Systems Biology: Where it comes from, what it is, and what it does

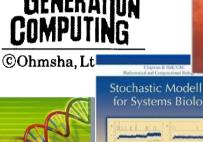
Nicolas Le Novère, EMBL-EBI

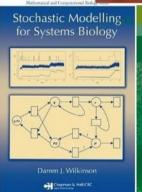
What happened to Biology at the end of XXth century?

Annu. Rev. Genomics Hum. Genet. 2001. 2:343-72 Copyright © 2001 by Annual Reviews. All rights reserved

A New Approach to Decoding Life: Systems Biology

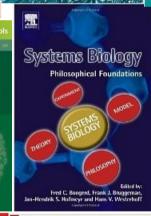
Trey Ideker^{1,2}, Timothy Galitski¹, and Leroy Hood^{1,2,3,4,5} Institute for Systems Biology¹, Seattle, Washington 98105; Departments of

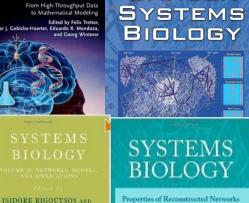

New Generation Computing, 18(2000)199-216 Ohmsha, Ltd. and Springer-Verlag


invited Paper

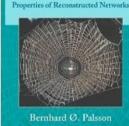
Perspectives on Systems Biology

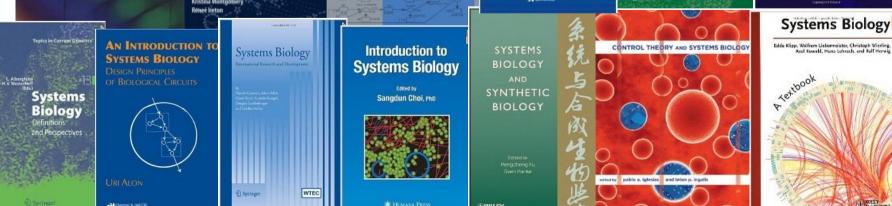
Hiroaki KITANO
Sony Computer Science Laboratories, Inc.



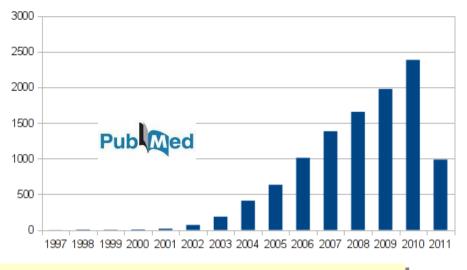

> Computational

System Modeling in Cellular Biology


Systems Biology


Systems Biology in Psychiatric Research


CANCER



- First mention of the term: 1928 (L Von Bertallanfy)
- Modern revival of the term: 1998 (L Hood, H Kitano)

Systems Biology is the study of the **emerging** properties of a biological system, taking into account all the **necessary** constituents, their **relationships** and their **dynamics**.

Systems-wide analysis (omics)

- Born: 1990s
- Technologies: high-throughput, statistics
- People's background: molecular biologists, mathematicians
- Key lesson: the selection of a phenotype is done at the level of the system, not of the component (gene expression puzzle)

Application of systems-theory

- Born: 1960s
- Technologies: quantitative measurements, modelling
- People's background: biochemists, engineers
- Key lesson: the properties at a certain level are emerging from the dynamic interaction of components at a lower level

Nobel Symposium on Systems Biology (June 2009)

Naama Barkai

Bernard Palsson

Nicolas Le Novère

Jens Nielsen

Johan Elf

networks

Leroy Hood

Marc Vidal

Mike Snyder

Marc Kirschner

Charlie Boone

Ruedi Aebersold

Terence Hwa

Erin O'Shea

Jussi taipale

models

Eric Davidson

Stanislas Leibler Michel Savageau

Lucy Shapiro Roger Brent Hans Westerhoff

Luis Serrano Uwe Sauer Francois Nedelec

Jorg Stelling

Edda Klipp Boris Kholodenko

Bela Novak

Jim Ferrell

Hiroaki Kitano

Stefan Hohmann

Harley McAdams

William Bialek

Mans Ehrenberg

Nobel Symposium on Systems Biology (June 2009)

Jens Nielsen

Bernard Palsson

Nicolas Le Novère

Johan Elf

networks

Leroy Hood

Marc Vidal

Mike Snyder

Marc Kirschner

Charlie Boone

Ruedi Aebersold

Terence Hwa

Erin O'Shea

Jussi taipale

Avid Regev

Jeff Hasty

Michael Elowitz

Yoshihide Hayashizaki

Richard Young

models

Eric Davidson

Stanislas Leibler Michel Savageau

Lucy Shapiro Roger Brent Hans Westerhoff

Luis Serrano Uwe Sauer Francois Nedelec

Naama Barkai Jim Ferrell

Jorg Stelling

Edda Klipp Boris Kholodenko

Bela Novak

Hiroaki Kitano

Stefan Hohmann

Harley McAdams

William Bialek

Mans Ehrenberg

synthetic biology cell reprogramming

What happened to biology at the end of XXth century?

