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L-type

VOC NMDAR l AMPAR
Cytoplasm

ER li
Lisman (1989) A

PNAS, 86: 9574-8

\/
-

low Calmodulin high
calciumf \;alcium
[ <
F%alcineurin :‘ CaMKII |

LONG TERM LONG TERM
DEPRESSION POTENTIATION
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L-type

VOC NMDAR l AMPAR
Cytoplasm

ER ZY
Lisman (1989) A

PNAS, 86: 9574-8
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low Calmodulin high
calcium( \;alcium
[ <
F%alcineurin :‘ CaMKII |
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Closed (T)

Melanie
Stefan

Stuart
Edelstein

Stefan MI, Edelstein SJ, Le Novere N (2008)
Stefan MI, Edelstein SJ, Le Novere N (2009)
Edelstein S), Stefan MI, Le Novere N (2010)
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Monod, Wyman, Changeux (1965)
On the nature of allosteric
transitions: a plausible model.
J Mol Biol, 12: 88-118
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a(l+ a)" 1 + Lea(l + ca)™ 1

Y =
(14 )™+ L(1 4 ca)™
. (14 )™
(14 )™+ L(1 4 ca)
A |
. L p— @ C = K_ O — [ aR ]
[ Ro] KT [KH]
Equilibrium strong effect
L>1= strongly biased c<L1l= of ligand

binding function
state function
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Bindings of calcium and targets (one lobe)
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BB T-state
OO R-state

@ Calcium

— Target

A
[]
v

Conf. transition

Calcium binding

A
]
Y

<+——» Target binding

Kp
c= —
K
Kt
= K
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Different targets stabilise CaM in different states
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Different targets stabilise lobes In different states

@ i
L/

R &,
\ NAADRANNANININEIR A
- Z8) N

Neurogranin MLCK

Lai M, Brun D, Edelstein SJ, Le Novere N (2015)
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Hemiconcerted model of calmodulin

. N-lobe
() C-lobe

T-state

() R-state

3 Target

[TT] [RT)]

T @R,
"N =1&T) = [RR] "¢~ TR " [RR)

& _ KRR R KRrr
N — 1 C = 1
KTR KRT

67]\} _ KRt €T o KTR
K1t ¢ KTT
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Calcium binding to lobes and whole CaM

5 T 1 T T T
© o N-lobe saturation, exp.
o o C-lobe saturation, exp. o ©
al|© © wtCaM saturation, exp. ~O.0n

— N-lobe saturation, fit
— (C-lobe saturation, fit
— wtCaM saturation, fit

I:C:a]bound
[CaM]

10
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Parametrisation using accurate measurements

* Ca?* binding in presence of targets: none, skMLCK, PhK5, CaATPase
« Ca’* dissociation constants for complete calmodulin and N and C term mutants

1 in 20000 active w/o Ca*"

!

0670 K?,=8.32 10°
K* =1.66 10°®

C=3.96 10° KR =1.74 10°
{ KR =1.45 10

Affinity of Ca** for “open
state” 250 times higher

than for “closed state” 2 high, 2 low, as expected
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Activity of unsaturated calmodulin (state function)

= Fractional activity depends on the number of calcium ions bound

R; 1

Tz' :L°Ci

- R/T, = 1/20000 (1/L)

[ R1/T1 — 1/170
- R/T, =0.69 ===p half-saturation = equi-probability
- R/T, =780

« R,/T,=10000 Do we need to represent the four calcium bindings
to understand Calmodulin activation?
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Targets are allosteric effectors

4 —
3 -
=
ﬂ -
O
=~ o2-
o
1+ ]
& ~——O—— Calmodulin
—o— + PhK5
19 —N—— + CaATPase
- + SMMLCK
----m--- + SKMLCK
0 - —O— + MK}
III T T T ITTYI-[ T T '-l_'l_lT['l A ] L4 1 IT1TI[ 1 | 1 IIlll‘ L L] L] flr'll,
10° 108 107 10 10° 104
2+
[Ca®*],,, (M)

