known and new genes in MASLD severity

20
0 

ge
ne

s
50 neurons

Mean(abs(neurons))
1 2 3 4 5 μμ σ

A B
COMP
ANKRD1
PRAMEF10
SFRP4
CHI3L1
unknown
RAB3B
FABP5P7
KRTAP5-1
PGAM2
THBS1-AS1
FABP4
PADI1
CXCL3
THY1-AS1
RGS1
unknown
PRAMEF33
GDF15
PNPLA5
GPR158
FCAR
LINC02348
MMP7
ESPNL
CYP1A1
MT1B
KRTAP5-AS1
SDHAP2

TREM2
AKR1B10
LPL
STMN2
DUSP8
unknown
GAPDHP28
CA12
unknown
CYP2C19
SPP1
ART5
EEF1A2
unknown
CH25H
OLR1
THBS1-IT1
CEMP1
DHRS2
ALOX15B
CCL20
HKDC1
MMP9
unknown
KRT80
TRIM31
BCL2A1
LINC00940
FOS



  

Convolutional Neural Networks (CNN)
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We can detect local features by linking neighbouring inputs

Detection of local features,
such as edges, orientation,
colour gradients, etc

This is 
what we learn

kernel (or filter)



  

Example of feature detection: vertical edges

https://setosa.io/ev/image-kernels/
NB: here, we provide the kernel. 
In CNNs, the kernel is learned



  

Downsampling: Max/average pooling



  

Everything is an image: DNA sequences to images



  

Real example: VGG

Simonyan K, Zisserman A (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015
https://arxiv.org/pdf/1409.1556

138M parameters
https://huggingface.co/timm/vgg16.tv_in1k



  

Decreasing size, increasing feature number

Simonyan K, Zisserman A (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR 2015
https://arxiv.org/pdf/1409.1556

138M parameters
https://huggingface.co/timm/vgg16.tv_in1k



  

Everything is an image: DNA sequences to images



  

Where to find models: 
Hugging face



  

Reusing models without full retraining



  

Transfer learning

New task
New head

New task
New head

Existing model Existing model

New 
input

New 
input

Adapted from



  

Extreme transfer learning: Foundation models

e.g., Retrieval
        Augmented
        Generation



  

Embeddings and latent spaces
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Embeddings (“plongement”)

Values in reference frame A
m vectors of size n 

from a dictionary of o
(i.e. o  coordinates) 

Values in reference frame B
m vectors of size n’ 

from a dictionary of o’
(i.e. o’ coordinates) 

Embedding from a space with n  dimensions
            into a space of o dimensions



  

A PCA is an embedding

G1

G2

G3

G4

...
Gi

...
GN

PC1

PC2

PC3

PC4

...
PCj

...
PCM

Axes = N genes
Coordinate = expressions

Axes = M principal components
Coordinates = Rotations x expressions

G1

G2

G3



  

“Similar” objects are neighbours in the latent space

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

bu
nn

y
fat

he
r

ha
mste

r

hu
tch

es

man moth
er

rab
bit

tra
cto

r

wom
an

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0

Dictionary (initial space) Semantics (Embedding space)



  

Arithmetic operation in latent space = semantic statement

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

bu
nn

y
fat

he
r

ha
mste

r

hu
tch

es

man moth
er

rab
bit

tra
cto

r

wom
an

0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0

Dictionary (initial space) Semantics (Embedding space)

In the latent space, the vector going from woman to father is equal 
to the vector going from woman to man plus the vector going from woman to mother 



  

DL: Fully connected layers to learn the embedding



  

There can be several embeddings

Segment

Source: https://tinkerd.net/blog/machine-learning/bert-embeddings/



  

Deep CNNs are “embedding” the images in a “latent space”

input 
image

6 nearest neighbours in 
the 4096 dimension space

Krizhevsky A, Sutskever I, Hinton GE (2012)
ImageNet Classification with Deep
Convolutional Neural Networks
https://proceedings.neurips.cc/paper/2012/file/
           c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

(presenting AlexNet, the first Deep Convolutional Network)

https://huggingface.co/debashd/AlexNet

https://proceedings.neurips.cc/paper/2012/file/


  

Encoder-Decoders 

(variational) AutoEncoders (VAEs)
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Encoder-decoder

Example of segmentation to identify brain tumours



  

Disclaimer: it is more complicated

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: 
Convolutional networks for biomedical image 
segmentation. In Medical image computing and computer-
assisted intervention–MICCAI 2015: 18th international 
conference,  part III 18 (pp. 234-241) 
https://doi.org/10.1007/978-3-319-24574-4_28



  

Encoders and decoders can be anything

Pavlopoulos et al (2022)
doi:10.1007/s10115-022-01684-7



  

Learn by itself: AutoEncoder

Direct comparison
=

Unsupervised learning



  

Variational Auto Encoder (VAE)

  Input       Output



  

Variational Auto Encoder (VAE)

“Reparametrisation trick”
Upon learning,    and 
are guaranteed to be 
mean and standard deviation
of a multi-dimensional normal
distribution 

  Input       Output



  

Variational Auto Encoder (VAE)

  Input       Output
Generative model



  

Benkirane, H., Pradat, Y., 
Michiels, S., Cournède, P. H. (2023). 
CustOmics: A versatile deep-learning 
based strategy for multi-omics integration. 
PLoS Computational Biology, 
19(3), e1010921.



