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Bidirectional synaptic plasticity
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Calmodulin, the memory switch
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Modelling the behaviour of molecules

Modelling the behaviour of
a system of molecules

Modelling the behaviour of a cell
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Structure of a Calmodulin Ca%* binding domain
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The naive view

Binding to targets
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+Ca**< > Ca ,CaM
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That does not work ...

dose-response normalised
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We knew it would not work

dose-response normalised

[CaN]=[CamKII]=[CaM]/10 ;
Kd CaMKIl = 10xKd_CaN;
Software COPASI
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Calmodulin can activate calcineurin with 3 Ca** (Kincaid and Vaughan
(1986). PNAS, 83: 1193-1197)

Calmodulin can bind CaMKII with 2 Ca?* (Shifman et al (2006). PNAS,
103: 13968-13973)

Calmodulin affinity for calcium increases once bound to CaMKIl
(Shifman et al (2006) [but many previous reports on other targets:
e.qg. Burger et al (1983). /BC, 258: 14733-14739 ;

Olwin et (1984). /JBC 259: 10949-10955])
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Monod, Wyman, Changeux (1965)

On the nature of allosteric transitions:
a plausible model

J Mol Biol, 12: 88-118
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(1 Modulation of thermal equilibria # induced-fit
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(1 Modulation of thermal equilibria # induced-fit
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@ Concerted transitions # sequential model
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Monod-Wyman-Changeux model
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Monod- Kman-Changeux model
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Allosteric model of Calmodulin activation

APO

liganded
-100000 T4 = \

O~ &
Stefan MI, Edelstein S, Le Novere N (2008) Proc Natl Acad Sci USA, 105:10768-10773
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Allosteric model of Calmodulin activation
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Allosteric model of Calmodulin activation

APO
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Parameter estimation using:

e Ca®* binding in presence of targets: none, skMLCK, PhK5, CaATPase
« Ca?* dissociation constants for complete calmodulin and N and C term mutants

1 in 20000 active w/o Ca**

!

0670 K®,=8.32 10°
K* =1.66 10°

C=3.96 107 K* =1.74 10°
{ KR =1.45 10°

Affinity of Ca** for “open
state” 250 times higher

than for “closed state” 2 high, 2 low, as expected
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Comparison with experiments (binding function)
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CaM
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Porumb et al (1994) Anal Biochem 220: 227-237

Peersen et al (1997) Prot Sci 6: 794-807
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Activity of unsaturated calmodulin (state function)

Fractional activity depends on the number of calcium ions bound

Ry 1

T L2

R,/T, = 1/20000 (1/L)

R,/T, = 1/170
R,/T, = 0.69 === half-saturation = equi-probability

R,/T, = 10000
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Targets as allosteric effectors
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Binding to target increases the affinity for Ca#
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Targets stabilises Ca* binding into the
physiological range
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Bidirectional synaptic plasticity
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Bidirectional synaptic plasticity

half saturation of calmodulin: CaN half activated
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Bidirectional synaptic plasticity

LTD LTP
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Different binding to different targets

3.0
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Hemiconcerted model of calmodulin
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Lai M, Brun D, Edelstein SJ, Le Novere N (2015) PloS Comput Biol, 10(1):e0116616 J
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Calcium binding to lobes and whole CaM
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Effect of R-stabilising targets

i I I

® ® CaM alcime. exp. (Baylely et al. 1996)

T 5H — CaM alone, simulation d
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Effect of R and T stabilising targets
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Conclusions of part 1

Allosteric model of Calmodulin, with only two states for
the EF hands, binding calcium with different affinities, and
concerted transitions of the EF hands. Parameters
estimated from experimental data-sets.

Model fits independent experimental datasets.
Affinity for calcium increases upon binding of the target.
CaM significantly “active” with less than 4 Ca** bound.

CaM bind its targets with less than 4 Ca** bounds.

The model displays an activation of the sole CaN at low
concentration of calcium, while high concentrations
activate both CaN and CaMKII.
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Wait a minute!
Signal transduction is not at equilibrium!