2010

RESEARCH ARTICLE

Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome

Daniel G. Gibson, John I. Glass, Carole Lartigue, Vladimir N. Noskov, Ray-Yuan Chuang, Mikkel A. Algire, Gwynedd A. Benders, Michael G. Montague, Li Ma, Monzia M. Moodie, Chuck Merryman, 1 Sanjay Vashee, 1 Radha Krishnakumar, 1 Nacyra Assad-Garcia, 1 Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova, Lei Young, Zhi-Qing Qi, Thomas H. Segall-Shapiro, 1 Christopher H. Calvey, 1 Prashanth P. Parmar, 1 Clyde A. Hutchison III.2 Hamilton O. Smith.2 1. Craig Venter1,2*

2 JULY 2010 VOL 329 SCIENCE www.sciencemag.org

Induction of Pluripotent Stem Cells Cell from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors


Kazutoshi Takahashi1 and Shinya Yamanaka1,2,*

Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan

² CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

*Contact: yamanaka@frontier.kyoto-u.ac.jp DOI 10.1016/j.cdl.2006.07.024

Cell 126, 663-676, August 25, 2006 @2006 Elsevier Inc. 663

EXTREME ĞÈNETIÇ ENGĪNĒĒRĪNG

An Introduction to Synthetic Biology

lanuary 2007

history

A synthetic oscillatory network of transcriptional regulators

Michael B. Elowitz & Stanislas Leibler

Departments of Molecular Biology and Physics, Princeton University, Princeton, New Jersev 08544, USA

NATURE VOL 403 20 JANUARY 2000 www.nature.com

About

The International Genetically Engineered Machine competition (iGEM) is Biology competition. Student teams are given a kit of biological parts at the beginning Standard Biological Parts. Working at their own schools over the summer, they use t

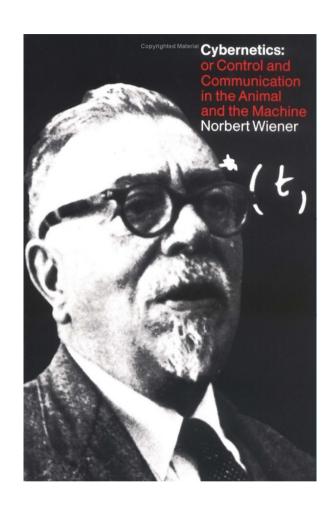
What did engineering bring?



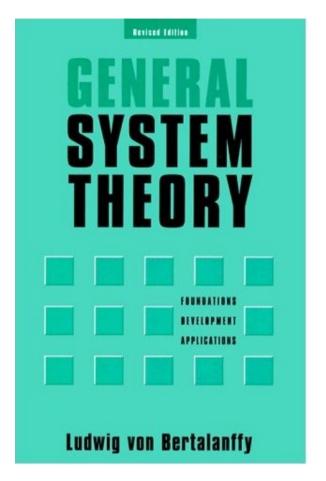
Emergence of the notion of system

Global Description of the world

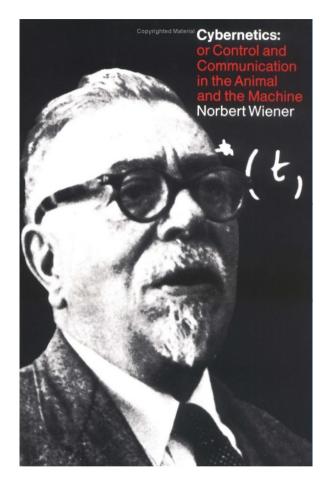
"classical" mechanic, anatomy, physiology

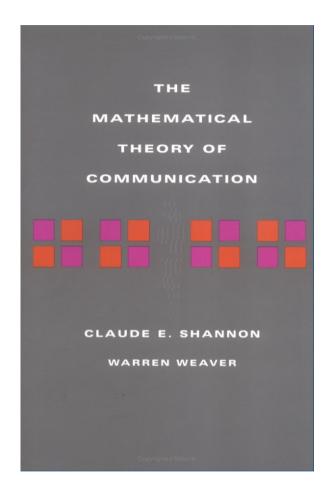

Description of the components of the world

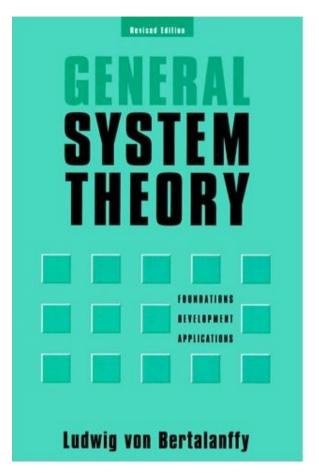

Statistical physics, thermodynamics, quantum mechanic, biochemistry, structural biology, molecular biology


Description of interacting components

Cybernetics, Information theory, telecommunications, automata, multi-agents, Systems Biology