Peersen et al. (1997)
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1 I L]

® ® CaM alone, exp. (Bayley et al. 1996)

“p= sH — CaM alone, simulation q
Stablllse R state ® ® CaM + WFF, exp. (Bayley et al. 1996)
of both lobes _l

— CaM + WFF, simulation
Stabilise R state —l 4l

@ @ CaM + WF10, exp. (Bayley et al. 1996)
—— CaM + WF10, simulation
of C lobe

w

N

[Ca bound] / [CaM]

10 10° 107’ 10° 107 10 107
[free Ca] (M)
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Targets move Ca* binding into physiological range

® ® CaM alcine. exp. (Baylely et al. 1996) l
HH 5H — CaM alone, simulation :
Stablllse R state ﬂ ® ® CaM + WFF, exp. (Bayley et al. 1996)
of both lobes — CaM + WFF, simulation
® ® CaM + WF10, exp. (Bayley et al. 1996)
Stabilise R state _I 4l — CaM + WF10, simulation
e ®
of C lobe 94% _ > >
s o
] @
(;J. 3 o]
~ o
- o]
- . . g
3 Physiological
© | .|
S range o”
] _®
ONE spikey .°
1 oo 9] -
o o]
5% - —
2% o° e
0 2h0° |
10° 10°® 10" 10° 107 10" 10°

[free Ca] (M)
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Calmodulin, its ligand and its targets

1A
Bs
S
0 CaM/
.g CaN
2 05 CaM/
T CaMKIl
£
o
c
0 le® le® le# 1e?

[Ca*]
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Bidirectional synaptic plasticity

LTD LTP

4

CaM/
CaN

CaM/
CaMKIl

normalised activity
o
()]

le® le® Le*

[Ca*’]
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Calcineurin stabilises CaM R —» no deactivation

1A

*E CaM/

pres CaN

Q

@«

ge)

Q

CaM/

n

'T?s 0.5 CaMKII
=

|-

(o)

c

le* 1eJ

[Ca*]
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Neurogranin affects Ca** binding to CaM

1 ¢ CaM
Hoffman et al (2014) 104 « cam/Ng

o
co
1

©
D
A

0.4+

0.2

Normalized Intensity

0.0+

0.01' ) 0.1 1 10 1(I)O '”1“(';OOI
[Free Ca”"] (uM)

5.8 e CaM

e CaM/Ng
5.6 1

5.4 -
5.2

5.0

Fluorescence Intensity

4.8

0.0 | 0.2 ' 0.4
Time (sec)
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3.0 r -
e o TR2C alone (exp.)
— TR2C alone, (simul.)
251 ® @ TR2C + WFF (exp.)
1 o CaM —  TR2C + WFF (simul.)
n [ (2014) 1.0 ® e TR2C + NaV1.21Qp (exp.)
HOﬁ:ma et a ( O ) | CaM/Ng 2.0l — TR2C + Nav1.2IQp (simul.)
%)
2 08- S
wn E
= =15}
©
E 0.6 1 ‘g
o ® 1.0
() 4 1=
N 0.4
c_u o
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€ 0.2-
(@]
p
0.0+ 0.0
L LA A 9 3 7 = -5 = -3
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0.01 0.1 1 10 100 (free Cal(M)
2
[Free Ca”"] (uM)
1.5 T T T T T T
5.8 O O CaM alone, exp. (Gaertner et al. 2004)
¢ CaM — (CaM alone, simulation
© O CaM + Ng, exp. (Gaertner et al. 2004)
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No large effect of
Ng on [Ca?*'free]

(= EEE e e B e N e
-20-15-10-5 0 5 10 15 20 -20-15-10-5 0 5 10 15 20

Time (ms) Time (ms)
(A) with Ng (B) Ng KO
Free CaM PP2B L1 Free CaM PP2B 1 Free CaM
8.0% 1.2% E CaMKIl Free CaM 2.4% B CaMKIl
' E Ng 15.4% EEE PP2B
I PP2B

Ng affects
CaM distribution

48.6% Ng

caMKI 42:2%

82.2%
CaMKll
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Wait a minute!
Signal transduction is not at equilibrium!