  



  

Attention and the Transformer
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The paper that changed everything:
the Transfomer



  

The paper that changed everything:
the Transfomer

Cool title

All authors equal

Never published in a journal

Cited... 140833 times as of 13 October 2024!



  

The paper that changed everything:
the Transfomer



  

The Transformer: Memory + context = attention



  

The Transformer: Memory + context = attention

J’adore l’IA <start> I love

I love AI



  

Attention in the Transformer

Q = query, K = key, V = value



  

Attention in the Transformer

Q = query, K = key, V = value



  

Attention in the Transformer

n = #tokens

d = dimension 
of embeddings

Q = query, K = key, V = value

n

nAttention matrix:
Impact of each embedding 
of each token on all the others

Attention: aggregated attention
                per embedding (~per token) 



  

Attention in the Transformer

Query: What are the things I am looking for?

Key: What are the thing I have?

Value: What are the things that I will communicate?

The attention of all token embeddings 
on all token embeddings

Actual relevant attentions
1 per token embedding

X is entered
WQ, WK, and WV are learned
Everything else is computed

Only one sequence (X) as input,
transformed into different sequences 
of embeddings when multiplied 
by the learned weights WQ, WK, and WV   



  

Self versus Cross-attention

inputs
inputs

attention 
between inputs
relevant
for inputs

inputs
outputs

attention 
between inputs
and outputs
relevant
for inputs



  

AttOmics

Beaude, A., Rafiee Vahid, M., Augé, F., Zehraoui, F., & Hanczar, B. (2023). AttOmics: attention-based architecture for diagnosis and prognosis from omics data. 
Bioinformatics, 39(Supplement_1), i94-i102.

Random, GO BP, MSigDB hallmarks, Clustering

Gene expression, methylation, siRNA, etc.
e.g., TCGA cervical cancers



  

AttOmics

Beaude, A., Rafiee Vahid, M., Augé, F., Zehraoui, F., & Hanczar, B. (2023). AttOmics: attention-based architecture for diagnosis and prognosis from omics data. 
Bioinformatics, 39(Supplement_1), i94-i102.

Gene expression, methylation, siRNA, etc.
e.g., TCGA cervical cancers

Random, GO BP, MSigDB hallmarks, Clustering

Pathways affected in cervical cancer



  

EnzBERT

Aggregated attention 
for each token (amino acid)



  

Cell2Sentence

Levine et al (2024). Cell2Sentence: 
Teaching Large Language Models 
the Language of Biology. BioRxiv
https://doi.org/10.1101/2023.09.11.557287 



  

Vision Transformer

source: https://doi.org/10.1155/2022/3454167
CNN = local features
ViT = relations between distant features

Patch
embedding 
by a CNN



  

ViTs are replacing vanilla CNNs

oral cancer

lung cancer
brain cancer

bladder cancer skin cancer

non-small cell
lung cancer



  

Graph Neural Networks (GNNs)
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Graph Neural Networks (GNNs)
source: https://blogs.nvidia.com/blog/what-are-graph-neural-networks/

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



  

Many different ways to update GNNs
source: https://blogs.nvidia.com/blog/what-are-graph-neural-networks/



  

Graph Neural Networks (GNNs)

NB: GNNs generally comprise 3 embeddings that are updated at each iteration, 
       i.e nodes (vertices), edges, and graph



  

GNNs: What can we do?
1

7
3

6

1

7

6

A

B
C

D

E

F

G

1

7
3

6

1

7

6

A

B
C

D

E

F

G

1

7
3

6

1

7

6

A

B
C

D

E

F

G

1

7
3

6

1

7

6

A

B
C

D

E

F

G

1

7
3

6

1

7

6

A

B
C

D

E

F

G

Toxic

Node Classification Graph Classification Node Clustering

Link Prediction Influence Maximization

Source: Understanding Convolutions on Graphs
https://distill.pub/2021/understanding-gnns/ 

See also: A Gentle Introduction to Graph Neural Networks
https://distill.pub/2021/gnn-intro/

Both by Google Research teams

Node classification
Graph 

classification Node clustering

Link prediction Influence maximisation



  

GNN can be heterogeneous

Gene ontology Pathways

Inputs are gene expressions

https://hal.science/hal-04092210/



  

Alphafold2
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AlphaFold2

~93 million parameters (weights+biases)

https://github.com/google-deepmind/alphafold



  