Systems have been formalised for a while



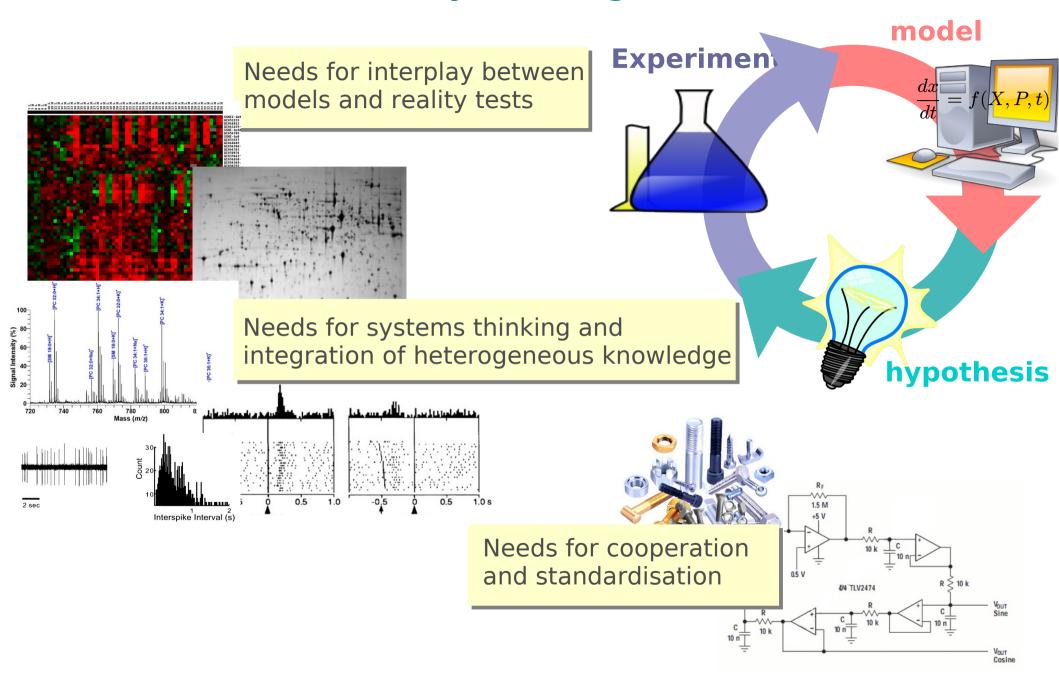


Systems have been formalised for a while

"[A system consists of] a dynamic order of parts and processes standing in mutual interaction. [...] The fundamental task of biology [is] the discovery of the laws of biological systems" Ludwig von Bertalanfy, Kritische Theorie der Formbildung, 1928

The three paradigms of Biology

1850	1900	1950	2000



Molecular Biology Michaelis Kossel Watson/Crick recombinant Menten Avery Monod/Jacob DNA

Systems Biology

Hodgkin MCA omics Huxley BST

New way of doing biomedical research

Computer simulations Vs. mathematical models

[37]

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though biologically unusual system. The investigation is chiefly concerned with the onset of instability. It is found that there are six essentially different forms which this may take. In the most interesting form stationary waves appear on the ring. It is suggested that this might account, for instance, for the tentacle patterns on *Hydra* and for whorled leaves. A system of reactions and diffusion on a sphere is also considered. Such a system appears to account for gastrulation. Another reaction system in two

Computer simulations Vs. mathematical models

[37]

THE CHEMICAL BASIS OF MORPHOGENESIS

By A. M. TURING, F.R.S. University of Manchester

(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

One would like to be able to follow this more general process mathematically also. The difficulties are, however, such that one cannot hope to have any very embracing theory of such processes, beyond the statement of the equations. It might be possible, however, to treat a few particular cases in detail with the aid of a digital computer. This method has the advantage that it is not so necessary to make simplifying assumptions as it is when doing a more theoretical type of analysis.

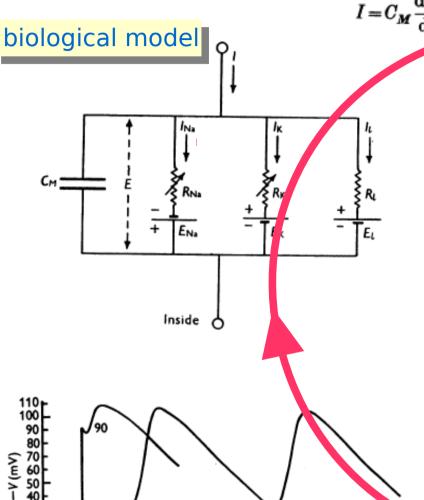
Birth of Computational Systems Biology

J. Physiol. (1952) 117, 500-544

A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS APPLICATION TO CONDUCTION AND EXCITATION IN NERVE

By A. L. HODGKIN AND A. F. HUXLEY

From the Physiological Laboratory, University of Cambridge


(Received 10 March 1952)

This article concludes a series of papers concerned with the flow of electric current through the surface membrane of a giant nerve fibre (Hodgkin, Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a-c). Its general object is to discuss the results of the preceding papers (Part I), to put them into mathematical form (Part II) and to show that they will account for conduction and excitation in quantitative terms (Part III).