AMPAR post-synaptic potential: 5 ms
Calcium spike: 50 ms
Half saturation calmodulin (kon=1.5e6, koff=100): 5 ms
Relaxation between calmodulin states: 1 ms

autophosphorylation of CaMKIl (kon=6): 100 ms
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Dynamic of calcium
Main input In the spine

1 channels

Ca_buffs| .

[Ca_buffM]

Franks et al 2001
Naoki et al 2005

[Ca_buffF]

pump
Y (Michaelis-Menten)
% Li L, Stefan MlI, Le Novere N (2012)
b) 2¢ 24
C k t24.7 H
[Ca_b ufo] g st
(a) 08¢ one Ca2* soik 2 Ca“~" spikes at 0.98 Hz
s P 5 .
= 07¢ ® 15}
g 06} 3
‘ = s
| =M : 05 ;‘ b
'WM@ &u 0.4 F g
S 8
$ 03} = '
5 S 05Ff "
S o02f = [ |
g 8 _ |
= ‘E 0.1 F E ‘\
Wi < - N\ , | |
.. -0.1 0 0.1 0.2 0.3 0.4 0. 0 0.5 1 1.5 2 2.5
Sabatini e{ al 2002 time (s) time (s)
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Calcium/calmodulin kinase Ii

Auto- |nh|b|tory

Calmodulin trapping is
an apparent increase of
affinity of CaMKIl for CaM

when T286 is phosphorylated T286P causes

constitutive activity

Stefan MI, Marshall D, Le Novere N (2012)
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Calcium/calmodulin kinase Ii

Auto-inhibitory
/domain

" T306P blocks

Sy
LT
- o

r "" N
SR e 7 CaM binding

CaM binding site

Dodecamer:
Trans-phosphorylation of T286
by neighbouring subunits T286P causes
Cis-phosphorylation of T306 constitutive activity
Billions of billions of reactions

Plus, most quantitative measurements made on monomers ...

/3
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SBGN ER and rule-based modelling

[calmodulin)

O, i i
<K
® Cis ::g:) H ®
< H
@
Y Y h
CaMKIl [ high af'fj [ low aff ]
\ y

Stefan MI, Marshall DP, Le Novere N (2012)
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P A given fraction of activated CaMKll monomers, Calculate the probabilities of having an active neighbour

on one specific side (indicated by the arrow) of the activated monomer of
+ interest (blue outline) (since only the asymmetrical situation is

considered), The possible positions of activated monomers are listed as
Randomly allocate activated monomers to CaMKIl hexamers. the following, with corresponding probabilities:
—= Record the number of hexamers containing different numbers of active
menomers (in red) as the following:

* ad {;{wo Eaifies

r’C
b‘fﬁ

|
v

Calculate the average population for each number of
active mongmers per hexamer,

Repeat for every 1% increase
of CaMEKll active monomers

Multiply average populations of each number of active monomers <
per hexamer by their corresponding probabilities of having an
active neighbour,

The sum of these six numbers is a coefficient that can he used to
adjust CaMKIl autophosphorylation rate.