AMPAR post-synaptic potential: 5 ms
Calcium spike: 50 ms
Half saturation calmodulin (kon=1.5e6, koff=100): 5 ms
Relaxation between calmodulin states: 1 ms

autophosphorylation of CaMKIl (kon=6): 100 ms
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Ca_buffS o Dynamic of calcium

slow Main input in the Spine
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Are those spikes realistic?
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Validation of CaM kinetics

Frac
Ca2+ _
released 5|

simulation result
Black 2007 experimental points  +

0 250 500
time (ms)

Black DJ, Selfridge JE, Persechini A (2007). Biochemistry 46: 13415-13424.
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Calcium/calmodulin kinase |l

CaM binding siteS

Calmodulin trapping is

an apparent increase of
affinity of CaMKII for CaM
when T286 is phosphorylated

T286P causes
constitutive activity

Stefan MI, Marshall D, Le Novere N (2012) PLoS ONE, 7(1): e29406 ]
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Calcium/calmodulin kinase |l

CaM binding siteS

T286P causes
constitutive activity

Dodecamer;
Trans-phosphorylation of T286
by neighbouring subunits
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Repeat 1000 times

P A given fraction of activated CaMKll monomers, Calculate the probabilities of having an active neighbour
on one specific side (indicated by the arrow) of the activated monomer of
+ interest (blue outline) (since only the asymmetrical situation is
considered), The possible positions of activated monomers are listed as

Randomly allocate activated monomers to CaMKIl hexamers. the following, with corresponding probabilities:

—= Record the number of hexamers containing different numbers of active

monomers (in red) as the following:

5

o Lo 18 ¢

B e 8
oP oy e ®

Repeat for every 1% increase
of CaMEKll active monomers

&

S

3

Calculate the average population for each number of
active mongmers per hexamer,

Multiply average populations of each number of active monomers
per hexamer by their corresponding probabilities of having an
active neighbour,

-—

a8

r,

The sum of these six numbers is a coefficient that can be used to
adjust CaMKIl autophosphorylation rate.

Y

Fit these 100 coefficients into a polynomial function of activated CaMEI
monamers, and embed this function in the model.

o

315




Validation of CaMKII kinetics

Frac
T286P

simulation result
0 . : : Bradshaw 2002 fit  +

0 10 20 30 40 50
time (s)

Bradshaw M, Kubota Y, Meyer T, Schulman H (2003). PNAS 100: 10512-10517.
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Advances
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Validation of calcium-activation of CaN
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0.8
0.6 |
0.4 F
0.2 F

0
200
100

CaM with targets. Binding to
CaN and CaMKII stabilises
R state, with higher affinity.
Positive feedback loop

=¥ bistability
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Calmodulin
[caMHFEGaM activation

200

100 frequencies do not activate

calmodulin (binding events
without conformational changes)
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Temporal activation
of CaMKIl and CaN
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Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events

],l integral of the activation curve
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Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events

].L integral of the activation curve

Bienestock-Cooper-Munro
(BCM) curve: difference of
active areas™*catalytic activities

30
E 1 kinase activity = phosphalase aclivily ——
= kinase activity » phosphatase activity —s—
g
& 20 ¢
o [
od
o
L
o
& [
™ L
w 10
= i
=1 [
= [
=] L
= L
o [ I
S o -
= [
S I
o 1
g | ®m
&= -1 D i A . i i

01 1 1 10 100 200

Freque_nc:.r (Hz}

/3
Advances in Systems Biology in Neurosciences, Geneva, 06 February 2015 IBtE:rt:_rb




Bidirectional plasticity

Constant catalytic rates of active enzyme

—> quantity of catalysed reaction events

].L integral of the activation curve

Bienestock-Cooper-Munro
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Effect of calcium duration and amount

10 spikes
20 spikes —=
30 spikes —=—
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Effect of intrinsic system perturbations

st | | 'd_ thSBmﬁ%EE s R CaMKII not constitutively active
increased inhibition on —_— .
: No CaM trapping

s Never any positive plasticity
Giese et al (1998) Science, 279:870-873

N‘ 07 <4 Lower deactivation of CaMKI|
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Proposed some direct interactions

calcineurin / CaMKI| activated area
| |

0.02

45Hz 40H

0.5 Hz

10 200

between CaN and CaMKII. lry
They got it completely wrong!
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Summary of part 2

Allosteric stabilisation by targets triggers bistable CaM
response to calcium. Above a certain frequency, CaM
activation lasts longer than the initial signal.

Calcium signals do not choose between CaN and CaMKIll,
BOTH enzymes are activated at ALL frequencies. The
ratio of activity changes.

The frequency at which a synapse switches from a
depression to a potentiation mode is not an intrinsic
property of the synapse, but a dynamical one that
depends on the length and amplitude of stimulations.

Modifications of topology, parameters and initial
conditions affect both response intensity and threshold
frequency. Some mutants can't have positive plasticity
for any stimulation. [CaM] decides of the balance CaN/KIl
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Axial Resistence

Axial Rasistence
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