The Computational Systems Biology loop

mathematical model

$\mathrm{d}n/\mathrm{d}t = \alpha_n(1-n) - \beta_n n,$
$\mathrm{d}m/\mathrm{d}t = \alpha_m(1-m) - \beta_m, m,$
$\mathrm{d}h/\mathrm{d}t = \alpha_h(1-h) - \beta_h h,$

$$\alpha_n = 0.01 (V + 10) / \left(\exp \frac{V + 10}{10} - 1 \right),$$
 $\beta_n = 0.125 \exp (V/80),$

$$\alpha_{m} = 0.1 \ (V + 25) / \left(\exp \frac{V + 25}{10} - 1 \right),$$

$$\beta_{m} = 4 \ \exp \ (V/18),$$

$$\alpha_{h} = 0.07 \ \exp \ (V/20),$$

$$\beta_{h} = 1 / \left(\exp \frac{V + 30}{10} + 1 \right).$$

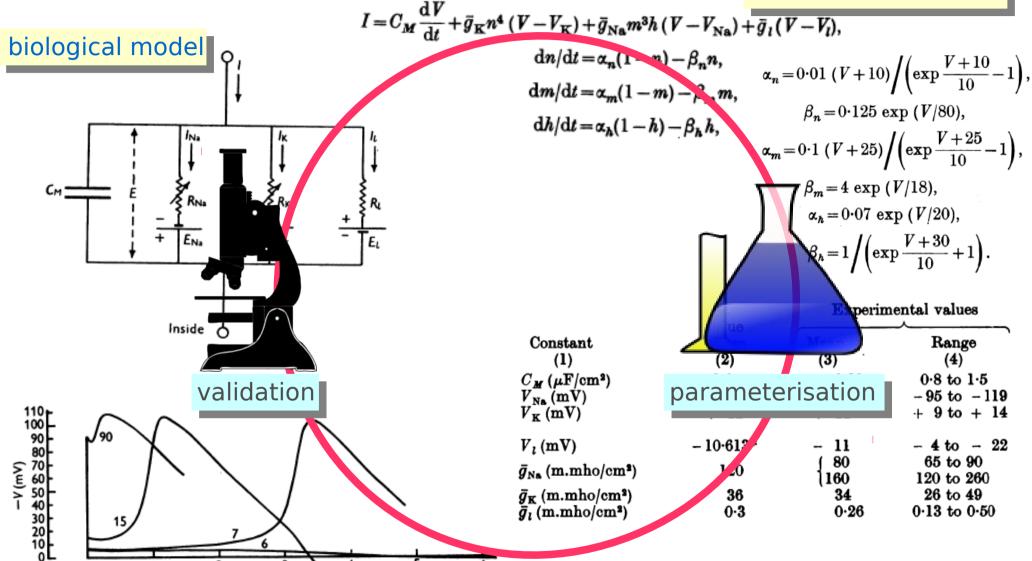
$$\beta_h = 1 / \left(\exp \frac{V + 30}{10} + 1 \right).$$

Experimental values

Range

Mean

	Value
Constant	chosen
(1)	(2)
$C_{M} (\mu F/cm^{2})$	1.0
V_{Na} (mV)	- 115
$V_{\mathbf{K}}(\mathbf{m}\mathbf{V})$	+ 12
$V_{l}\left(\mathbf{mV}\right)$	- 10-613


(4)
0.8 to 1.5
-95 to -119
+ 9 to + 14
- 4 to - 22
- 4 to - 22 65 to 90
65 to 90

Collistativ	CHOSCH
(1)	(2)
$C_{M} (\mu F/cm^2)$	1.0
$V_{Na}(mV)$	- 115
$V_{\mathbf{K}}(\mathbf{m}\mathbf{V})$	+ 12
V_{l} (mV)	- 10-613
$ar{g}_{ m Na}$ (m.mho/cm ²)	1.0
\bar{g}_{K} (m.mho/cm ²)	36
\bar{g}_l (m.mho/cm ²)	0.3

msec

The Computational Systems Biology loop

msec

simulation |

computational model

Events around

First computers		omputers	PDB	EMBLbank PC		Genomes Interactomes		
	1950	1960	1970	1980	1990	2000		

models of gene reg

whole heart

E/	ents aroun <i>o</i>						
		mputers	PDB	EMBLbank PC	oank Genomes Interactomes		
	1950	1960	1970	1980	1990	2000	
	Hodgkin-Huxle	y Dennis Nob heart pace		Goldbeter Koshland covalent	S	Cycle models ignalling models blic models	

cascades

models

Ev	ents ar	ound					
		First computers		PDB	EMBLbar PC	nk	Genomes Interactomes
	1950 1960		60	1970	1980	1990	2000
m	Hodgkin- odels	Ĺ	Dennis Nobl neart pacen	_	Goldbeter Koshland covalent cascades	sig metabol	Cycle models gnalling models ic models odels of gene reg whole heart
	n		cable eximation	complex neurons	simple circuits	Purkinje Neuron	Blue Brain Project