Y

Fit these 100 coefficients into a polynomial function of activated CaMEI
monamers, and embed this function in the model. — 0




Ca channels

Ca buffers

Ca pumps

\/

[ <
F%alcineurin :[EARPP—BZ

:‘ PP1

l‘ CaMKII

Incoherent feed-forward loop

342 “molecular species”, representing 7 actual molecular entities

1295 reactions
184 mathematical rules
7 conditional discrete events
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Calmodulin
activation

CaM without targets. Low
frequencies do not activate
calmodulin (binding events
without conformational changes)




08 f
0.6 f
0.4 F
0.2 F

0
200
100

CaM with targets. Binding to
CaN and CaMKII stabilises
R state, with higher affinity.
Positive feedback loop

=» bistability
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without conformational changes)

ooooooDo00—
=i P30 o LR~ QO D

H

coopoopooo—
= pILY BN ~J00 WD

(Hz)

; 80
120
60

time (g)




Calmodulin
activation

[camﬁlr[caM
1

1
0.8 F 0.9

06 | 0.7

0.4 F 0.6

0.2 F 0.5

- 0.4 .

0 03 CaM without targets. Low
100 01 frequencies do not activate

calmodulin (binding events
without conformational changes)

01 5 time (s)
[CaMp)/[CaM, ]

At high frequency, effects of os b é.g
calcium signals last much 06t 0.7
longer than the signal itself “:ﬁ : 0.
. . 200 02

CaM with targets. Binding to 100 0.1

CaN and CaMKI|l stabilises LTP
R state, with higher affinity.

Positive feedback loop "Eq”E"“E.F}D 1 80
=» bistability o

time (g)

10
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CaMKIl and CaN
activation

Calcineurin,,o/CaMKIltive

activated calcineurin
activated PP1
Ectivated CaMKll

™ signal duration

o
]
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e o
~ @

e
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normalized valus
o=
()]
T

7
5 6 b .
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5 L
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DE 0
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1r I frequency (Hz)
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All calcium frequencies increase
CaN AND CaMKII. Itis nota
Switch. But the ratio of activation
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-60 0 60 120 180 240 300
time (s)

Luxembourg Centre for Systems Biomedicine, 03 October 2017 IBtE:rt:_rb




Bidirectional plasticity

Constant catalytic rates of active enzyme

— quantity of catalysed reaction events
prop to integral of the activation curve
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Bidirectional plasticity

Constant catalytic rates of active enzyme

— quantity of catalysed reaction events
prop to integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas*catalytic activities

30
.E L kinase activity = phosphalase aclivily ——
= kinase activity = phosphatase activity ——
g
& 20 ¢
m [
od
o
L
o
& [
™ L
w 10
= i
=1 [
& [
=] L
= L
- [ I
S o -
= [
S I
o 1
g | Om
2 qpt . 1 . .

01 1 1 10 100 200

Freque_nc:.r (Hz}
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Bidirectional plasticity

Constant catalytic rates of active enzyme

— quantity of catalysed reaction events
prop to integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas*catalytic activities

30
4r .E L kinase activity = phosphalase aclivily ——
[ = kinase activity = phosphatase activity ——
g
e T s |
8 3r a 20
r = i
z A
= o
2 @
- wl o
= m L
£ 2 CaN wins 5 10}
S a i
-------------- ] [
N g :
=] - [
@ [ . = L |
R CaMKIllwins g of
8 [ D I 1
[ 1 4]
r 1
[ 1 i
: : 8 1Om
0 [ i i | | i -10 [ " | i ]
0.1 1 - 10 100 200 0.1 1 1 10 100 200
Freguency (Hz) Frequency (Hz)
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Effect of calcium duration and amount

10 spikes
20 spikes —=
30 spikes —=—
40 spikes —=—
50 spikes
60 spikes
70 spikes ——
B0 spikes ——
90 spikes
100 spikes ——
110 spikes ——
120 spikes ——
130 spikes —— 4 r s
[ - 140 spikes [ Caj’ spike peaks al 0.3uM ——
T ':._,;_.\ N 150 spikes Ga; spike peaks at 0.7uM ——
L) | 160 spikes —e— CaZ" spike peaks at 1.4uM —=—
170 spikes —e— Gaz‘ spike peaks at 2.8uM —=—
180 spikes —a— o Cy; " spike peaks at 5.6uM
afr Ca”"' spike peaks at 12.0uM

calcineurin / CaMKll activated area

01 1 ) S 100 200 1000
Freguency (Hz)