AlphaFold2: evoformer

Transformers+GNNs

see also: https://www.blopig.com/blog/2021/07/alphafold-2-is-here-whats-behind-the-structure-prediction-miracle/

between residues 
of one sequence 

between sequences
of the MSA



  

Row-wise attention: between residues of a sequence
Layer 0 = local contacts 

Head 2 of layer 2
recognises disulphide
bonds

At layer 11, heads 
recognise 
distant contacts 

Source:
AlphaFold2 paper
supplementary info



  

Analysing and predicting series:

Recurrent Neural Networks (RNNs) 

Long Short-Term Memory (LSTM)
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RNN: 1 cell (here, 1 neuron)

Σ

Σ

“memory”

For “gate”

NB: implicit “identity” activation function

For “hidden”

not the same timepoint



  

RNN: 1 cell - unfolding

Σ

Σ

Σ

Σ

Σ

Σ

We can output 
another series, e.g,
           transcription,
           translation,
           conversion.



  

RNN: 1 cell - unfolding

Σ

Σ

Σ

Σ

Σ

Σ

No feedback 
to the model



  

RNN: 1 cell - unfolding

Σ Σ Σ

Σ

We can predict only the last output,
e.g., plug an MLP for a classification 
based on a whole series.



  

Stacked RNNs

RNN 
layer 1

RNN 
layer 1

RNN
layer 2

RNN
layer 2



  

Several RNNs may learn different patterns in parallel

RNN 
layer 1

RNN 
layer 1

RNN
layer 2

RNN
layer 2

RNN 
layer 1

RNN 
layer 1

RNN
layer 2

RNN
layer 2

Same idea as different
kernels in CNNs

No connexions
between parallel cells
of the same layer!



  

Vanishing and exploding gradients: the network forgets

Adapted from: 
SuperDataScience E.g.: activation function = ReLU

h

h

hhhh
hxtxt-1xt-2xt-3



  

Solution: Long Short-Term Memory (LSTM)

Hochreiter and Schmidhuber (1997) Long short-term memory. Neur Comput, 9(8):1735-1780

Source: Ottavio Calzone (2002) An Intuitive Explanation of LSTM. https://medium.com/@ottaviocalzone

Hadamard product

Next time-point

Next time-point

Next layer



  

Solution: Long Short-Term Memory (LSTM)

1-How much do we
   forget from previous 
   time-points?

Next time-point

Next time-point

Next layer



  

Solution: Long Short-Term Memory (LSTM)

2-How much do we
   remember from this 
   time-point?

Next time-point

Next time-point

Next layer



  

Solution: Long Short-Term Memory (LSTM)

3-How much do we
   transmit to the next
   LSTM cells?

Next time-point

Next time-point

Next layer



  

Solution: Long Short-Term Memory (LSTM)

3-How much do we
   transmit to the next
   LSTM cells?

Next time-point

Next time-point

Next layer

Long-term memory

Short-term memory



  

LSTMs for Encoder-Decoder



  

Example in bioinformatics



  

Example in clinical setting

clinical



  

RNNs are back 

Rise of the Mamba
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Selective State Space Model

Gu and Dao (2023) arXiv:2312.00752
Schiff et al (2024) arXiv:2403.03234 

Prediction/classification

The model
learns about
variants’ 
Interactions
→Reusable
     foundation
     model

...AGGCTAGGATATCGATAAGCTGACTGAT...

“Attention” = embedding size x input length 
                → linear growth with input length
                  (not quadratic like transformers)

SSM = State Space Model

https://github.com/state-spaces/mamba
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mamba-and-state



  

Generative Adversarial Networks (GANs)
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Learning by trying to trick itself:
Generative Adversarial Network (GAN)

The Generator gets ever
better at generating good fakes
The Discriminator gets ever
better at detecting them



  

GAN for synthetic data



  

GAN for segmentation

Tjio, G., Li, S., Xu, X., Ting, D.S.W., Liu, Y., Goh, R.S.M. (2019). 
Multi-discriminator Generative Adversarial Networks for Improved Thin Retinal Vessel Segmentation. 
In: Fu, H., Garvin, M., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2019. 
Lecture Notes in Computer Science(), vol 11855. Springer, Cham. https://doi.org/10.1007/978-3-030-32956-3_18



  

GAN can be built out of any DL architecture



  

GAN can be built out of any DL architecture



  

Acknowledgements

Philippe Froguel
Amélie Bonnefond

Smaïn Fettem

Mathilde Boissel
Lijiao Ning
Emma Henriques
ShuangShuang Geng

François Pattou

R package developers 
(VIM, MICE, DESeq2, ChAMP)

Python package developers
(Tensorflow/Keras, Numpy, 
Pandas, Scikit-learn)

Anne-Sophie Ledoux
Vincent Massy

Amna Khamis
Stefan Gaget
Mehdi Derhourhi

Hélène de Gavre
Mélanie Hocquet


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Detection: PreciNASH
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135