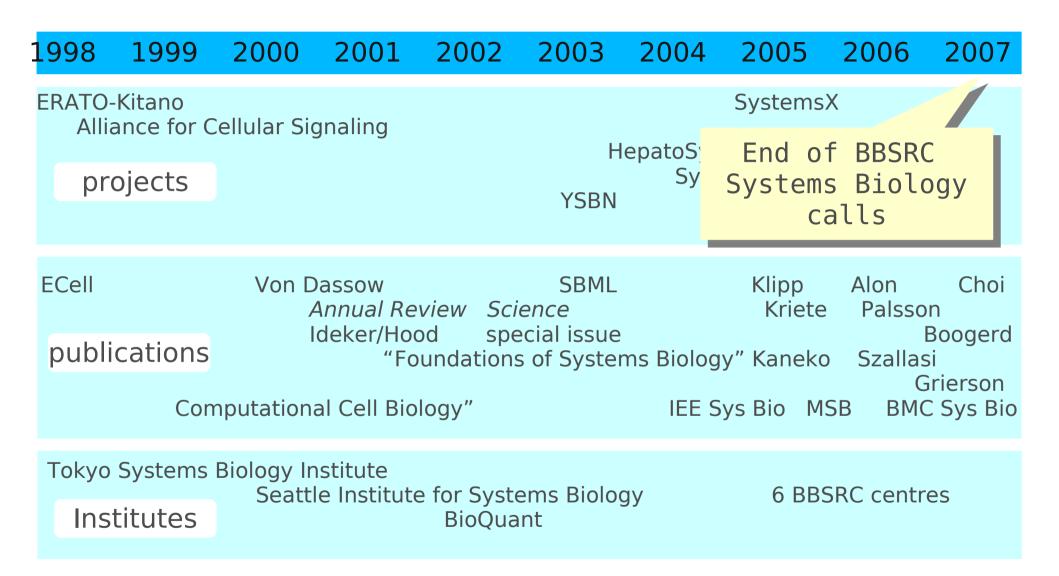
E١	ents ar	ound				
	First computers		PDB	EMBLban PC	k G	lnteractomes
	1950	1960	1970	1980	1990	2000
m	Hodgkin-	Huxley Dennis No heart pace		Goldbeter Koshland covalent cascades	sigr metabolic	ycle models nalling models models lels of gene reg whole heart
		Rall's cable approximation eurobiology	complex neurons	simple circuits	Purkinje Neuron	Blue Brain Project
				multi-a hastic systen rithms		riendly SBML emical ators
		me	LIIOUS			Barabasi Repressilator

E١	ents aro	und								
	First computers		PI	DB	EMBLban PC	k	(Genomes Interactom	ies	
	1950 1960		1970		1980	199	90	2000		
Hodgkin-Huxley Dennis I heart pa					Goldbeter Koshland covalent cascades	me	sig taboli	Cycle models inalling models to models idels of gene re whole hea	eg	
		Rall's cable approximation	comp		simple circuits	Purki Neur	-	Blue B Project	_	
	ne	urobiology met	MCA/BS	stoc	multi-a nastic system work Biol	ns	user biocl	Synthetic hemical lators Barabasi Repressilat		ду

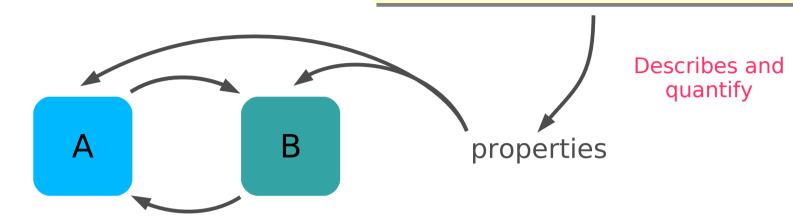
90s: maturation of the community

- Publication of modelling work in high visibility journals, e.g.:
 - Tyson. modeling the cell-division cycle cdc2 and cyclin interactions. PNAS 1991; McAdams and Shapiro. Circuit simulation of genetic networks. Science 1995; Barkai and Leibler. Robustness in simple biochemical networks. Nature 1997; Neuman et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 1998; Yue et al. Genomic cis-regulatory logic: Experimental and computational analysis of a sea urchin gene. Science 1998; Bray et al. Receptor clustering as a cellular mechanism to control sensitivity. Nature 1998
- Structuration of the community modelling metabolism
- Large-scale simulation projects
 - E-Cell project 1996; The Virtual Cell 1998
- Availability of high-throughput data on parts and interactions
 - Two-hybrids (1989); microarrays (1995) etc.
- Large-scale funding for wet+dry studies of biological systems
 - Alliance For Cellular Signalling (http://www.afcs.org/). First of the NIH "glue grants". 1998