180 spikes 10 spikes
=3 Hz =70 Hz

calcineurin / CamMKEIl activated area

Prolonged or intense signals o1 1 10 oo 20 1000
Freguency (Hz)

decrease ©Om: Itis not an 12 uM 0.3 uM
intrinsic property of the synapse =0.3Hz - 20 Hz
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Effect of intrinsic system perturbations

CaMKII not constitutively active

No CaM trapping

Never any positive plasticity
Giese et al (1998) Science, 279:870-873

wild type ——
45 F . ~ T286 mutation —— 4 -
increased inhibition on PP1 —=— E
<
tEcg . Kud7 <
E 1 | | : + Il e i} * g L II
3 : \%_‘_
% ] ] 0.24
?:g 01 : : .07 <
1 1
o T T o0 200 °
' 1.3Hz 4.3 Hz 45 £

Competition for CaM, CaN wins > I
Effect of Ng (Huang et al 2004). ‘é
Better performance at low frequencies. 8
NB: No need of direct interactions between ;E,:

CaN and CaMKII to explain paradoxical effects
of T306 phosphorylation (Pi et al 2010) on CaN. 01/

T206P releases limiting CaM, that can then activate CaN O 5 Hz 4.5 Hz 40 Hz
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Lower deactivation of CaMKII
Effect of 11 and DARPP-32 activation by cAMP
' [CaM]=30 uM ——

[CaM]=15 pM —w—
[CaM]=60 uM —=—

lO 200




a(l+a)" 1+ Lea(l + coz)”_1

/1 1 _\m | T /1
\

| Allosteric stabilisation triggers bistable CaM response to Ca2+
ot > threshold freq CaM activation lasts longer than initial signal

R— (LT )
04 1 (1 4+ a)™ + L(1 + ca)”
00 Calmodulln binds CaN at low concentration of calcium,
«o and both CaN and CaMKIl binds at high concentrations.
Calcium signals activate both CaN and CaMKIl
at ALL frequencies. The ratio of activity changes.

) 08‘;

~ Neurogranin stabilises Calmodulin in the T state,
oo resetting the system and acting as a Calmodulin reservoir.

1
A a

- 0.8
|' 1.7

= Om is not an |ntr|n5|c property of the synapse.
Dynamlcaly depends on length and amplitude of stimulations.
+®m and intensity are affected by reactions, parameters and initial
™ conditions. [CaM] decides the balance CaN/CaMKIl

‘_____..--"'I-LI
0.1 gD
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ot (T @@

1 to 1 mapping between mathematical models and graph ‘

e

~—

Non-covalent assemblies and multistate properties trigger

combinatorial explosions of molecular pools and reactions
PR = _)v KR N y - J

[ (D) A )
- Representation of relative intensities for processes and

K
regulations currently non-standardised o

t

K

T

N

1
L

| | \ )
»

’ ‘ ‘ . | | "o |
~~— N S

‘Triggers and reaction directions dependenf on amoun;cs,
Intensities or history currently not supported

L. : ;

Some model elements do not have visual counterparts, e.q.
complex mathematical relations (sampling, filters, statistics,
differentiation and integration), discrete events, etc.

== L
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Pecunia est nervus belli

EMBL : ‘E.EZ;: #.3BBSRC

o. . blosqence for the future
bl 3

SEVENTH FRAMEWORK
7" PROGRAMME

Medical
Research
Council

@ . °
'"/'.'7 EIM N RC

Innovative Medicines Initiative

W @ o
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Rbar, Edelstein and Le Novere version

B — (1+a)"
L To] KR (14 a)™ 4+ L(1 4 ca)™
[Re] T KT
o 1
. [Ca?t] o, (14 ca)”
T KR (14 a)n
_ 1
R =
1+ LO"
M ligands binding on different sites R = 1
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