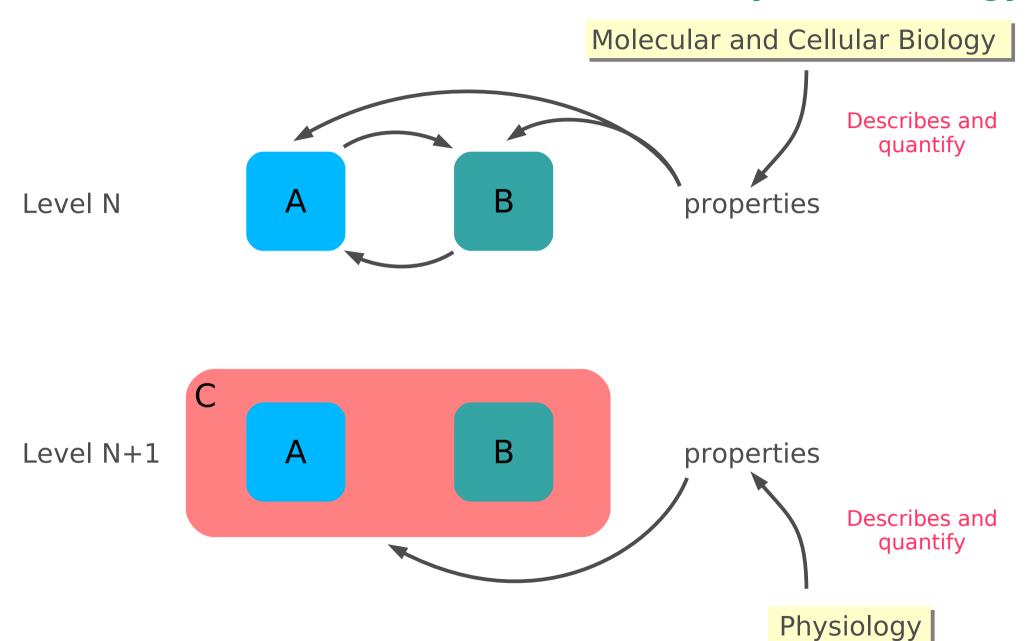
Formal revival of Systems Biology

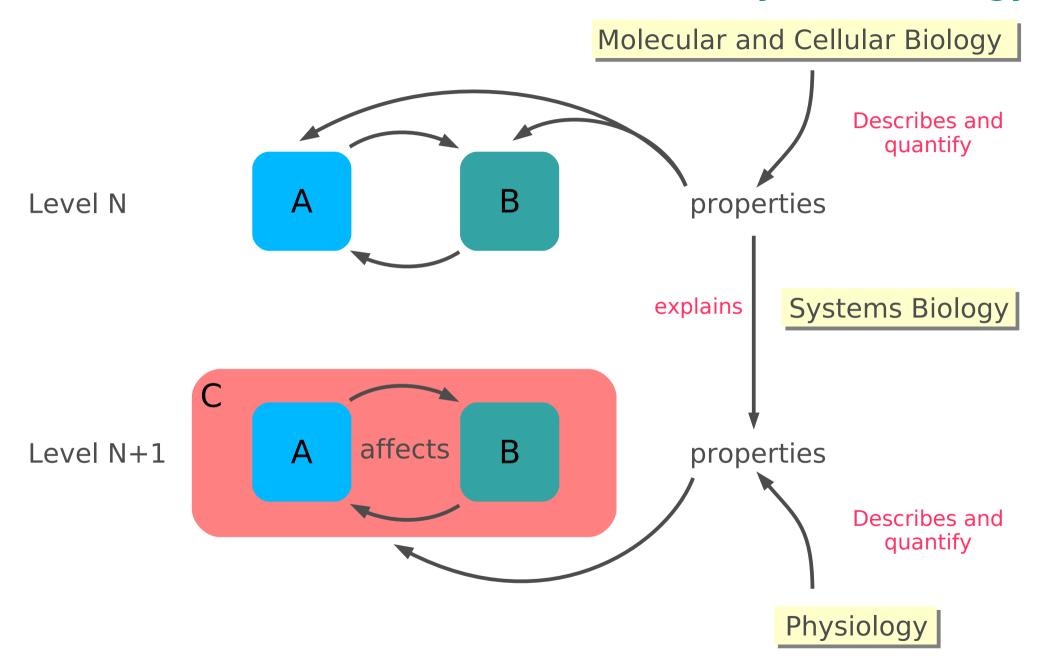

- "Modelling" Systems Biology
 - 1998 Hiroaki Kitano founds the Systems Biology Institute in Tokyo
 - First appearance: Kyoda, Kitano. Virtual Drosophila project: Simulation of drosophila leg formation. Genome Informatics Series (1998)
 - Kitano, H. Perspectives on systems biology. New Generation Computing Volume 18, Issue 3, 2000, Pages 199-216
- "Network" Systems Biology
 - First appearance: Leroy Hood. Systems biology: new opportunities arising from genomics, proteomics and beyond. *Experimental Hematology*. Volume 26, Issue 8, 1998, Page 681
 - Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nat Biotechnol. 2000 Dec;18(12):1257-61.
 - 2000 Leroy Hood founds the Systems Biology Institute in Seattle

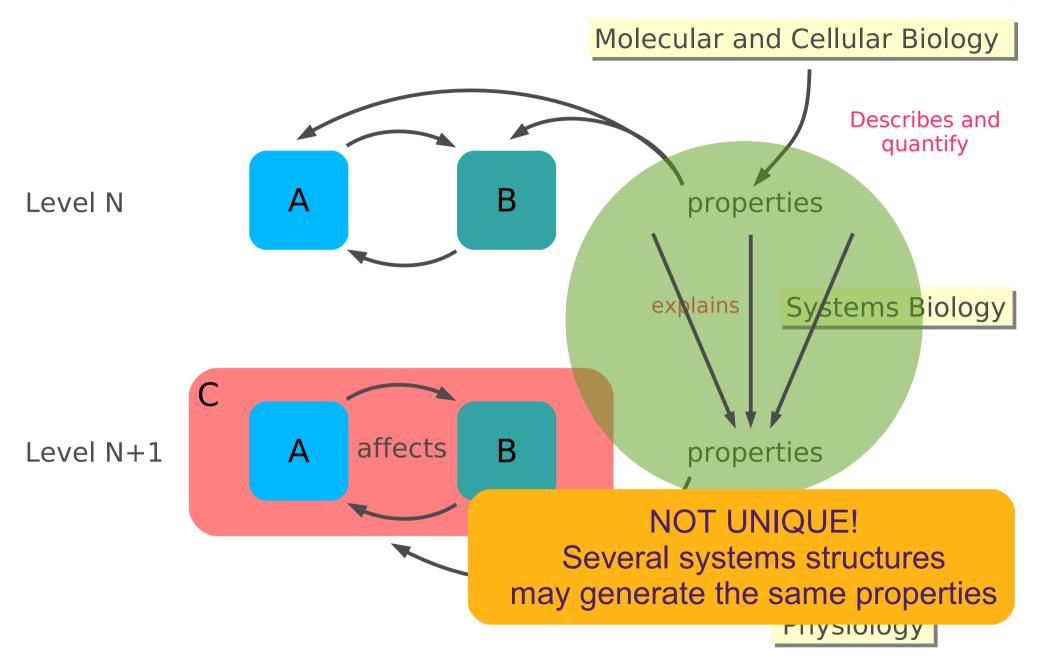
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

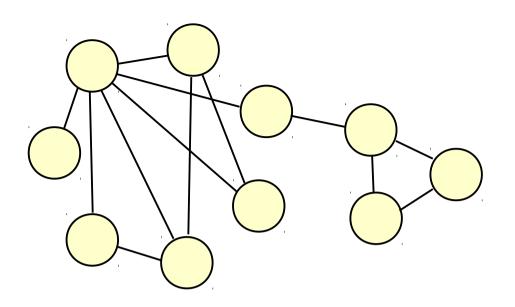

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
ERATO Alli		Cellular Sig	gnaling		Н	epatoSys	Systems	X	
pr	projects SysBio enters FP6 YSBN ERASysBio								

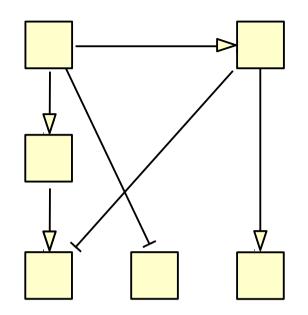
1998	1999	2000	2001	200	2 200)3 2	2004	2005	2006	2007
ERATO-Kitano SystemsX Alliance for Cellular Signaling HepatoSys										
projects SysBio enters FP6									FP6 RASysBio	
ECell		A	assow Annual Rei		Science	BML		Klipp Kriete		
publi	cations	ı	deker/Hod "Fo		special is ons of Sy		Biology"	Kanek	Szalla:	Boogerd si Grierson
	Con	nputation	al Cell Biol	ogy"			IEE Sys	Bio M	_	C Sys Bio

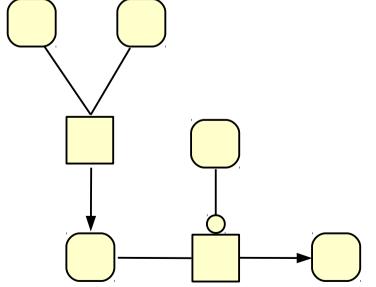

1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
ERATO-Kitano SystemsX Alliance for Cellular Signaling HepatoSys									
pro	ojects				YSBN		io enters	FP6 ERASysBio	
ECell		Von Dassow Annual Review S			SBML ence ecial issue		Klipp Kriete		Choi on Boogerd
					ns of Systems Biology" Kaneko Szallasi				
								C Sys Bio	
Tokyo Systems Biology Institute Seattle Institute for Systems Biology 6 BBSRC centres								'es	
Inst	titutes	Scatti		BioQua	,	93	y o bbonc centres		

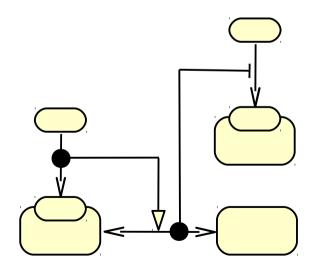


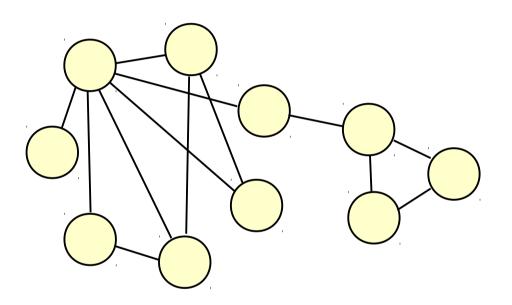

Molecular and Cellular Biology


Level N

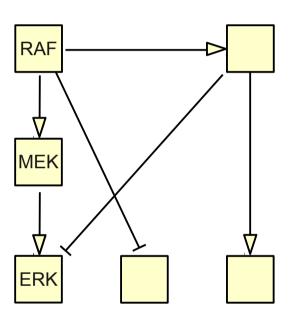




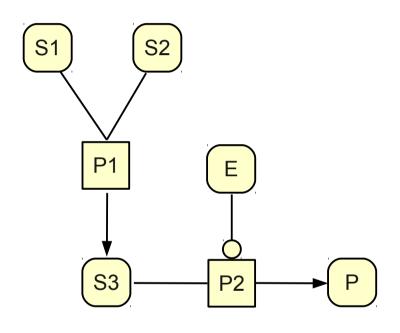

Systems Biology is the study of the *emerging* properties of a biological system, taking into account all the *necessary* constituents, their *relationships* and their *dynamics*



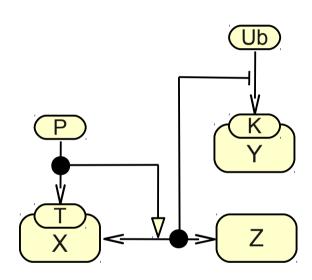
The four views of systems biology



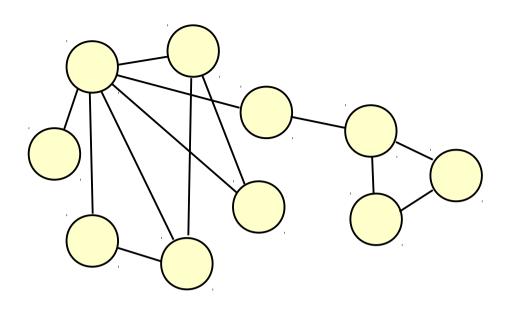
Interaction networks

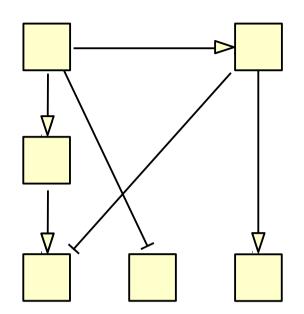

- Non-directional
- Non-sequential
- Non-mechanistic
- Statistical modelling
- Functional genomics
- IntAct, DIP, String

Activity-Flows

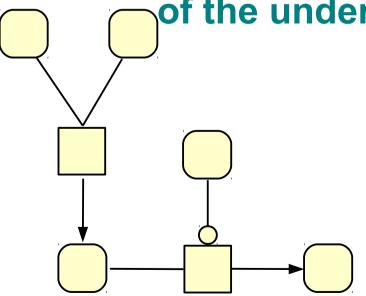

- Directional
- Sequential
- Non-mechanistic
- Logical modelling
- Signalling pathways, gene regulatory networks
- KEGG, STKEs

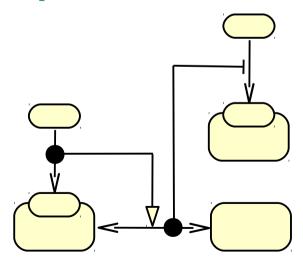
Process Descriptions




- Directional
- Sequential
- Mechanistic
- Subjected to combinatorial explosion
- Process modelling
- Biochemistry, Metabolic networks
- KEGG, Reactome

Entity Relationships




- Directional
- Non-sequential
- Mechanistic
- Independent rules: no explosion
- Rule-based modelling
- Molecular Biology
- MIM

The four views are <u>orthogonal</u> projections of the underlying biological phenomena

- Build the system
- Put numbers
- Parametrise
- Analyse
- perturb

Build the system

Put numbers

Parametrise

Analyse

perturb

bottom-up

literature

biochemistry

parameter search

Simulation

Inhibition, stimulation, suppression, overexpression

- Put numbers
- Parametrise
- Analyse
- perturb

bottom-up	top-down				
literature	"pathway" database				
biochemistry	lipid/metabol/prote/ transcript"omics"				
parameter search	hmm				
Simulation	structural analysis,				
Inhibition, stimulation,					

suppression, overexpression

Build the system

Put numbers

Parametrise

Analyse

perturb

biochemistry

bottom-up

literature

biochemistry

Modelling

parameter search

Simulation

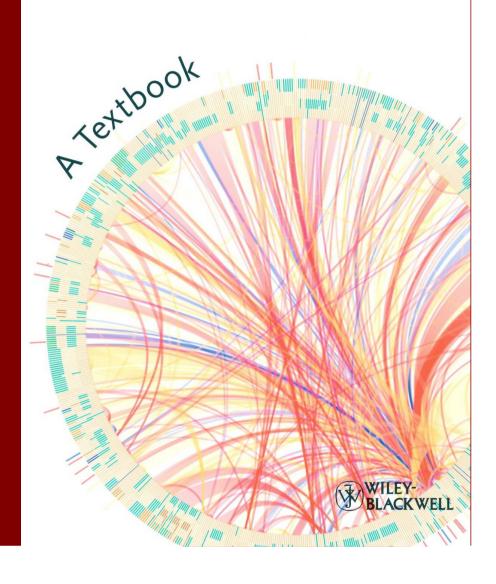
Bioinformatics

top-down

"pathway" database

high-throughput

lipid/metabol/prote/


hmm....

structural analysis.

Inhibition, Moheration, biology suppression phyerex are stigny

Systems Biology

Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald, Hans Lehrach, and Ralf Herwig

